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Lehmer’s conjecture for polynomials satisfying a
congruence divisibility condition and an analogue

for elliptic curves

par Joseph H. SILVERMAN

Résumé. De nombreux auteurs ont prouvé des versions explicites
de la conjecture de Lehmer dans le cas particulier de polynômes
dont les coefficients sont tous congrus à 1 modulo un entierm > 1.
Nous prouvons ici un résultat similaire pour les polynômes qui sont
divisibles dans l’anneau (Z/mZ)[X] par un polynôme de la forme
1 + X + · · · + Xn pour un certain n ≥ εdeg(f). Nous prouvons
également un énoncé analogue pour les courbes elliptiques.

Abstract. A number of authors have proven explicit versions
of Lehmer’s conjecture for polynomials whose coefficients are all
congruent to 1 modulo m. We prove a similar result for polynomi-
als f(X) that are divisible in (Z/mZ)[X] by a polynomial of the
form 1 +X + · · ·+Xn for some n ≥ εdeg(f). We also formulate
and prove an analogous statement for elliptic curves.

Introduction

Let
h : Q̄ −→ [0,∞)

denote the absolute logarithmic height [9, 11]. Lehmer’s conjecture [15]
asserts that there is an absolute constant C > 0 such that if f(X) ∈ Z[X]
is a monic polynomial of degree D ≥ 1 whose roots are not roots of unity,
then
(0.1)

∑
f(α)=0

h(α) ≥ C.

This problem has a long history; see for example [2, 15, 21, 23, 24]. The best
general result known, which is due to Dobrowolski [5], says that

∑
h(α) ≥

C(log logD/ logD)3. Various authors have considered Lehmer’s problem
for restricted values of α. For example, Amoroso and Dvornicich [1] show
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that if the roots of f(X) generate an abelian extension of Q, then
∑
h(α) ≥

D(log 5)/12.
An interesting class of polynomials are those whose coefficients are all

odd. More generally, one can consider polynomials whose coefficients are
congruent to 1 modulo m, as in the following result.

Theorem 0.1. (Borwein, Dobrowolski, Mossinghoff [3]) Let m ≥ 2, and
let f(X) ∈ Z[X] be a monic polynomial of degree D with no cyclotomic
factors that satisfies

(0.2) f(X) ≡ XD +XD−1 + · · ·+X2 +X + 1 (mod m).

Then ∑
f(α)=0

h(α) ≥ D

D + 1Cm,

where we may take

C2 = 1
4 log 5 and Cm = log

√
m2 + 1

2 for m ≥ 3.

We mention that an earlier paper [4] does the case of non-reciprocal
polynomials, and subsequent papers [6, 10] give improved values for Cm,
although asymptotically they all have the form Cm = log(m/2)+O(1/m2).
We also note the papers [17, 18] which give various generalizations of Theo-
rem 0.1, including weakening the congruence condition (0.2), working over
number fields, and considering heights of points and subspaces in projective
space.

Our first result is the following generalization of Theorem 0.1, albeit with
less sharp constants. See Theorem 2.1 and Corollary 2.1 for our precise
results.

Theorem 0.2. For all ε > 0 there is a constant Cε > 0 with the following
property: Let f(X) ∈ Z[X] be a monic polynomial of degree D such that

(0.3) f(X) is divisible by Xn−1 +Xn−2 + · · ·+X + 1 in (Z/mZ)[X]

for some integers

m ≥ 2 and n ≥ max{εD, 2}.

Suppose further that no root of f(X) is a root of unity. Then∑
f(α)=0

h(α) ≥ Cε logm.

In particular, Lehmer’s conjecture (0.1) is true for this class of polynomials.

The elliptic analogue of Lehmer’s conjecture says that if E/K is an
elliptic curve defined over a number field, then there is a constant CE/K > 0
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such that for all nontorsion points Q ∈ E(K̄) of degree DQ = [K(Q) : K]
we have

(0.4) DQĥE(Q) ≥ CE/K .

Here ĥE is the logarithmic canonical height on E. There has been consider-
able work on the elliptic Lehmer conjecture; see for example [8, 14, 16]. Our
second main result is an elliptic analogue of Theorem 0.2. We show that
if a significant number of the Galois conjugates of Q are m-adically close
to n-torsion points, then the elliptic Lehmer estimate (0.4) holds. We now
make a few comments concerning our elliptic result, but see Corollary 4.1
for the precise statement.

An initial difficulty is to find an appropriate elliptic version of the modm
divisibility condition (0.3). In Section 1 we show that (0.3) implies a lower
bound for a certain sum over the roots of f , and it is this weaker property
that we generalize and adapt to the elliptic setting. More precisely, the
divisibility property (0.3) says that a significant number of the roots of f
are m-adically close to nth-roots of unity. The analogous statement for
elliptic curves, as noted earlier, is that a significant number of the Galois
conjugates of Q are m-adically close to n-torsion points.

Theorem 0.2 deals with congruences related to cyclotomic polynomials,
which is natural when studying Lehmer’s problem, but one might consider
other sorts of congruence conditions. For example, suppose that f(X) is
congruent modulo m to XD +XD−1 + · · ·+X2 +X − 1. Samuels [17] has
considered general conditions of this sort. In Section 5 we briefly reprove
one of Samuels’ results and use it to make a number of remarks concerning
possible generalizations.

