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The arithmetic of certain del Pezzo surfaces
and K3 surfaces

par NGUYEN Ngoc Dong Quan

A mon père Nguyen Ngoc Quang pour son 60e anniversaire

Résumé. Nous construisons des surfaces de del Pezzo de degré 4
violant le principe de Hasse expliqué par l’obstruction de Brauer-
Manin. En utilisant ces surfaces de del Pezzo de degré 4, nous
montrons qu’il y a des familles algébriques de surfaces K3 violant
le principe de Hasse expliqué par l’obstruction de Brauer-Manin.
Divers exemples sont donnés.

Abstract. We construct del Pezzo surfaces of degree 4 violating
the Hasse principle explained by the Brauer-Manin obstruction.
Using these del Pezzo surfaces, we show that there are algebraic
families of K3 surfaces violating the Hasse principle explained by
the Brauer-Manin obstruction. Various examples are given.

1. Introduction

Let k be a global field and Ak be the adèle ring of k. Let V be a smooth
geometrically irreducible variety defined over k and let Br(V) be the Brauer
group of V. It is well-known that

V(k) ⊆ V(Ak)Br ⊆ V(Ak).

Here,

V(Ak)Br =
{

(Pv) ∈ V(Ak) such that
∑

v

invvA(Pv) = 0 for all A ∈ Br(V)
}

and for each valuation v and each Azumaya algebra A in Br(V), invv :
Br(kv) −→ Q/Z is the local invariant map from class field theory and A(Pv)
is defined as follows. A point Pv ∈ V(kv) gives a map Spec(kv) −→ V, and
hence induces a pullback map Br(V) −→ Br(kv); we write A(Pv) for the
image of A under this map.

We say that V satisfies the Hasse principle if the following is true

V(k) 6= ∅ ⇔ V(kv) 6= ∅ ∀v.

Manuscrit reçu le 14 avril 2011.
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If V(k) = ∅ and V(Ak) 6= ∅, we say that V is a counter-example to the
Hasse principle. Further, if we also have V(Ak)Br = ∅, we say that V is
a counter-example to the Hasse principle explained by the Brauer-Manin
obstruction.

In 1921, Hasse proved that smooth quadric hypersurfaces of arbitrary
dimension satisfy the Hasse principle. The first counterexamples of genus
one curves to the Hasse principle were discovered by Lind ([9]) in 1940 and
independently by Reichardt ([13]).

We are concerned in this paper with constructing del Pezzo surfaces
of degree 4 violating the Hasse principle explained by the Brauer-Manin
obstruction; and it then follows that there exist algebraic families of K3
surfaces violating the Hasse principle explained by the Brauer-Manin ob-
struction. More precisely, we shall prove the following

Theorem 1.1. Let p be a prime such that p = 64k2 + 40k+ 5 for k ∈ Z≥0.
Let X ⊂ P4

Q be the del Pezzo surface defined by

(1.1) uv = x2 − py2

(1.2) (u+ (8k + 1)v)(u+ (8k + 2)v) = x2 − pz2

Then, X is a counterexample to the Hasse principle explained by the Brauer-
Manin obstruction.

and

Theorem 1.2. Let p be a prime such that p = 64k2 + 40k+ 5 for k ∈ Z≥0.
Let (Γ,Λ,Σ) ∈ Q3 be a point on the conic Q ∈ P2

Q defined by

(1.3) Q : (p2 − (8k + 1)2)X2 − Y 2 + Z2 = 0,

such that Γ 6= 0.
Let Ω ∈ Q be a rational number such that the triple (λ, µ, ν) ∈ Q3 defined

by

(1.4)


λ := Γ2

µ := Ω2 − Γ2

ν := Λ2 − Ω2 − (p2 − 1)Γ2
,

satisfies the following.

