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Bicyclotomic polynomials and impossible
intersections

par David MASSER et Umberto ZANNIER

Résumé. Nous avons déjà démontré qu’il n’existe qu’un nombre
fini de nombres complexes t 6= 0, 1 tels que les points (2,

√
2(2− t))

et (3,
√

6(3− t)) soient d’ordre fini sur la courbe elliptique de Le-
gendre définie par y2 = x(x − 1)(x − t). Nous avons généralisé
ensuite ce résultat aux couples de points algébriques quelconques
sur C(t). Nous revenons ici aux points (u,

√
u(u− 1)(u− t)) et

(v,
√
v(v − 1)(v − t)) avec des nombres complexes u et v quel-

conques.

Abstract. In a recent paper we proved that there are at most
finitely many complex numbers t 6= 0, 1 such that the points
(2,
√

2(2− t)) and (3,
√

6(3− t)) are both torsion on the Legendre
elliptic curve defined by y2 = x(x − 1)(x − t). In a sequel we
gave a generalization to any two points with coordinates algebraic
over the field Q(t) and even over C(t). Here we reconsider the
special case (u,

√
u(u− 1)(u− t)) and (v,

√
v(v − 1)(v − t)) with

complex numbers u and v.

1. Introduction

Motivated by recent work on unlikely intersections, we proved in [6] (see
also [5] for a short version) the finiteness of the set of complex numbers
t 6= 0, 1 such that the points

(1.1) (2,
√

2(2− t)), (3,
√

6(3− t))

both have finite order on the elliptic curve Et defined by y2 = x(x−1)(x−t).

The presenter (J-P. Serre) of [5] wondered what happens when the ab-
scissas 2, 3 are replaced by any two distinct complex numbers u, v. In fact
we had already noted that our method is capable of some extension, and in
[7] we generalized the result to any abscissas defined over an algebraic clo-
sure of C(t); of course then the ordinates are also defined over this closure.
See also the discussion in section III.4 of [14].

Manuscrit reçu le 1er septembre 2011.
Classification math. 11G05, 14H52.
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In this note we return to the question of the presenter; thus we take
complex numbers u, v and we investigate the set T = T (u, v) of all complex
t 6= 0, 1 such that the points

(1.2) P = (u,
√
u(u− 1)(u− t)), Q = (v,

√
v(v − 1)(v − t))

both have finite order.

In fact the presenter’s question was much more detailed. He considered
the transcendence degree δ = δ(u, v) of Q(u, v) over Q and asked separately
about the cases δ = 0, 1, 2. We consider each case in turn.

In general the results of [7] imply that T (u, v) is at most finite except
when there is a relation
(1.3) qP = pQ

holding identically in t, where p, q are integers not both zero. Actually (1.3)
is a considerable restriction. We can note that P is defined over an extension
of Q(t) ramified at t = u, and similarly Q at t = v. So as soon as u 6= v we
conclude 2qP = 2pQ = 0 also identically. But as soon as u 6= 0, 1 we note
as well that P is defined over an extension ramified outside t = 0, 1 and so
cannot be torsion. Thus q = 0; and a similar argument for Q shows that
p = 0 as soon as v 6= 0, 1. Thus (1.3) can hold only if u = 0, 1 or v = 0, 1 or
u = v. In fact these cases were already excluded by our presenter.

So if we too exclude these cases from now on, by means of
(1.4) uv(u− 1)(v − 1)(u− v) 6= 0,
then T (u, v) is at most finite.

The case δ = 0 means that u, v are both algebraic. But then the proof
of finiteness relies on certain estimates of Pila [8] whose effectivity is not
clear (see however his recent work [9]), and so we still cannot effectively
compute T , even in the original case (1.1).