Remark 0.1. Blanksby and Montgomery [2] used Fourier methods to prove
an approximation to Lehmer’s conjecture. Their proof involves two steps:

Step I: (Fourier averaging) Look at weighted sums
J∑
j=1

aj log |1− αj |

and prove an upper bound of the form O(log J), which improves
the trivial bound of O(J).

Step II: Compute a second moment in order to obtain a lower bound
for the Lehmer sum.

The Fourier averaging method (Step I) of Blanksby and Montgomery was
extended to elliptic curves by Hindry and the author [7, 8], but the argu-
ment for the Step II lower bound was replaced by a pigeonhole argument
in [7] and by the use of Néron models in [8].

In this paper we use Fourier averaging as in [2, 7, 8] to obtain cancelation
in certain weighted sums. But the various arguments used for Step II are
replaced in this paper with a lower bound obtained from the congruence
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divisibility condition (0.3). In particular, this explains why our final lower
bound depends on the strength of the congruence condition imposed on the
polynomial.

As an aid to the reader, and to set up the estimates in the exact form
that we need, we give the Fourier averaging arguments in full for the mul-
tiplicative group. However, we note that our Proposition 2.1 is similar to
[2, Theorem 1], and our Lemma 6.1 is similar to, and plays the same role
as, [2, Lemma 4]. We also refer the reader to [22], which gives a simplified
proof of the main result of [2].

Remark 0.2. Our Theorem 0.2 and some of Samuels’ principal results [17]
are height bounds for polynomials satisfying various sorts of congruence
conditions, so we conclude this introduction by briefly describing how the
results differ. Our polynomials satisfy a divisibility condition modulo m,
so multiplying by X − 1, our theorem applies to polynomials F (X) of the
form

F (X) = (Xn − 1)A(X) +mB(X) for some A,B ∈ Z[X].

In general, we obtain a bound for all n (see Lemma 2.1), and in particular
we prove Lehmer’s conjecture if n ≥ εdeg(F ). The results in [17] apply to
(factors of) polynomials that are congruent modulo m to a simpler poly-
nomial of the same degree. For example, a typical result in [17] is a bound
for (noncyclotomic factors of) polynomials F (X) of degree nr satisfying

F (X) = (Xn − 1)r +mB(X) for some B ∈ Z[X].

Thus although there is some overlap, our result and the results in [17] apply
to largely different classes of polynomials. It might be interesting to combine
the methods of the two papers to prove a general result encompassing both.

Acknowledgements. The author would like to thank Michael Mossinghoff
for introducing him to the topic of polynomials whose coefficients satisfy
congruence conditions, and to thank Michael, Igor Shparlinski, and the
referees for for their helpful comments on the initial draft of this paper and
for their assistance in the phrasing of the résumé.

1. A reformulation of property (0.2)

We start by normalizing our absolute values.

Definition. We letMQ be the usual collection of absolute values on Q, and
for any algebraic extensionK/Q, we writeMK for the set of all extensions of
these absolute values to K. For α ∈ Q̄ and v ∈MQ̄, we define a normalized
absolute value by choosing a finite extension K/Q with α ∈ K and setting

‖α‖v = |α|[Kv :Qv ]/[K:Q]
v ,
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where | · |v is the v-absolute value on K extending an absolute value on Q.
We also define a normalized valuation by

v(α) = − log ‖α‖v.
Then the absolute logarithmic height of α is defined by

h(α) =
∑
v∈MK

max
{
log ‖α‖v, 0

}
.

We writeM0
K , respectivelyM∞K , for the set of nonarchimedean, respectively

archimedean, absolute values in MK .

Remark 1.1. With the above normalization we have the product formula∏
v∈MK

‖α‖v = 1 for all α ∈ K∗.

In particular, if α ∈ K is a nonzero algebraic integer, then
h(α) =

∑
v∈M∞

K

max
{
log ‖α‖v, 0

}
=

∑
v∈M0

K

v(α).

We also remark that∏
v∈M∞

K

‖α‖v =
∏

v∈M0
K

‖α‖−1
v = NK/Q(α)1/[K:Q].

Remark 1.2. Let f(X) ∈ Z[X] be a monic polynomial. Then the classical
Mahler measure M(f) of f is related to the heights of its roots via the
formula

logM(f) =
∑

f(α)=0
h(α).

In this paper we use the “sum the heights” notation because it has an
obvious generalization to other algebraic groups such as elliptic curves. In
such sums, we always include the roots of f with their multiplicities.

Definition. For notational convenience, we let
Φn(X) = Xn +Xn−1 + · · ·+X + 1.

If n is prime, this is the usual cyclotomic polynomial; in general it is a
product of classical cyclotomic polynomials.

Property (0.2) of Theorem 0.1 says that all of the coefficients of the
polynomial f are congruent to 1 modulo m. This is equivalent to saying
that the monic degree D polynomial f(X) ∈ Z[X] is equal to ΦD(X) in
the ring (Z/mZ)[X]. We are going to replace this equality by a divisibil-
ity condition. Note that although the ring Z/mZ contains zero divisors
if m is composite, divisibility by monic polynomials in (Z/mZ)[X] is well-
behaved. The next proposition gives some properties that are weaker than
Property (0.2) of Theorem 0.1.
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Proposition 1.1. Let m,n ≥ 2, and let f(X) ∈ Z[X] be a monic polyno-
mial of degree D. Consider the following three conditions:
(i) f(X) is divisible by Φn−1(X) in (Z/mZ)[X].
(ii) mn−1 | Res

(
f(X),Φn−1(X)

)
.