(A1) λµν 6= 0.
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(A2) C1C2C3C4C5 6= 0 where
C1 := ν2 − 4p2λµ,

C2 := (8k + 1)2(8k + 2)2λ2 + 16k(8k + 1)λµ+ µ2,

C3 := p(8k + 1)2λ+ pµ+ (8k + 1)ν,
C4 := p(8k + 2)2λ+ pµ+ (8k + 2)ν,
C5 := (8k + 1)ν2 + p(8k + 1)(8k + 2)λν + pµν + p2λµ.

Let K ⊂ P5
Q be the K3 surface defined by

K :


u2 = xy + pz2

u2 − pv2 = (x+ (8k + 1)y)(x+ (8k + 2)y)
w2 = λx2 + µy2 + νz2

.(1.5)

Then, K is a violation of the Hasse principle explained by the Brauer-Manin
obstruction.

We shall prove Theorem 1.1 in Section 2. In Section 3, we shall prove The-
orem 1.2 and as a corollary, we shall show that there are algebraic families
of K3 surfaces violating the Hasse principle explained by the Brauer-Manin
obstruction.
Remark 1.3. Let k = 0 in Theorem 1.1. Then, p = 5. Let X5 be the del
Pezzo surface of degree 4 defined by

X5 :
{
uv = x2 − 5y2

(u+ v)(u+ 2v) = x2 − 5z2 .

Then, by Theorem 1.1, X5 violates the Hasse principle explained by the
Brauer-Manin obstruction. This is the well-known Birch and Swinnerton-
Dyer del Pezzo surface (see [1]).
Remark 1.4. It is easy to check that the point (Γ0,Λ0,Σ0) = (1, p, 8k+1)
lies on the conic Q with Γ0 = 1 6= 0.

In Section 3, we shall show that for a given point (Γ,Λ,Σ) on the conic Q
with Γ 6= 0, there are infinitely many polynomials Ω(T) ∈ Q[T] such that
the quadruple (Γ,Λ,Σ,Ω(T)) satisfies A1 and A2 for any T ∈ Q. This is
the key fact that we shall use to construct algebraic families of K3 surfaces
violating the Hasse principle explained by the Brauer-Manin obstruction.

2. The Hasse principle for certain degree 4 del Pezzo surfaces

Recall that the Kronecker symbol (still denoted by
(
a

b

)
) is the extension

of the Jacobi symbol to (Z \ {0})2 by defining
(
a

−1

)
= sign(a),

(
a

2

)
=
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a

)
for a odd and

(
a

2

)
= 0 for a even and extending by multiplicativity

(see [3, p.36]).
We begin by proving the main lemmas that we need in the proof of

Theorem 1.1.

Lemma 2.1. Let p be a prime such that p = 64k2 + 40k + 5 for k ∈ Z≥0.
Then, 2 and 8k + 3 are quadratic non-residues in F×p , and 4k + 1 is a
quadratic residue in F×p .

Proof. We see from Theorem 2.2.9 ([3, p.38]) that(4k + 1
p

)
=
( 4k + 1

(16k + 6)(4k + 1)− 1

)
=
(4k + 1
−1

)
= sign(4k + 1) = 1.

Since p = 64k2 + 40k + 5 ≡ 5 (mod 8), 2 is a quadratic non-residue in F×p .
Further, we see that 2(4k+1)(8k+3) ≡ 64k2 +40k+6 ≡ 1 (mod p). Thus,
since 2 is a quadratic non-residue in F×p and (4k+ 1) is a quadratic residue
modulo p, it follows that 8k + 3 is a quadratic non-residue in F×p , proving
our contention. �

Lemma 2.2. Suppose the same assumptions and notations as in Theorem
1.1. Let Q(X ) be the function field of X and let A be the class of the
quaternion algebra

(
p,

u

u+ (8k + 1)v

)
. Then, A is an Azumaya algebra of

X , that is, A belongs to the subgroup Br(X ) of Br(Q(X )). Further, the
quaternion algebras A, B =

(
p,

u

u+ (8k + 2)v

)
, C =

(
p,

v

u+ (8k + 1)v

)
and D =

(
p,

v

u+ (8k + 2)v

)
all represent the same class in Br(Q(X )).