The case δ = 2 means that u, v are algebraically independent. Then, as
suspected by the presenter, things are very much easier. Indeed a simple
argument shows that T (u, v) is empty. For it is well-known that multipli-
cation by a positive integer n is given by sending (x, y) to

(1.5)
(
An(x, t)
Bn(x, t) , yn

)
,

where An(X,T ), Bn(X,T ) are polynomials in Q[X,T ] depending only on
n. Further we can normalize to
(1.6) An(X,T ) = Xn2 + · · · , Bn(X,T ) = n2Xn2−1 + · · ·
where the remaining terms have smaller degree in X.
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It follows that if P in (1.2) is torsion then Bn(u, t) = 0 so u is algebraic
over Q(t); and similarly with Q that v is algebraic over Q(t). But then u, v
cannot be algebraically independent over Q.

It is the halfway case δ = 1 which we will study in this note. In fact no
fewer than five different techniques can be used.

Firstly this case can be quickly deduced fron Raynaud’s Theorem [10]
applied to a curve in ET × ET over the function field Q(T ).

Secondly we can specialize t as Raynaud did, even ending up on a curve
in Eτ × Eτ for a fixed algebraic τ ; our situation is of course considerably
simpler than his.

Thirdly we can specialize rather u and v to algebraic numbers thus reach-
ing the case δ = 0. However the details are not so straightforward and new
ideas are needed to avoid collapsing in the specialization procedure. Similar
problems were solved in [1] using abc techniques. Here we have to use some
stability properties of Néron-Tate heights on an elliptic threefold together
with some upper bounds for values of points on a elliptic surface.

In fact the effectivity of the above three techniques is not quite clear,
and so we give a fourth alternative which shows not only that T (u, v) is
usually empty, but also that when it is not empty then it can be effectively
found in terms of the unique polynomial relation connecting u and v. Here
is a more precise statement.

Theorem 1. For each positive integer d there is an effectively computable
finite set Fd of polynomials in Q[U, V ], irreducible over Q and of degree
d, with the following property. Suppose u, v in (1.4) are complex numbers,
not both algebraic over Q, and algebraically dependent over Q through a
polynomial over Q irreducible over Q of degree d. Then the set T (u, v) is
effectively computable. If further F (u, v) 6= 0 for every F in Fd, then the
set T (u, v) is empty.

For example, the cardinality of T (u, v) is at most 6(12d)32 and that of
Fd is at most 200(12d)33. The proof will make the rest of the effectivity
clear.

A variant of the method enables us to strengthen the result by replacing
Q throughout by its algebraic closure Q. We postpone the statement and
its proof to an Appendix.

When d = 1 in Theorem 1 we go further by proving that F1 can be taken
to consist of just U + V and U + V − 2. This implies the following.
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Theorem 2. Suppose u, v in (1.4) are complex numbers, not both algebraic
over Q, with 1, u, v linearly dependent over Q but u + v 6= 0, u + v 6= 2.
Then the set T (u, v) is empty.

For example there are no complex numbers t 6= 0, 1 such that

(2π,
√

2π(2π − 1)(2π − t)), (3π,
√

3π(3π − 1)(3π − t))

have finite order on Et. Already in [7] we showed that there are at most
1040.

We may note that u + v = 0, 2 are genuine exceptions, coming from
4P = 4Q = 0 on the elliptic curve Et for t = u2, 2u − u2. They reflect the
fact that the points with abscissas ±

√
T , 1±

√
1− T have order 4 on ET .

More non-empty Fd can be found by taking rP = sQ = 0 for various
integers r, s.

For example (r, s) = (2, 4) and the above points of order 4 as well as that
with abscissa T ±

√
T 2 − T lead to the following relations

v2 − u = 0, v2 − 2v + u = 0, v2 − 2uv + u = 0 (t = u)
corresponding to elements of F2. Or (r, s) = (4, 4) also to

u2 + v2 − 2v = 0 (t = u2)
also of F2, as well as

2u2v − u2 − v2 = 0 (t = u2),
2u2v − u2 − 4uv + v2 + 2u = 0 (t = 2u− u2)

of F3. Or (r, s) = (2, 3) gives
4uv3 − 3v4 − 6uv2 + 4v3 + u2 = 0 (t = u)

of F4. Or (r, s) = (2, 6) gives three relations
v4 + 4u2v − 6uv2 − 3u2 + 4uv = 0, v4 − 4u2v + 6uv2 − 4v3 + u2 = 0,

v4 − 4uv3 + 6uv2 + u2 − 4uv = 0
with t = u also of F4. Or (r, s) = (4, 3) gives two relations