(iii)
∑
v|m

∑
f(α)=0

v(αn − 1) ≥ (n− 1) logm.

Then
(i) =⇒ (ii) =⇒ (iii).

(In (iii), we may work over any field in which f factors completely. The
way that we have normalized our absolute values ensures that the choice of
field does not matter.)

Proof. Property (i) says that

f(X) = Φn−1(X)A(X) +mB(X) for some A(X), B(X) ∈ Z[X].

This implies that

Res
(
f(X),Φn−1(X)

)
= Res

(
Φn−1(X)A(X) +mB(X),Φn−1(X)

)
= Res

(
mB(X),Φn−1(X)

)
= mn−1 Res

(
B(X),Φn−1(X)

)
.

Thus (ii) is true.
We next prove that (ii) implies (iii). For any non-archimedean absolute

value v we have∥∥Res
(
f(X), Xn − 1

)∥∥
v

=
∥∥Res

(
f(X),Φn−1(X)

)∥∥
v

∥∥f(1)
∥∥
v

≤ ‖m‖n−1
v .(1.1)

A standard formula for the resultant [13, Section V.10] is

(1.2) Res
(
f(X), Xn − 1

)
=

∏
f(α)=0

(αn − 1).

We take the v-absolute value of (1.2), use (1.1), and multiply over all v | m
to obtain the estimate

(1.3)
∏
v|m

∏
f(α)=0

‖αn − 1‖v ≤
∏
v|m
‖m‖n−1

v = m−(n−1).

Taking − log( · ) gives (iii). �

We now define a quantity that generalizes the sum appearing in Prop-
erty (iii) of Proposition 1.1.
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Definition. Let A ⊂ Q̄∗ be a finite set of algebraic integers and let m
and n be positive integers. We define

∆(A,m, n) =
∑
α∈A

1
logm

∑
v|m

1
n
v(αn − 1).

The inner sum is over all v ∈M0
K with v | m, where K is any number field

containing A. Our normalization of the valuations in MQ̄ implies that the
sum is independent of the choice of K.

Proposition 1.2. Let A be a finite set of algebraic integers, let j,m, n ≥ 1
be rational integers, and let Aj = {αj : α ∈ A}. Then

∆(Aj ,m, n) ≥ ∆(A,m, n).

Proof. From the factorization

Xjn − 1 = (Xn − 1)Φj−1(Xn),

we see that

v(αjn − 1) = v(αn − 1) + v(Φj−1(αn)) ≥ v(αn − 1)

for any algebraic integer α and any nonarchimedean absolute value v. Sum-
ming over α ∈ A and v | m, and then dividing by n logm, gives the desired
result. �

Remark 1.3. We observe that if f(X) ∈ Z[X] is a monic polynomial of
degree D and if we write Af for the set of roots of f(X), then Property (iii)
of Proposition 1.1 can be succintly written as

(1.4) ∆(Af ,m, n) ≥ n− 1
n

.

In particular, if f satisfies the congruence

f(X) ≡ ΦD(X) (mod m)

as in the statement of Theorem 0.1, then

∆(Af ,m,D + 1) ≥ D

D + 1 .

2. A height bound for polynomials satisfying congruence
conditions

The next theorem is our main result for number fields. As we will see, it
generalizes [3, 4, 6, 10] (Theorem 0.1), albeit with worse constants. Later
we will prove an elliptic curve version of this theorem and its consequences.
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Theorem 2.1. Let A ⊂ Q̄ be a finite set of algebraic integers that does not
contain any roots of unity, and let m and n be positive integers. Then for
all integers J ≥ 1 we have

(2.1)
∑
α∈A

h(α) ≥ 3
J + 2

(
∆(A,m, n) logm− |A|

n

log(J/2 + 1) + 1
J

)
.

Remark 2.1. It is always possible to choose a value of J to obtain a non-
trivial, i.e., positive, lower bound in (2.1). The optimal choice of J depends
on the relative sizes of ∆(A,m, n) logm and |A|/n. In the application most
closely related to Theorem 0.1, we have

n = D + 1 and ∆(A,m, n) logm = |A|
n
≥ D

D + 1 ,

so we get

∑
f(α)=0

h(α) ≥ D

D + 1 ·
3

J + 2 ·
(

logm− log(J/2 + 1) + 1
J

)
.

If m ≥ 5, then we obtain a nontrivial lower bound with J = 1, while
for 3 ≤ m ≤ 4 we need to take J = 2, and for m = 2 we must take J = 3.
Of course, the bound that we obtain is not sharp. However, our goal is not
to get sharp bounds in this particular case, where other authors [3, 4, 6, 10]
have used intricate techniques to obtain better bounds than we could obtain
even if we took more care. Instead, we aim to show how to obtain nontrivial
bounds that, among other things, imply that Lehmer’s conjecture is true for
an interesting class of polynomials that is larger than the class considered
in [3, 4, 6, 10].

The proof of Theorem 2.1 uses the following standard Fejér kernel esti-
mate, cf. [2, Theorem 1], whose proof we relegate to Section 6.

Proposition 2.1. For all J ≥ 1 we have

sup
z∈C
|z|≤1

J∑
j=1

(
1− j

J + 1

)
log |1− zj | ≤ 1

2 log
(
J

2 + 1
)

+ 1
2 .