Proof. Let K = Q(√p). We consider the following two conics defined over
K and lying on X

Γ1 : u = 0, x−√py = 0, (8k + 1)(8k + 2)v2 = x2 − pz2

and
Γ2 : u+ (8k + 1)v = 0, x−√pz = 0, (8k + 1)v2 + x2 − py2 = 0.

Let σ be the generator of the Galois group Gal(K/Q). Then, it follows that
Γ1 + σΓ1 is the section of the surface X by the hyperplane u = 0, and
similarly, Γ2 +σΓ2 is the section of X by the hyperplane u+ (8k+ 1)v = 0.
Hence, we deduce that

div
(

u

u+ (8k + 1)v

)
= Γ1 + σΓ1 − Γ2 − σΓ2.

Thus, it follows from Lemma 1 in [16] (or from Proposition 2.2.3 in [5])
that A is an Azumaya algebra of X .
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The last contention follows immediately from the defining equations of X .
�

Proof of Theorem 1.1. One can verify that X is smooth if p 6= 0. Hence,
X is del Pezzo surface of degree 4. Now we show that X is everywhere
locally solvable.

One can check that the points
Q1 := (u : v : x : y : z) = (−p : 0 : 0 : 0 :

√
−p),

Q2 := (−(8k + 1)√p : √p : (8k + 2)√p : √p : 8k + 2),
Q3 := (1 : 1 : 1 : 0 :

√
−1),

lie on X . For an odd prime l 6= p, at least one of p, −p and −1 is a square
in Q×l . Hence, in any event, at least one of the points Q1, Q2, Q3 lies on
X (Ql) for odd prime l 6= p. Further, since

p = 64k2 + 40k + 5 ≡ 1 (mod 4),

−1 is a square in Qp. Therefore, the point Q3 also belongs to X (Qp).
Suppose that l =∞. Then, p is a square in R = Q∞. Thus, the point Q2

lies on X .
Suppose that l = 2. Then, since

p(−p+ 8k + 2) = −4096k4 − 4608k3 − 1792k2 − 280k − 15 ≡ 1 (mod 8),
the point Q4 := (−p2 : p : 0 : p : (8k + 2)

√
p(−p+ 8k + 2)) belongs to

X (Q2). Therefore, X is locally solvable at 2.
Hence, in any event, X is everywhere locally solvable.
Let Q(X ) be the function field of X and let A be the class of the quater-

nion algebra
(
p,

u

u+ (8k + 1)v

)
. Then, by Lemma 2.2, we know that A is

an Azumaya algebra of X .
For each prime l (including l =∞), let Pl := (u : v : x : y : z) be a point

in X (Ql) such that it is represented by integral coordinates with at least
one unit among them. Let A(Pl) ∈ Br(Ql) be the evaluation of A at Pl and
let invl : Br(Ql) −→ Q/Z be the invariant map from class field theory as
introduced in the Introduction. We shall prove that for any Pl ∈ X (Ql),

invl(A(Pl)) =
{

0 if l 6= p

1/2 if l = p
.

Suppose that l = ∞. Then, p is positive and hence, a square in R =
Q∞. Hence, the Hilbert symbol

(
p,

u

u+ (8k + 1)v

)
∞

= 1 at points P∞ for

which u and u + (8k + 1)v are non-zero. Since the map P 7→ inv∞(A(P ))
is continuous on X (R), it implies that inv∞(A(P∞)) = 0 for any point
P∞ ∈ X (R).
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Suppose that l is an odd prime such that p is a square in Q×l and l 6= p.
Then, repeating in the same manner as in the case when l =∞, we deduce
that invl(A(Pl)) = 0.