4u2v3 + u4 − 6u2v2 − 3v4 + 4v3 = 0 (t = u2)
4u2v3−u4−6u2v2−8uv3 +3v4 +4u3 +12uv2−4v3−4u2 = 0 (t = 2u−u2)
of F5 and finally
8u3v3−12u2v4−12u3v2+12u2v3+12uv4+u4+6u2v2−16uv3−3v4+4v3 = 0
(t = u2

2u−1) of F6. But perhaps F7 may be empty.

We will prove Theorem 1 by extending the arguments of sections 10,
11, 12, 13 of [7] about the generic Galois groups of the fields generated
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by torsion points. But for the proof of Theorem 2 we need to identify
the actual minimal polynomials of the abscissas of these points. These are
essentially the irreducible factors of the Bn(X,T ) in (1.6), which may be
considered as elliptic analogues of the cyclotomic factors of Xn − 1. We
take the liberty of calling these bicyclotomic polynomials; the adjective can
refer not only to the variables X,T instead of X, but also to the underlying
groups Z/nZ × Z/nZ instead of Z/nZ. We also need to know the next
two terms in (1.6) as well as those also for the irreducible factors. All this
will be carried out in section 2, and we prove Theorem 2 in section 3. It is
convenient then to give the proof of Theorem 1 in section 4.

We then present the simple deduction from Raynaud’s Theorem in sec-
tion 5, together with the specialization argument for t. However we post-
pone until a later work the more difficult argument for u, v, which will
actually be carried out in the more general context of the product of two
different elliptic curves; for the moment we content ourselves with a sketch.

Then in section 6 we give a list of the bicyclotomic polynomials of low
degree, and in section 7 we make a couple of remarks on the (A,B) model
defined by y2 = x3 +Ax+B.

Finally in an Appendix we state and prove the stronger form of Theo-
rem 1.

We heartily thank Professor J-P. Serre for his care in presenting [5],
which led to the results of the present paper.

2. Bicyclotomic polynomials

The cyclotomic polynomials are of course the irreducible factors ofXn−1
over Q. Here we consider the Legendre elliptic analogues to be those of
Bn = Bn(X,T ); thus the curve y2 = x(x−1)(x−T ) provides an additional
variable. It will turn out that they are irreducible even over C.

It is known that Bn(X,T )/n2 for n ≥ 2 is the product of X − x taken
over the abscissas x of all non-zero points of order dividing n.

There are at least two reasons why Bn is not irreducible. One is simply
because a point and its inverse have the same abscissa, so Bn is essentially a
perfect square. The other is due to the points of each fixed order d dividing
n. This leads to the following first attempt at describing the irreducible
factors.

For n ≥ 2 we define B∗n = B∗n(X,T ) as the product of X − x taken over
all distinct abscissas x of points of order exactly n multiplied further by a
leading coefficient. For n ≥ 3 this is eΛ(n), where Λ is the von Mangoldt
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function, but for n = 2 it is 4. For example B∗2(X,T ) = 4X(X−1)(X−T );
and it suits us to define also B∗1(X,T ) = 1. For n ≥ 3 the degree with
respect to X is 1

2φ2(n), where

φ2(n) = n2∏
p|n

(
1− 1

p2

)
= n2∑

d|n

µ(d)
d2 .

Thus we have for n odd

(2.1) Bn(X,T ) =
∏
d|n
B∗d(X,T )2,

and we will soon see that the factors B∗d(X,T ) (d 6= 1) here are all irre-
ducible. And for n even

Bn(X,T ) = B∗2(X,T )
∏

26=d|n
B∗d(X,T )2;

however the irreducibility here is not such a simple matter, as the example
B∗2(X,T ) shows. But we will see that the B∗d(X,T ) here are irreducible for
all odd d 6= 1.