Proof of Theorem 2.1. Let K be a number field such that A ⊂ K. For α ∈
A and v ∈MK , we let

αv =
{
α if ‖α‖v ≤ 1,
α−1 if ‖α‖v > 1,
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so in particular ‖αv‖v ≤ 1. We now compute

(n logm)∆(A,m, n) =
∑
α∈A

∑
v|m

v(αn − 1) def. of ∆(A,m, n),

≤
∑
α∈A

∑
v∈M0

K

v(αn − 1) α is an algebraic integer,

=
∑
α∈A

∑
v∈M∞

K

log ‖αn − 1‖v product rule,

≤
∑
α∈A

∑
v∈M∞

K
‖α‖v>1

log ‖αn‖v +
∑
α∈A

∑
v∈M∞

K

log ‖αnv − 1‖v

= n
∑
α∈A

h(α) +
∑
α∈A

∑
v∈M∞

K

log ‖αnv − 1‖v.(2.2)

We now replace A with Aj . Then using h(αj) = jh(α) and Proposition 1.2,
which says that ∆(A,m, n) ≤ ∆(Aj ,m, n), we find that

(n logm)∆(A,m, n) ≤ nj
∑
α∈A

h(α) +
∑
α∈A

∑
v∈M∞

K

log ‖αjnv − 1‖v.

We multiply by the Fejér multiplier 1 − j
J+1 and sum over 1 ≤ j ≤ J to

obtain

Jn logm
2 ∆(A,m, n) ≤ (J2 + 2J)n

6
∑
α∈A

h(α)

+
∑
α∈A

∑
v∈M∞

K

J∑
j=1

(
1− j

J + 1

)
log ‖αjnv − 1‖v.

Note that the sum over v is over archimedean absolute values, so if we
assume that αv is chosen in the unit disk to maximize the innermost sum
over j, we get the estimate

Jn logm
2 ∆(A,m, n)

≤ (J2 + 2J)n
6

∑
α∈A

h(α) + |A| sup
z∈C
|z|≤1

J∑
j=1

(
1− j

J + 1

)
log |zj − 1|.

We can now use Proposition 2.1 to conclude that

Jn logm
2 ∆(A,m, n) ≤ (J2 + 2J)n

6
∑
α∈A

h(α) + |A|2

(
log

(
J

2 + 1
)

+ 1
)
.

After a little bit of algebra, we obtain the desired result. �
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We now use our main theorem to prove that Lehmer’s conjecture is true
for a certain interesting collection of polynomials.
Corollary 2.1. Fix 0 < ε < 1

210 . Then Lehmer’s conjecture (0.1) is true
for the set of polynomials

(2.3)

f(X) ∈ Z[X] :

f(X) is monic, its roots are not roots
of unity, and there exist integers m ≥ 2
and n ≥ max{2, εdeg(f)} such that
Φn−1(X) divides f(X) in (Z/mZ)[X]

 .
More precisely, if f(X) is in the set (2.3), then

(2.4)
∑

f(α)=0
h(α) ≥ logm

185ε−1 log(24ε−1) .

Remark 2.2. Igor Shparlinski has pointed out that for large m, we may
take ε = (log logm)/(logm) and conclude that if Φn−1(X) divides f(X) in
(Z/mZ)[X] for some n ≥ ((log logm)/(logm))(deg f), then∑

f(α)=0
h(α) ≥ 1

185 +O

( log log logm
log logm

)
,

where the big-O constant is absolute.
The proof of the corollary uses a combination of Theorem 2.1 and Propo-

sition 1.1 as reformulated in Remark 1.3. We state the exact result that we
require as a lemma.
Lemma 2.1. Let f(X) ∈ Z[X] be a monic polynomial of degree D whose
roots are not roots of unity, let m,n ≥ 2 be integers, and suppose that
Φn−1(X) divides f(X) in (Z/mZ)[X]. Then

∑
f(α)=0

h(α) ≥


(logm)/123341 if logm ≥ D/16n,

logm
(128D/n logm) log(16D/n logm) if logm ≤ D/16n.

Proof. Let Af be the set of roots of f . As noted in (1.4) of Remark 1.3,
the divisibility condition on f implies that ∆(Af ,m, n) ≥ (n− 1)/n. Sub-
stituting this into (2.1) of Theorem 2.1 and using |Af | = D, we find that
for all integers J ≥ 1 we have∑

f(α)=0
h(α) ≥ 3

J + 2

(
n− 1
n

logm− D

n

log(J/2 + 1) + 1
J

)
.

Since we are not concerned with optimizing our constants, we observe that
for n ≥ 2 and J ≥ 2, this implies that

(2.5)
∑

f(α)=0
h(α) ≥ 1

J

(1
2 logm− 4D

n

log(J)
J

)
.
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We now consider two cases. First, if m is large, say

logm ≥ D/16n,

then taking J = 1789 gives

(2.6)
∑

f(α)=0
h(α) ≥ 1

J

( 1
32 − 4log(J)

J

)
logm ≥ logm

123341 .

Second, suppose that m is small,

logm ≤ D/16n.

Then we want to choose J to be an integer satisfying

(2.7) J

log J ≥
16D
n logm.

In particular, since 16D/n logm ≥ 256, it suffices to take

J =
⌊ 32D
n logm log

( 16D
n logm

)⌋
− 1.