Suppose that l is an odd prime such that p is not a square inQ×l and l 6= p.
Then, at least one of u, v is non-zero modulo l; otherwise, it follows from
(1.1) and (1.2) that x2−py2 ≡ 0 (mod l) and x2−pz2 ≡ 0 (mod l). We see
that x, y are non-zero modulo l; otherwise u = v = x = y = z = 0 modulo
l, contradiction. Hence, p ≡ (x/y)2 (mod l) and thus, p is a square in Ql,
contradiction. Similarly, at least one of (u+ (8k+ 1)v) and (u+ (8k+ 2)v)
is non-zero modulo l. Hence, at least one of the numbers u

u+ (8k + 1)v ,
u

u+ (8k + 2)v ,
v

u+ (8k + 1)v and v

u+ (8k + 2)v is an l-adic unit in Z×l ,

say U . Hence, the Hilbert symbol (p, U)l = 1. Therefore, invl(A(Pl)) = 0.
Suppose that l = 2. We shall prove that at least one of u, v is odd.

Assume the contrary, that is, u = 2u1 and v = 2v1 for some u1, v1 ∈ Z2.
Then, since p ≡ 5 (mod 8), we deduce that x2−y2 ≡ 0 (mod 4). Note that
x, y and z must be odd; otherwise, for example, assume that x is even.
Then, it follows from equations (1.1) and (1.2) that y and z must be even
as well, contradiction.

Now, since x, y are odd, it implies that x2 − y2 ≡ 0 (mod 8). Hence,
modulo 8 equation (1.1), we deduce that 4u1v1 ≡ x2−5y2 (mod 8). Hence,
4(u1v1 + y2) ≡ 0 (mod 8). Thus, (u1v1 + y2) is even. Hence, u1 and v1 are
odd.

Similarly, we also have that x2 − z2 ≡ 0 (mod 8). Thus, modulo 8 equa-
tion (1.2), it follows that 4(u1 + (8k + 1)v1)(u1 + (8k + 2)v1) ≡ x2 − 5z2

(mod 8). Hence, it implies that 4[(u1 +(8k+1)v1)(u1 +(8k+2)v1)+z2] ≡ 0
(mod 8). Since z is odd, (u1+(8k+1)v1)(u1+(8k+2)v1) is odd, a contradic-
tion since u1 and v1 are odd. Thus, at least one of u and v is odd and hence
it implies that at least one of (u+(8k+1)v) and (u+(8k+2)v) is odd. So, at
least one of the numbers u

u+ (8k + 1)v ,
u

u+ (8k + 2)v ,
v

u+ (8k + 1)v and
v

u+ (8k + 2)v is a 2-adic unit in Z×2 , say U . Hence, since p ≡ 1 (mod 4),

the Hilbert symbol (p, U)2 = 1. Therefore, inv2(A(P2)) = 0.
Suppose that l = p. Then, reducing the defining equations of X modulo p,

we deduce that{
uv ≡ x2 (mod p)
(u+ (8k + 1)v)(u+ (8k + 2)v) ≡ x2 (mod p)

.

It follows from the last two congruences that u2 + (16k + 3)uv +
(8k + 1)(8k + 2)v2 ≡ uv (mod p). Hence, we deduce that

(u+ (8k + 1)v)2 ≡ (−8k − 1)v2 (mod p).
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We know that v 6≡ 0 (mod p); otherwise, u ≡ 0 (mod p) and x ≡ 0
(mod p). Reducing equations (1.1) and (1.2) modulo p2, we deduce that
py2 ≡ 0 (mod p2) and pz2 ≡ 0 (mod p2); so, y ≡ 0 (mod p) and z ≡ 0

(mod p), contradiction. Hence, it implies that
(

v

u+ (8k + 1)v

)2
≡ 1
−8k − 1

(mod p). Since p = 64k2 + 40k + 5, it follows that p = 4(4k + 1)2 + 8k + 1
and hence,

1
−8k − 1 = 1

4(4k + 1)2 (mod p).