Now Möbius Inversion of (2.1) and the subsequent formula gives

(2.2) B∗n(X,T )2 =
∏
d|n
Bd(X,T )µ(n/d)

for all n ≥ 3, whether odd or even.

Now for even n there is a more subtle reason why B∗n is not irreducible.
Namely if P has order n = 2m then mP is one of the three points

Q(0) = (0, 0), Q(1) = (1, 0), Q(∞) = (T, 0)

of order 2; and these are of course all rational over Q(T ). Thus for even
n = 2m we define B(0)

n (X,T ), B(1)
n (X,T ), B(∞)

n (X,T ) as the products of
X − x taken over all distinct abscissas x of points P of order exactly n
with mP = Q(0), Q(1), Q(∞) respectively. Here it is natural to take monic
polynomials. Their degrees are 1

6φ2(n) if n 6= 2; and of course

B
(0)
2 (X,T ) = X, B

(1)
2 (X,T ) = X − 1, B(∞)

2 (X,T ) = X − T.

Thus for even n 6= 2 we have

B∗n(X,T ) = eΛ(n)B(0)
n (X,T )B(1)

n (X,T )B(∞)
n (X,T ),
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and we will next see that all the factors here are irreducible. This will mean
that

4X(X − 1)(X − T )
∏

26=d|n, d odd
B∗d(X,T )2

∏
26=d|n, d even

B
(0)
d (X,T )2B

(1)
d (X,T )2B

(∞)
d (X,T )2

gives the irreducible factorization of Bn(X,T ) for even n.

Here follows the irreducibility result for these bicyclotomic polynomials.

Lemma 2.1. The polynomials
B∗n(X,T ) (odd n 6= 1)

and
B(0)
n (X,T ), B(1)

n (X,T ), B(∞)
n (X,T ) (even n)

are irreducible over Q.

Proof. Suppose first that n is odd, and let x be the abscissa of a point of
order exactly n on ET . We will show that x has degree 1

2φ2(n) over Q(T ).
As B∗n(x, T ) = 0 gives an equation of this degree, the irreducibility over Q
follows.

We need a model over Q(j) with as usual

j = 256(T 2 − T + 1)3

T 2(1− T )2 ,

which as in [7] we take as Ěj defined by

y̌2 = 4x̌3 − 27j
j − 1728 x̌−

27j
j − 1728

with

(2.3) x̌ = χ2(x− 1
3(T + 1)), y̌ = 2χ3y

where χ is anything with

χ2 = 9 T 2 − T + 1
(T − 2)(T + 1)(2T − 1) .

As χ2 is in Q(T ), it suffices to show that x̌ has degree 1
2φ2(n) over Q(T ).

Write KN for the field generated over K = Q(j) by the set Ěj [N ] of
points of order dividing N on Ěj , so that K2 = Q(T ). We know from
Lemma 10.1 of [7] that K2n/K has group GL2(Z/2nZ). So the group of
K2n/K2 is the subgroup of elements congruent to the identity mod 2. This
subgroup injects into GL2(Z/nZ) via reduction mod n, because 2 and n
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are coprime. The injection is surjective; so the group of K2n/K2 may be
identified with GL2(Z/nZ). Now a point (x̌, y̌) of order n in Ěj [2n] has
stabilizer of size nφ1(n) = n2∏

p|n(1 − 1
p). So the number of conjugates

over K2 is this size divided into the size nφ1(n)φ2(n) of GL2(Z/nZ). Hence
we get precisely φ2(n) different conjugates of (x̌, y̌). Each comes with its
inverse (distinct as n 6= 2), and so we get 1

2φ2(n) conjugates of x̌ as needed.