Substituting (2.7) into (2.5) and adjusting the constants yields

(2.8)
∑

f(α)=0
h(α) ≥ logm

4J ≥ logm
(128D/n logm) log(16D/n logm) .

Combining (2.6) and (2.8) completes the proof of Lemma 2.1. �

Proof of Corollary 2.1. We are given that n ≥ max{εD, 2}. If logm ≥
D/16n, then Lemma 2.1 says that∑

f(α)=0
h(α) ≥ logm

123341 .

This is stronger than (2.4), since we have assumed that ε < 1
210 , so we are

reduced to the case that logm ≤ D/16n. Since n ≥ εD, this implies that

D

n logm ≤
D

εD logm ≤
1

ε logm,

where the upper bound is at least 16. Substituting this into Lemma 2.1, we
find that ∑

f(α)=0
h(α) ≥ logm

(128/ε logm) log(16/ε logm) .

Since m ≥ 2, this gives something slightly stronger than the desired result.
�
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3. An elliptic analogue of ∆(A, m, n)

An amalgamation of Proposition 1.1, Remark 1.3, and Theorem 2.1 says
that if f(X) ∈ Z[X] is a monic polynomial of degree D whose roots are not
roots of unity, then(

f(X) has coefficients
congruent to 1 modulo m

)
=⇒ ∆(Af ,m,D + 1) ≥ D

D + 1

=⇒
∑

f(α)=0
h(α) ≥ D

D + 1Cm.

The key estimate is Theorem 2.1, which gives a general lower bound for∑
h(α) in terms of ∆(A,m, n). In this section we define an elliptic analogue

of the quantity ∆(A,m, n), and in the next section we prove an elliptic
analogue of Theorem 2.1. We begin by recalling some basic properties of
canonical height functions on elliptic curves.
Definition. Let E/K be an elliptic curve defined over a number field. We
write

ĥ : E(K̄) −→ R
for the absolute logarithmic canonical height [20, VIII §9], and for each v ∈
MK̄ we let

λ̂v : E(K̄v) r {O} −→ R
be a local canonical height, normalized as described in [19, Chapter VI].
Proposition 3.1. The local canonical height satisfies the following:
(a) For all v ∈MK there is a constant c(v) such that

λ̂v(P ) ≥ −c(v) for all P ∈ E(K̄v).
Further, if v ∈ M0

K and E has good reduction at v, then we can
take c(v) = 0.

(b) The global height is the sum of the local heights. Thus for any finite
extension L/K and any P ∈ E(L) r {O} we have

ĥ(P ) =
∑
v∈ML

λ̂v(P ).

Proof. The first part of (a) follows from [19, Theorem VI.1.1(a)], which says
in particular that λ̂v has a logarithmic pole as P → O in the v-adic topology
and that λv is bounded on the complement of any v-adic neighborhood of O.
The second part of (a) follow from [19, Theorem VI.4.1], which says that
if P reduces to a non-singular point modulo v, then

λ̂v(P ) = 1
2 max

{
−v
(
x(P )

)
, 0
}

+ 1
12v(DE/K).

This quantity is clearly non-negative. Finally, [19, Theorem VI.2.1] gives a
proof of (b). �
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Definition. Given
K/Q a number field,

m an integral ideal of K with norm m = NK/Qm ≥ 2,
E/K an elliptic curve, and
P a finite set of nontorsion points in E(K̄),

we define
∆(P,m, n) =

∑
P∈P

1
logm

∑
v|m

1
n2 λ̂v(nP ).

This quantity is the elliptic analogue of the quantity ∆(A,m, n) that we
defined in Section 1.

The following estimate will be used later when we do an averaging argu-
ment. It is the analogue of Proposition 1.2.

Lemma 3.1. With notation as above, assume that E has potential good
reduction at every prime dividing m. Let j ≥ 1 be an integer, and let jP =
{jP : P ∈ P}. Then

∆(jP,m, n) ≥ ∆(P,m, n).

Proof. Replacing K by a finite extension, we may assume that E has good
reduction at all primes dividing m. Let v ∈ M0

K be any place at which E
has good reduction, and let πv ∈ K be a uniformizer at v. Further, let

E0(K̄v) ⊂ E1(K̄v) ⊂ E2(K̄v) ⊂ · · ·
be the formal group filtration of E(K̄v); see [20, Chapters IV, VII]. Here
E0 = E, since we have assumed good reduction, and E1 is the formal group.
The explicit formula for λ̂v [19, Theorem VI.4.1] then has the form

λ̂v(P ) = max
{
r ≥ 0 : P ∈ Er(K̄v)

}
v(πv).

Since the filtration consists of subgroups, it is immediate that
λ̂v(jP ) ≥ λ̂v(P ) for all j ≥ 1.

Summing over P ∈ P and v | m, and dividing by n2 logm, the desired result
is immediate from the definition of ∆. �

Remark 3.1. If E has potential multiplicative reduction at v, then it is
possible to have λ̂v(jP ) < λ̂v(P ), so ∆(jP,m, n) may be strictly smaller
than ∆(P,m, n).

4. A height lower bound for points on elliptic curves

In this section we prove our second main result, which is an elliptic ana-
logue of the height lower bound given in Theorem 2.1. We do not explicitly
keep track of the dependence on the field K or the curve E, although it
would be possible to do so. We start with a Fourier averaging estimate
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that is analogous to Proposition 2.1 and that has been applied in the past
to the elliptic Lehmer conjecture [7], to Lang’s height lower bound conjec-
ture [8], and to Arakelov theory [12]. In order to state the result, we use
the following useful definition from [11].