Hence, v

u+ (8k + 1)v ≡ ±
1

2(4k + 1) ≡ ±(8k+ 3) (mod p). By Lemma 2.1,
we deduce that the local Hilbert symbol(

p,
v

u+ (8k + 1)v

)
p

=
(±(8k + 3)

p

)
=
(±1
p

)(8k + 3
p

)
= −1.

Hence, invp(A(Pp)) = 1/2.
Therefore,

∑
l invl(A(Pl)) = 1/2 for any (Pl)l ∈ X (AQ) and hence,

X (AQ)Br = ∅, proving our contention. �

2.1. Examples of del Pezzo surfaces violating the Hasse principle.
We recall the following conjecture.

Conjecture 2.3. (see [2]) (Bouniakowsky’s conjecture) Let P (x) ∈ Z[x] be
an irreducible polynomial and let N = gcd{P (n) : n ∈ Z>0}. Then, there

are infinitely many positive integers n such that |P (n)|
N

is a prime.

We see from the Bouniakowsky conjecture that there should be infinitely
many primes p such that

p = 64k2 + 40k + 5,

for a positive integer k. Hence, there should be infinitely many del Pezzo
surfaces of degree 4 defined as in Theorem 1.1 violating the Hasse principle
explained by the Brauer-Manin obstruction.

In Table 2.1 below, we give a list of the first few values of p in Theo-
rem 1.1.

Example 2.4. Let (k, p) = (1, 109) and let X109 be the del Pezzo surface
defined by

X109 :
{
uv = x2 − 109y2

(u+ 9v)(u+ 10v) = x2 − 109z2 .

Then, by Theorem 1.1, X109 is a counterexample to the Hasse principle
explained by the Brauer-Manin obstruction.
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k 0 1 3 6 8 14 16
p 5 109 701 2549 4421 13109 17029
k 17 19 23 27 32 36 37
p 19181 23869 34781 47741 66821 84389 89101
k 38 39 41 44 47 48 52
p 93941 98909 109229 125669 143261 149381 175141
k 56 59 61 63 66 72 74
p 202949 225149 240589 256541 281429 334661 353429
k 76 77 88 93 94 98 99
p 372709 382541 499141 557261 569269 618581 631229
k 111 113 116 118 124 129 131
p 792989 821741 865829 895861 989029 1070189 1103549

Table 2.1. Degree 4 del Pezzo surfaces violating the Hasse principle.

3. The Hasse principle for K3 surfaces

In this section, we shall prove Theorem 1.2 and hence, applying Theorem
1.2, we shall construct algebraic families of K3 surfaces violating the Hasse
principle explained by the Brauer-Manin obstruction.

We state the following well-known lemma that we shall need in the proof
of Theorem 1.2.

Lemma 3.1. (See [6, Lemma 4.8]) Let k be a number field and let V1 and
V2 be (proper) k-varieties. Assume that there is a k-morphism α : V1 → V2
and that V2(Ak)Br = ∅. Then,

V1(Ak)Br = ∅.

The next lemma shows that given a point (Γ,Λ,Σ) ∈ Q(Q) with Γ 6= 0,
there are infinitely many polynomials Ω(T) ∈ Q(T) such that the quadruple
(Γ,Λ,Σ,Ω(T)) satisfies A1 and A2 for any T ∈ Q. Hence, by Theorem 1.2,
this implies that there are algebraic families of K3 surfaces violating the
Hasse principle explained by the Brauer-Manin obstruction.

Lemma 3.2. Let p be a prime such that p = 64k2 + 40k + 5 for k ∈ Z≥0.
Let (Γ,Λ,Σ) ∈ Q3 be a point on the conic Q defined as in Theorem 1.2
with Γ 6= 0. Then, there are infinitely many polynomials Ω(T) ∈ Q[T] such
that the quadruple (Γ,Λ,Σ,Ω(T)) satisfies A1 and A2 in Theorem 1.2 for
any T ∈ Q.