Next suppose that n is even. There is then no need for K2n, and similar
arguments show that the group of Kn/K2 is the kernel of the reduction
of GL2(Z/nZ) mod 2. Now this has size 1

6nφ1(n)φ2(n). And now a point
of order n has stabilizer of size 1

2nφ1(n); for example we get the set of all(
1 b
0 d

)
with b congruent to 0 mod 2 and d congruent to 1 mod 2. The latter

is automatically implied by (d, n) = 1, and the former gives 1
2n values. So

we get 1
3φ2(n) conjugates for (x̌, y̌), leading as before to 1

6φ2(n) conjugates
for x̌ provided n 6= 2. As this is the common degree of B(0)

n , B
(1)
n , B

(∞)
n the

proof is complete. �

The irreducibility over C (which we do not need in this paper) may be
proved in a similar way using instead Corollary 2 of [3] (p.69) which involves
SL2. Then all the above sizes get divided by φ1(n). See also the Appendix
below.

Next we calculate some terms of these bicyclotomic polynomials.

We start with a few more terms in (1.6). We could not find these in the
classical literature, either for the Weierstrass model y2 = 4x3 − g2x− g3 or
the model y2 = x3 +Ax+B used in [12] (pp. 105, 202).

Lemma 2.2. We have

An(X,T ) =

Xn2 − 1
6n

2(n2 − 1)TXn2−2 + 1
45n

2(n2 − 1)(n2 − 4)(T 2 + T )Xn2−3 + · · ·

(so no term in Xn2−1),

Bn(X,T ) = n2Xn2−1 − 1
3n

2(n2 − 1)(T + 1)Xn2−2+
1
90n

2(n2 − 1)
(
anT

2 + bnT + an
)
Xn2−3 + · · · ,

where an = 4n2 − 16, bn = 11n2 − 14 and the remaining terms have
smaller degree in X. Further the term in An(X,T ) of smallest degree in X
is n2T (n2−1)/2X (n odd) and Tn2/2 (n even).
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Finally

An(1−X, 1− T ) = (−1)n(An(X,T )−Bn(X,T )),
Bn(1−X, 1− T ) = −(−1)nBn(X,T ),
Tn

2
An(T−1X,T−1) = An(X,T ),

Tn
2−1Bn(T−1X,T−1) = Bn(X,T ).

Proof. It is natural to define also A0(X,T ) = 1, B0(X,T ) = 0. Using the
addition law to evaluate n(X,Y ) ± (X,Y ) as in [12] (p.216) we get the
recurrence relations
(2.4) An−1An+1 = (XAn − TBn)2, Bn−1Bn+1 = (An −XBn)2

for An = An(X,T ), Bn = Bn(X,T ).

Already the first of these shows with a simple induction that An has no
term in Xn2−1 (alternatively the analogous assertion for the Weierstrass
model is a consequence of the fact that there is no non-zero modular form
of weight 2, and then (2.3) - see also section 7 - implies it for Legendre).

Writing therefore

An = Xn2 + α′nX
n2−2 + α′′nX

n2−3 + · · · ,

Bn = n2(Xn2−1 + β′nX
n2−2 + β′′nX

n2−3 + · · · )
with α′n, α′′n, β′n, β′′n in Q[T ] we deduce from (2.4)

α′n−1 + α′n+1 = 2(α′n − n2T ), α′′n−1 + α′′n+1 = 2(α′′n − n2β′nT ),

(n2 − 1)(β′n−1 + β′n+1) = 2n2β′n,

(n2 − 1)2(β′′n−1 + β′′n+1 + β′n−1β
′
n+1) = n4β′2n − 2(n2 − 1)(α′n − n2β′′n);

all for n = 1, 2, 3, . . .. These make it clear that α′n+1, α
′′
n+1, β

′
n+1, β

′′
n+1 are

determined by α′n−1, α
′′
n−1, β

′
n−1, β

′′
n−1 and α′n, α

′′
n, β

′
n, β

′′
n, and the expan-

sions now follow with a somewhat tedious induction.

We use a similar procedure to find the last terms of An, except that we
must load the induction with the last terms of Bn, which are T (n2−1)/2 (n
odd) and n2T (n2−2)/2X (n even).

Finally the last four identities.