Definition. Let K/Q be a number field. An MK-constant is a map
c : MK −→ [0,∞)

with the property that {v ∈MK : c(v) 6= 0} is a finite set. (For convenience,
we consider only non-negative MK-constants.) A normalized MQ̄-constant
is a collection of MK-constants

cK : MK −→ R,
one for each number field K/Q, satisfying the compatibility condition that
for all number fields L/K and all v ∈MK ,∑

w∈ML, w|v

[Lw : Kv]
[L : K] cL(w) = cK(v).

Proposition 4.1. Let E/Q̄ be an elliptic curve. There are normalized MQ̄-
constants c1 and c2, depending only on E, such that for all integers J ≥ 2,
all nontorsion points P ∈ E(Q̄), and all absolute values v ∈MQ̄ we have

(4.1)
J∑
j=1

(
1− j

J + 1

)
λ̂v(jP ) ≥ −c1(v) log(J)− c2(v).

(We may, in fact, take c1(v) = 0 for all nonarchimedean v.)

Proof. If v is nonarchimedean and E has good reduction at v, then the
local height λ̂v is non-negative, so we can take c1(v) = c2(v) = 0. For
nonarchimedean v of bad reduction, the inequality (4.1) with c1(v) = 0
is proven in [8]. Finally, for archimedean v, the local height functions are
Green’s functions and the desired result follows from a general theorem of
Elkies [12, Theorem 5.1] that is valid on curves of positive genus. More
precisely, Elkies’ theorem says that there is a constant c = c(E, v) such
that for any distinct points P0, . . . , PJ ∈ E(Kv) we have

(4.2)
∑

0≤i<j≤J
λ̂v(Pj − Pi) ≥ −

1
2π (J + 1) log J − cJ.

(We are using the fact that λ̂v is an even function.) Taking Pj = jP for
0 ≤ j ≤ J , we find that

(4.3)
∑

0≤i<j≤J
λ̂v(Pj −Pi) =

∑
0≤i<j≤J

λ̂v
(
(j− i)P

)
=

J∑
j=1

(J + 1− j)λ̂v(jP ).

Combining (4.2) and (4.3) and dividing by J + 1 gives (4.1). �
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We have now assembled all of the tools required to prove our main result
on elliptic curves.

Theorem 4.1. Suppose that we are given the following quantities:
K/Q a number field.
E/K an elliptic curve.

n a positive integer.
m an integral ideal of K with norm m = NK/Qm ≥ 2.
P a finite set of nontorsion points in E(K̄).

Suppose further that E has potential good reduction at every prime divid-
ing m. Then there is a constant CE, depending only on E, such that for all
integers J ≥ 1 we have∑
P∈P

ĥ(P ) ≥ 6
(J + 1)(J + 2)

(
∆(P,m, n) logm− CE

|P|
n2 ·

log(J + 1)
J

)
.

Proof. To ease notation, we let

fj = 1− j

J + 1 and Fk =
J∑
j=1

jkfj .

Earlier in the proof of Proposition 2.1 we used the values of F0 and F1. In
this section we will use the values

(4.4) F0 = J

2 and F2 = J(J + 1)(J + 2)
12 .

Replacing K by a finite extension, we may assume that P ⊂ E(K). We
let

Mbad
K = M∞K ∪ {v ∈M0

K : E has bad reduction at v}.
Then

v ∈MK rMbad
K =⇒ λv(Q) ≥ 0 for all Q ∈ E(K̄v).

We compute

n2 ∑
P∈P

ĥ(P ) =
∑
P∈P

ĥ(nP )

=
∑
P∈P

∑
v∈MK

λ̂v(nP )

≥
∑
P∈P

∑
v|m

λ̂v(nP ) +
∑
P∈P

∑
v∈Mbad

K

λ̂v(nP )

= (n2 logm)∆(P,m, n) +
∑
P∈P

∑
v∈Mbad

K

λ̂v(nP ).
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Replacing P with jP = {jP : P ∈ P} and using Lemma 3.1, which says
that ∆(jP,m, n) ≥ ∆(P,m, n) (this is where we use the assumption that E
has potential good reduction at the primes dividing m), we find that

n2j2 ∑
P∈P

ĥ(P ) ≥ (n2 logm)∆(P,m, n) +
∑
P∈P

∑
v∈Mbad

K

λ̂v(njP ).

Multiplying both sides by fj and summing j = 1 to J gives

F2n
2 ∑
P∈P

ĥ(P )

≥ F0n
2 log(m)∆(P,m, n) +

J∑
j=1

∑
P∈P

∑
v∈Mbad

K

fj λ̂v(njP )

≥ F0n
2 log(m)∆(P,m, n) + |P|

∑
v∈Mbad

K

inf
Q∈E(K)

J∑
j=1

fj λ̂v(jQ).

Proposition 4.1 says that there are normalized MQ̄-constants c1 and c2,
depending only on E, such that

inf
Q∈E(K)

J∑
j=1

fj λ̂v(jQ) ≥ −c1(v) log(J)− c2(v).

Summing over v ∈Mbad
K gives constants that depend only on E, so adjust-

ing the constants and using the assumption that J ≥ 1, we find that there
is a constant CE , depending only on E, such that

F2n
2 ∑
P∈P

ĥ(P ) ≥ F0n
2 log(m)∆(P,m, n)− CE |P| log(J + 1).