Proof. Assume that Ω is a rational number such that one of Ci is zero for
1 ≤ i ≤ 5. Then, we see that Ω is a rational root of one of the following
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polynomials
F1(T) = T4 − 2((p2 + 1)Γ2 + Λ2)T2 + (p2 + 1)2Γ4 + 2(1− p2)Γ2Λ2 + Λ4,

F2(T) = T4 + (128k2 + 16k − 2)Γ2T2

+ (4096k4 + 3072k3 + 704k2 + 80k + 5)Γ4,

F3(T) = (8k + 2)2T2

+ (−32768k5 − 40960k4 − 19456k3 − 4480k2 − 512k − 24)Γ2

+ (8k + 1)Λ2,

F4(T) = (p− 8k − 2)T2

+ (−32768k5 − 45056k4 − 23552k3 − 5888k2 − 712k − 33)Γ2

+ (8k + 2)Λ2,

and

F5(T) = −(8k + 2)2T4

+
(
(−64k2p+ 16kp2 − 24kp− 16k − p3 + 3p2 − 2)Γ2

+ (−16k + p− 2)Λ2
)

T2

+ (−64k2p3 + 64k2p+ 8kp4 − 24kp3 − 16kp2 + 24kp+ 8k
+ p4 − p3 − 3p2 + p+ 1)Γ4

+
(
64k2p− 16kp2 + 24kp+ 16k − 2p2 + p+ 2

)
Γ2Λ2

+ (8k + 1) Λ4.

Similarly, if Ω is a rational number such that λµν = 0, then Ω is a
rational root of the degree 4 polynomial defined by

H(T) = Γ2(T2 − Γ2)(T2 − Λ2 + (p2 − 1)Γ2).
We define

A := {z ∈ Q : G(z) = 0 or H(z) = 0} ,
where

G(T) =
5∏

i=1
Fi(T).

Then, A is nonempty since H(T) has at least two rational roots T = ±Γ.
Further, since we see that deg(G(T)) = 16 and deg(H(T)) = 4, it follows
that the cardinality of A is finite.

We define
m0 := max{|z| : z ∈ A}.
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Then, one can check that the polynomial Ω(T) ∈ Q[T] defined by

Ω(T) = T2n +m,

for m ≥ m0 + 1 and n ≥ 1, does not take any values in A for any T ∈ Q.
Thus, the quadruple (Γ,Λ,Σ,Ω(T)) satisfies A1 and A2 for any T ∈ Q. �

Before proceeding to prove Theorem 1.2, we shall prove that the surface
K defined in Theorem 1.2 is a K3 surface.

Lemma 3.3. Suppose the same notations and assumptions as in Theorem
1.2. Then, K is smooth, that is, K is a K3 surface.

Remark 3.4. The proof below shows that K is smooth if and only if
C1C2C3C4C5 6= 0 where Ci, 1 ≤ i ≤ 5 were defined in Theorem 1.2.

Proof. One can prove the smoothness of K using the Jacobian criterion.
This approach is elementary but tedious. We present below a more ele-
gant proof using the geometric properties of the situation which was kindly
provided by the referee.

We know that the surface K is a double cover of the del Pezzo surface
X defined in Theorem 1.1, ramified along the curve C ⊂ X cut out by
λx2 + µy2 + νz2 = 0. It is known that X is smooth; hence, to prove that
K is smooth, it suffices to show that C is smooth. We see from the defining
equations of X that C is a double cover of the curve D ⊂ P3 defined byu2 = xy − p(λx2 + µy2)

ν
u2 − pv2 = (x+ (8k + 1)y)(x+ (8k + 2)y)

with ramification locus L ⊂ D defined by λx2 + µy2 = 0. Recall that an
intersection of two quadrics Q1(x) = Q2(x) = 0 is smooth if and only if the
homogeneous polynomial det (sQ2(x) + tQ2(x)) ∈ Q[s, t] has no multiple
root (see [14]). Using this fact, one can check that D is smooth if and only
if C1C3C4C5 6= 0 and that L is smooth as soon as C2 6= 0. Hence, K is
smooth as soon as all Ci’s are nonzero. �

3.1. Proof of Theorem 1.2.

Proof. We prove that K is everywhere locally solvable. We consider the
following cases.
Case I. l is an odd prime such that −1 is a square in Q×l . In particular, p
is among these primes.