We note that the equation Y 2 = X(X − 1)(X − T ) is the same as
Ỹ 2 = X̃(X̃−1)(X̃− T̃ ) with X̃ = 1−X, Ỹ = iY and T̃ = 1−T . This yields
a map ϕ from ET to E1−T which is necessarily a group homomorphism; and
now ϕ(n(X,Y )) = nϕ(X,Y ) means that 1 − An(X,T )

Bn(X,T ) = An(X̃,T̃ )
Bn(X̃,T̃ ) . Looking

at the highest power of X gives the first two identities.
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A similar argument with X̃ = T−1X, Ỹ = T−3/2Y and T̃ = T−1 from
ET to E1/T completes the proof of the present lemma. We may remark that
the last of the identities shows that Bn(X,T ) has degree at most n2 − 1 in
T . �

We may also note that
An−1Bn+1+An+1Bn−1 = 2XA2

n+(2X2+2T−4TX−4X)AnBn+2TXB2
n.

This can be combined with (2.4) to show that all An(X,T ), Bn(X,T ) ac-
tually lie in Z[X,T ], a fact not obvious from the model y2 = x3 + Ax+B
used in [12] because the transition between the two models involves a de-
nominator 3 as in (2.3) above. We will not need this fact here.

We will now obtain the analogues of (2.2) for B(0)
n , B

(1)
n , B

(∞)
n for even

n = 2m. We write n = 2νn1 with n1 odd and ν ≥ 1. Then

(2.5) Am(X,T ) =
∏
d1|n1

B
(0)
nd1/n1

(X,T )2 (n 6= 2).

This is because the zeroes of the left-hand side are the abscissas of the P
with mP = Q(0). So the order of P divides 2m = n = 2νn1; however the
order must be divisible by 2ν otherwise we would have mP = 0. So the
possible orders are 2νd1 = nd1/n1 as in (2.5). Now Inversion gives

(2.6) B(0)
n (X,T )2 =

∏
d1|n1

Amd1/n1(X,T )µ(n1/d1) (n 6= 2).

Similarly we get

Am(X,T )−Bm(X,T ) =
∏
d1|n1

B
(1)
nd1/n1

(X,T )2 (n 6= 2)

with inverse

(2.7) B(1)
n (X,T )2 =∏

d1|n1

(
Amd1/n1(X,T )−Bmd1/n1(X,T )

)µ(n1/d1)
(n 6= 2),

and
Am(X,T )− TBm(X,T ) =

∏
d1|n1

B
(∞)
nd1/n1

(X,T )2 (n 6= 2)

with inverse

(2.8) B(∞)
n (X,T )2 =∏

d1|n1

(
Amd1/n1(X,T )− TBmd1/n1(X,T )

)µ(n1/d1)
(n 6= 2).
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We write
φ4(n) = n4∏

p|n

(
1− 1

p4

)
= n4∑

d|n

µ(d)
d4 ,

φ6(n) = n6∏
p|n

(
1− 1

p6

)
= n6∑

d|n

µ(d)
d6

for yet more analogues of Euler’s phi function. We also define
ψ(n) = −2φ4(n)+5φ2(n)2−20φ2(n), χ(n) = 2φ4(n)+10φ2(n)2−10φ2(n),

ω(n) = φ6(n)− 21φ4(n) + 84φ2(n), θ(n) = 2φ4(n)− 10φ2(n).
Lemma 2.3. For odd n 6= 1 we have