Using the formulas (4.4) for F0 and F2, dividing by F2n
2, and adjusting

the constant gives the desired result. �

Corollary 2.1 says roughly that the classical Lehmer’s conjecture is true
for polynomials f(X) such that

(4.5) Φn−1(X) divides f(X) in (Z/mZ)[X] for some n ≥ εdeg(f).

As noted in Remark 1.3, the divisibility condition in (4.5) is stronger than
the assertion that ∆(Af ,m, n) ≥ (n − 1)/n, where Af denotes the set of
roots of f . Since we assume that n ≥ 2, this implies in particular that
∆(Af ,m, n) is uniformly bounded away from 0. Thus the following result
is an elliptic version of a strengthening of Corollary 2.1.

Definition. Let E/K be an elliptic curve and let Q ∈ E(K̄). We let

PQ = {σ(Q) : σ ∈ Gal(K̄/K)} and DQ = [K(Q) : K] = |PQ|.
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We remark that all of the points in PQ have the same canonical height;
cf. [20, Theorem VIII.5.10].

Corollary 4.1. Let E/K be an elliptic curve defined over a number field.
Fix constants δ, ε > 0. Then the elliptic Lehmer conjecture (0.4) is true for
the following set of points:

(4.6)

Q ∈ E(K̄) :

there exists an integral ideal m of K
with NK/Qm ≥ 2 such that E has good
reduction at all primes dividing m and
an integer n ≥ max{

√
εDQ, 2} with

∆(PQ,m, n) ≥ δ

 .
For points in the set (4.6), the constant in (0.4) has the form CE/K,δ,ε logm,
where CE/K,δ,ε is positive and depends only on the indicated quantities.

Proof. We are given that n ≥
√
εDQ and ∆(PQ,m, n) ≥ δ. Using these

values in Theorem 4.1 together with some trivial estimates yields∑
P∈PQ

ĥ(P ) ≥ 1
J2

(
δ logm− CE

ε
· log(J + 1)

J

)
.

We now choose J to be the smallest integer satisfying
log(J + 1)

J
≤ min

{
εδ

2CE
logm, 1

2

}
.

This yields an estimate of the desired form

DQĥ(Q) ≥ CE/K,δ,ε logm,

where we are using the fact, noted earlier, that every point in PQ has
canonical height equal to ĥ(Q). �

5. Other congruence conditions on the coefficients

Cyclotomic polynomials play a key role in Lehmer’s conjecture, so the
congruence condition (0.2) and the more general congruence divisibility
condition (0.3) are natural ones to consider. However, there is no reason
not to consider similar congruences in which the cyclotomic polynomial
is replaced by some other polynomial. This was done in considerable gen-
erality by Samuels [17]. To illustrate, we reprove a special case of one of
Samuels’ result and use it to make some remarks.

Definition. The length of a polynomial g(X) =
∑
aiX

i ∈ Z[X] is the
quantity

L(g) =
∑
|ai|.
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Theorem 5.1. (Special Case of [17, Corollary 5.3]) Let m ≥ 2 and let
f(X) ∈ Z[X] be a monic polynomial of degree D satisfying f(1) 6= 0. Fur-
ther let u(X) ∈ Z[X] be a polynomial of degree at most D− 1, and suppose
that

f(X) ≡ ΦD(X) + u(X) (mod m),
but that f(X) has no roots in common with ΦD(X) + u(X). Then∑

f(α)=0
h(α) ≥ D

D + 1 log
(

m

L
(
XD+1 − 1 + (X − 1)u(X)

)) .
Proof. We are given that

f(X) = ΦD(X) + u(X) +mr(X) for some r(X) ∈ Z[X].
Then

Res
(
f(X), XD+1 − 1 + (X − 1)u(X)

)
= Res

(
f(X),ΦD(X) + u(X)

)
· Res

(
f(X), X − 1

)
= Res

(
mr(X),ΦD(X) + u(X)

)
f(1)

= mD Res
(
r(X),ΦD(X) + u(X)

)
f(1).

By assumption, the resultants are nonzero integers, so we find that

D logm ≤ log
∣∣∣Res

(
f(X), XD+1 − 1 + (X − 1)u(X)

)∣∣∣
=

∑
f(α)=0

∑
v∈M∞

K

log ‖αD+1 − 1 + (α− 1)u(α)‖v

=
∑

v∈M∞
K

∑
f(α)=0
‖α‖v>1

log ‖αD+1‖v

+
∑

v∈M∞
K

∑
f(α)=0
‖α‖v>1

log
∥∥∥∥∥αD+1 − 1 + (α− 1)u(α)

αD+1

∥∥∥∥∥
v

+
∑

v∈M∞
K

∑
f(α)=0
‖α‖v≤1

log ‖αD+1 − 1 + (α− 1)u(α)‖v

≤ h(αD+1) +D sup
|z|=1

log
∣∣zD+1 − 1 + (z − 1)u(z)

∣∣(5.1)

≤ (D + 1)h(α) +D logL
(
XD+1 − 1 + (X − 1)u(X)

)
.