Let Q1 := (x : y : z : u : v : w) = (1 : 1 : 0 : 1 :
√
−1 : Ω). Since

λ+µ = Ω2 and p = 64k2 + 40k+ 5, one can check that Q1 lies on K. Since,
−1 is a square in Q×l , it follows that Q1 ∈ K(Ql).
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Case II. l is an odd prime such that p is a square in Q×l .
Let Q2 := (−(8k + 1)√p : √p : √p : (8k + 2)√p : (8k + 2) : √pΣ).

Since (Γ,Λ,Σ) lies on the conic Q, it follows from (1.3) that Q2 lies on K.
Furthermore, since √p ∈ Q×l , it follows that Q2 ∈ K(Ql).
Case III. l is an odd prime such that −p is a square in Q×l .

Let Q3 := (−p : 0 : 0 : 0 :
√
−p : pΓ). Then, since λ = Γ2, one sees that

Q3 lies on K. Since
√
−p ∈ Q×l , it follows that Q3 ∈ K(Ql).

Case IV. l = 2.
Let Q4 := (−p2 : p : p : 0 : (8k + 2)

√
p(8k + 2− p) : pΛ). Since

p = (8k + 2)2 + (8k + 1),

and

ν = Λ2 − Ω2 − (p2 − 1)Γ2,

one can check that Q4 lies on K. Furthermore, we know that

p(8k + 2− p) = −4096k4 − 4608k3 − 1792k2 − 280k − 15 ≡ 1 (mod 8).

Hence, p(8k + 2− p) is a square in Q×2 . Thus, Q4 ∈ K(Q2).
Therefore, in any event, K is everywhere locally solvable.

Now we show that K(AQ)Br = ∅. Indeed, on letting

x = U, y = V, z = Y, u = X, v = Z, w = W,

one sees that K lies on the del Pezzo surface X in Theorem 1.1. Hence,
there exists a morphism

φ : K −→ X .

Thus, since X (AQ)Br = ∅, it follows from Lemma 3.1 that K(AQ)Br = ∅,
proving our contention. �

3.2. Algebraic families of K3 surfaces violating the Hasse princi-
ple. In this subsection, we shall apply Theorem 1.2 to explicitly construct
algebraic families of K3 surfaces violating the Hasse principle explained by
the Brauer-Manin obstruction.

Corollary 3.5. Let p be a prime such that p = 64k2 + 40k + 5 for some
integer k ∈ Z≥0. Let m,n be integers such that m ≥ 2 and n ≥ 1. Let
Kp ⊂ P5

Q be the K3 surface defined by

Kp :


u2 = xy + pz2

u2 − pv2 = (x+ (8k + 1)y)(x+ (8k + 2)y)
w2 = x2 + (T4n + 2mT2n +m2 − 1)y2

−(T4n + 2mT2n +m2 − 1)z2

(3.1)
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for T ∈ Q. Then, Kp violates the Hasse principle explained by the Brauer-
Manin obstruction.

Proof. Throughout the proof, we shall use the same notations as in Lemma
3.2.

The conic Q in Theorem 1.2 defined by
Q : (p2 − (8k + 1)2)X2 − Y 2 + Z2 = 0,

has a point (Γ,Λ,Σ) = (1, p, 8k+1) with Γ = 1 6= 0. Then, the polynomials
Fi(T) in the proof of Lemma 3.2 are of the form.
F1(T) = (T2 − 1)(T2 − (16384k4 + 20480k3 + 8960k2 + 1600k + 101)),
F2(T) = T4 + (128k2 + 16k − 2)T2 + 4096k4 + 3072k3 + 704k2 + 80k + 5,
F3(T) = (64k2 + 32k + 4)T2 + 4096k4 + 3584k3 + 960k2 + 88k + 1,
F4(T) = (64k2 + 32k + 3)T2 + 4096k4 + 4608k3 + 1792k2 + 288k + 17,
F5(T) = −(T2 − 1)(4(4k + 1)2T2 − (1024k3 + 896k2 + 232k + 19)).