e−Λ(n)B∗n(X,T ) = Xφ2(n)/2 − 1
6φ2(n)(T + 1)Xφ2(n)/2−1+

1
360(ψ(n)T 2 + χ(n)T + ψ(n))Xφ2(n)/2−2 + · · ·

For even n 6= 2 we have

B(0)
n (X,T ) = Xφ2(n)/6 − 1

360θ(n)TXφ2(n)/6−2+
1

5670ω(n)(T 2 + T )Xφ2(n)/6−3 + · · ·

(so no term in Xφ2(n)/6−1), and

B(1)
n (X,T ) = Xφ2(n)/6 − 1

6φ2(n)Xφ2(n)/6−1+
1

360(θ(n)T + ψ(n))Xφ2(n)/6−2 + · · · ,

B(∞)
n (X,T ) = Xφ2(n)/6 − 1

6φ2(n)TXφ2(n)/6−1+
1

360(ψ(n)T 2 + θ(n)T )Xφ2(n)/6−2 + · · · ,

and the remaining terms have smaller degree in X. Further the term in
B

(0)
n (X,T ) of smallest degree in X is ±eΛ(m)T φ2(n)/12 (m odd) and ±T φ2(n)/12

(m even). Finally
(2.9) B(0)

n (1−X, 1− T ) = B(1)
n (X,T ).

Proof. To get at B(0)
n (X,T ) we take (2.6) and we substitute the expansions

in Lemma 2.2 for the various An after taking out the highest power of X as
a factor. We evaluate the products using a formal Laurent series identity∏

d∈D

(
1 + ud

X2 + vd
X3 + · · ·

)md

= 1 + U

X2 + V

X3 + · · ·
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with
U =

∑
d∈D

mdud, V =
∑
d∈D

mdvd

and a finite set D. This in turn is checked for example by taking logarithms
and then exponentiating. The terms of smallest degree in B

(0)
n (X,T ) are

much easier to handle.

To prove (2.9), at least up to sign, we compare (2.6), (2.7) using Lemma
2.2. The sign follows from the fact that 1

6φ2(n) is even.

This enables us to deduce the expansion of B(1)
n from that of B(0)

n . And
similarly comparing (2.7), (2.8) gives

T φ2(n)/6B(1)
n (T−1X,T−1) = B(∞)

n (X,T )

which leads to the expansion of B(∞)
n .

For B∗n(X,T ) we argue similarly with (2.2) but with slightly more tedious
calculations based on∏

d∈D

(
1 + ud

X
+ vd
X2 + · · ·

)md

= 1 + U

X
+ 2V + U2 −W

2X2 + · · ·

with U, V as above and W =
∑
d∈Dmdu

2
d. This completes the proof.

We may also note that the B∗n(X,T ), B(0)
n (X,T ), B(1)

n (X,T ), B(∞)
n (X,T )

also lie in Z[X,T ]; but again we will not need this fact here.

3. Proof of Theorem 2

We start with a preliminary result.

Proposition 3.1. Suppose that a 6= 0, b, c 6= 0 are rational numbers with
(a, b) 6= (1, 0), and let r 6= 1, s 6= 1 be positive integers such that

(3.1) cB?
r(X,T ) = B??

s (aX + b, T )
where the symbols ?, ?? represent superscripts ∗, (0), (1), (∞) restricted as
in Lemma 2.1. Then the only possibilities are

aB
(0)
2 (X,T ) = B

(1)
2 (aX + 1, T ),

aB
(0)
2 (X,T ) = B

(0)
2 (aX, T ),

B
(0)
4 (X,T ) = B

(0)
4 (−X,T ),

aB
(1)
2 (X,T ) = B

(1)
2 (aX + 1− a, T ),

B
(1)
4 (X,T ) = B

(1)
4 (−X + 2, T ).
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Proof. By symmetry there are ten cases for the ordered pair (?, ??). We
take these in increasing level of difficulty and we beg forgiveness for further
tediousness. At any rate the first six are relatively easy.

1. (∗, ∗). Now in (3.1) it suffices to take

(3.2) B∗r (X,T ) = eΛ(r)(XR − 1
3R(T + 1)XR−1 + · · · )

B∗s (X,T ) = eΛ(s)(XS − 1
3S(T + 1)XS−1 + · · · )

with R = φ2(r)/2, S = φ2(s)/2. We find first R = S = N (say). However
the resulting equation φ2(r) = φ2(s) seems too reminiscent of Carmichael’s
Conjecture to be useful. But also

ceΛ(r) = aNeΛ(s),

−1
3ce

Λ(r)N(T + 1) = eΛ(s)(NaN−1b− 1
3Na

N−1(T + 1)).