(We note that in (5.1), it suffices to take the supremum over |z| = 1, since
log |w| is harmonic inside the unit disk.) �

Remark 5.1. The upshot of Theorem 5.1 is that if m is sufficiently large,
then we obtain a Lehmer-type lower bound. However, in the cyclotomic
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case, i.e., u = 0, a Fourier averaging argument allowed us to prove nontrivial
estimates for all values of m ≥ 2. We do not know how to perform such
an averaging argument in the general case. It would also be interesting to
prove a version of Theorem 5.1 under the weaker assumption that f(X) is
divisible modulo m by Φn−1(X) for, say, n ≥ εD. Again we do not have
the requisite averaging lemma.

Remark 5.2. If we take u = 0 in Theorem 5.1, we obtain the estimate∑
f(α)=0

h(α) ≥ D

D + 1 log m2 .

This has the same form as Theorem 0.1, although the constant in The-
orem 0.1 is a little bit better than ours (and our estimate is trivial for
m = 2). On the other hand, it is interesting that such an elementary ar-
gument produces a lower bound that agrees with the best known lower
bounds [3, 4, 6, 10] up to an additional O(1/m2).

Remark 5.3. The estimate proven in Theorem 5.1 is nontrivial if and
only if m > L

(
XD+1 − 1 + (X − 1)u(X)

)
. As Samuels does in [17], it is

sometimes possible to improve the estimate a little bit. We illustrate with
the case u(X) = −2, so

f(X) ≡ XD +XD−1 + · · ·+X2 +X − 1 (mod m)

and
L
(
XD+1 − 1− (X − 1)u(X)

)
= L(XD+1 − 2X + 1) = 4.

This gives a nontrivial height bound for m ≥ 5. If D is odd, then the
supremum in (5.1) occurs at z = −1 and is equal to log 4, but if D is even,
then the supremum is strictly smaller than log 4 and we can obtain a small
improvement in the theorem. However, for large (even) values of D we have

sup
|z|=1
|zD+1 − 2z + 1| = 4 +O(D−2) at z ≈ −eπi/(D+1),

so for m = 4 we only obtain
∑
h(α)� D−2, which is weaker than Lehmer’s

conjecture.

6. Proof of proposition 2.1

In this section we give the proof of Proposition 2.1, for which we need
the following standard lemma, cf. [2, Lemma 4].

Lemma 6.1. For all θ ∈ Rr 2πiZ and all t ≥ 0 we have

log |1− eiθ| ≤ log |1− e−teiθ|+ 1
2 t.
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Proof. For notational convenience we let

Ft(θ) = log |1− e−teiθ|+ 1
2 t− log |1− eiθ|,

so we need to prove that Ft(θ) ≥ 0. We have

F0(θ) = 0 for all θ ∈ Rr 2πiZ.

For t > 0 we observe that

log |1− e−teiθ| = Re
( ∞∑
n=1
−e
−nteinθ

n

)
is given by an absolutely convergent series, so we may differentiate it term-
by-term. Hence

∂Ft
∂t

(θ) = Re
( ∞∑
n=1

(e−t+iθ)n
)

+ 1
2 = Re

(
e−t+iθ

1− e−t+iθ

)
+ 1

2

= 1
2 ·

e2t − 1
(et − cos θ)2 + sin2 θ

> 0 for all t > 0.

Thus for any fixed θ ∈ R r 2πiZ, the function Ft(θ) as a function of t ≥ 0
satisfies F0(θ) = 0 and (∂Ft/∂t)(θ) ≥ 0. Hence Ft(θ) ≥ 0 for all t ≥ 0. �

Here is the elementary algebraic verification of the trigonometric identity
that was used in the above calculation.

Re
(

e−t+iθ

1− e−t+iθ

)
+ 1

2 = Re
(

eiθ

et − eiθ

)
+ 1

2

= Re
(

eiθ(et − e−iθ)
e2t − 2(cos θ)et + 1

)
+ 1

2

= Re
(

eiθet − 1
e2t − 2(cos θ)et + 1

)
+ 1

2

= et cos θ − 1
e2t − 2(cos θ)et + 1 + 1

2

= 1
2 ·

e2t − 1
e2t − 2(cos θ)et + 1

= 1
2 ·

e2t − 1
(et − cos θ)2 + sin2 θ

.

Proof of Proposition 2.1. The functions log |1 − zj | are harmonic on the
open unit disk |z| < 1, so the maximum occurs on the boundary. For
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z = eiθ on the unit circle we estimate
J∑
j=1

(
1− j

J + 1

)
log |1− zj |

≤
J∑
j=1

(
1− j

J + 1

)(
log |1− e−teijθ|+ 1

2 t
)

from Lemma 6.1,

= Re
( J∑
j=1

(
1− j

J + 1

) ∞∑
k=1
−e
−kteijkθ

k

)
+ Jt

4

= Re
( ∞∑
k=1

e−kt

k

J∑
j=1
−
(

1− j

J + 1

)
eijkθ

)
+ Jt

4

=
∞∑
k=1

e−kt

k

(1
2 −

1
2J + 2

∣∣∣∣ J∑
j=0

eijkθ
∣∣∣∣2)+ Jt

4

≤
∞∑
k=1

e−kt

2k + Jt

4

= −1
2 log(1− e−t) + Jt

4 .

This estimate holds for all t > 0, so in particular we can set t = log(1 +
2J−1), which (after some algebra) gives the estimate

J∑
j=1

fj log |1− zj | ≤ 1
2 log

(
J

2 + 1
)

+ J

4 log
(

1 + 2
J

)
.

Finally we observe that x log(1 + x−1) ≤ 1 for all x > 0, which gives the
desired result. �
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