Since k ≥ 0, one sees that F3(T) ≥ 1 and F4(T) ≥ 17 for all T ∈
Q. Hence, F3 and F4 do not have any rational roots. We know that the
discriminant of F2 is

∆F2 = −8192k3 − 3072k2 − 384k − 16 ≤ −16 < 0.
Hence, it follows that F2 does not have any rational roots. We contend that
F1 has exactly two rational roots ±1. Indeed, we see that

A = 16384k4 + 20480k3 + 8960k2 + 1600k + 101 ≡ 5 (mod 8);
hence, it implies that A is not a square in Q×2 . In particular, this implies
that A is not a perfect square in Q, which shows that the set of rational
roots of F1 has exactly two elements ±1. Similarly, we can see that

B = 1024k3 + 896k2 + 232k + 19 ≡ 3 (mod 8),
which implies that B is not a square in Q×2 . Hence, B is not a square in Q.
Thus, F5 has exactly two rational roots ±1.

Therefore, the polynomial G(T) =
∏5

i=1 Fi(T) has exactly two rational
roots ±1.

Now, the polynomial H(T) in the proof of Lemma 3.2 is of the form
H(T) = (T2 − 1)2.

Hence, H(T) has exactly two rational roots ±1. Therefore, we deduce that
A := {z ∈ Q : G(z) = 0 or H(z) = 0} = {±1}.

For each m ≥ 2 and n ≥ 1, we define the polynomial Ω(T) ∈ Q[T] as
follows.

Ω(T) = T2n +m.
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Then, one can easily check that Ω(T) does not take values ±1 for any
T ∈ Q.

We define

λ = Γ2 = 1,
µ = Ω(T)2 − Γ2 = T4n + 2mT2n +m2 − 1,
ν = Λ2 − Ω(T)2 − (p2 − 1)Γ2 = −(T4n + 2mT2n +m2 − 1).

Then, since Ω(T) does not take values ±1 for any T ∈ Q, repeating in
the same arguments as in the proof of Lemma 3.2, we deduce that the
quadruple (λ, µ, ν,Ω(T)) satisfies A1 and A2 for any T ∈ Q. Hence, by
Theorem 1.2, Kp violates the Hasse principle explained by the Brauer-
Manin obstruction. �

In Table 3.1 below, we tabulate algebraic families Kp of K3 surfaces
violating the Hasse principle explained by the Brauer-Manin obstruction
for the first few values of p in Corollary 3.5 with m = 2 and n = 1.

k p The defining equations of Kp

0 5 K5 :


u2 = xy + 5z2

u2 − 5v2 = (x+ y)(x+ 2y)
w2 = x2 + (T4 + 4T2 + 3)y2 − (T4 + 4T2 + 3)z2

1 109 K109 :


u2 = xy + 109z2

u2 − 109v2 = (x+ 9y)(x+ 10y)
w2 = x2 + (T4 + 4T2 + 3)y2 − (T4 + 4T2 + 3)z2

3 701 K701 :


u2 = xy + 701z2

u2 − 701v2 = (x+ 25y)(x+ 26y)
w2 = x2 + (T4 + 4T2 + 3)y2 − (T4 + 4T2 + 3)z2

Table 3.1. Algebraic families of K3 surfaces Kp violating
the Hasse principle.

Remark 3.6. The following remark is suggested by the referee.
It is possible that there should be infinitely many algebraic families of

K3 surfaces violating the Hasse principle arising from Corollary 3.5. To
prove this, one needs to verify whether these families are nonisotrivial or
if they are isotrivial, can one show that at least they are nonconstant. The
author did not pursue this question since Corollary 3.5 is sufficient for our
purposes.
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