Eliminating ceΛ(r)−Λ(s) and then equating coefficients of powers of T leads
quickly to the excluded case a = 1, b = 0.

2. (∗, (0)). The case s = 2 is easily settled. Otherwise we take (3.2)
together with

(3.3) B(0)
s (X,T ) = XS + 0.XS−1 + · · ·

this time with S = φ2(s)/6; and a similar procedure gives at once the
contradiction a = 0.

3. (∗, (1)). Again we can take (3.2) with

(3.4) B(1)
s (X,T ) = XS − SXS−1 + · · ·

and S = φ2(s)/6; and a similar procedure gives again the contradiction
a = 0.

4. ((0), (∞)). The cases r = 2 or s = 2 are easily settled. Otherwise the
analogue of (3.3) for B(0)

r with

(3.5) B(∞)
s (X,T ) = XS − STXS−1 + · · ·

again leads to a = 0.

5. ((1), (∞)). A similar procedure with (3.4) and (3.5) leads to a more
blatant contradiction.

6. ((∞), (∞)). Now (3.5) leads again to the excluded a = 1, b = 0.
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7. (∗, (∞)). The case s = 2 is easily settled. Otherwise a similar use of
(3.2) and (3.5) with R = φ2(r)/2, S = φ2(s)/6 leads to a = 3, b = −1, so far
no contradiction. Also R = S = N and c = 3Ne−Λ(r). Thus (3.1) becomes

3Ne−Λ(r)B∗r (X,T ) = B(∞)
s (3X − 1, T ).

Now we use all the terms in Lemma 2.3 for B∗r and B
(∞)
s . We equate

coefficients of XN−2 and then coefficients of T 2 and T 0. We get a double
appearance of 1

40ψ(r), the first time being 1
360ψ(s) and the second time

being 1
2N(N − 1). Eliminating ψ(r) gives after a short calculation and a

slightly surprising cancellation the equation φ4(s) = 5φ2(s). This is quickly
solved; clearly

90
π4 s

4 = 1
ζ(4)s

4 < φ4(s) = 5φ2(s) < 5s2

a contradiction for s 6= 2.

8. ((0), (1)). The case r = 2 or s = 2 leads quickly to the first displayed
possibility. Otherwise from (3.3) and (3.4) we get b = 1, also no contradic-
tion. But using two terms of B(0)

r and three terms of B(1)
s in Lemma 2.3

and equating coefficients of T 0 leads to the same φ4(s) = 5φ2(s).

9. ((0), (0)). The case r = 2 or s = 2 leads to the second displayed
possibility. Otherwise from (3.3) we get R = S = N, c = aN , and b = 0.
To find a we look at the terms of smallest degree in X.

If r/2, s/2 are both even, we get c = ±1 and so a = ±1. And if r/2, s/2 are
both odd we get c = ±eΛ(s/2)/eΛ(r/2). If a 6= ±1 then the height of c = aN

is at least 2N ; but ±eΛ(s/2)/eΛ(r/2) has height at most max{r/2, s/2}. If for
example r ≤ s then we get 2S ≤ s/2 which leads easily back to r = s = 2;
and similarly if r ≥ s. So a = ±1 here too; and the same conclusion follows
with the other parities of r/2, s/2.

As b = 0 in fact a = −1 and c = (−1)N . Finally considering just the
signs of the coefficients of XN−3 in cB

(0)
r (X,T ) = B

(0)
s (−X,T ) gives the

contradictory c = −(−1)N provided ω(r) > 0 and ω(s) > 0. In fact ω(n) >
0 for all even n 6= 2 apart from ω(4) = 0; this leads to the third displayed
possibility.

10. ((1), (1)). Now cB
(1)
r (X,T ) = B

(1)
s (aX + b, T ) can be written using

Lemma 2.3 as cB(0)
r (X̃, T̃ ) = B

(0)
s (ãX̃ + b̃, T̃ ) for

X̃ = 1−X, T̃ = 1− T, ã = a, b̃ = 1− a− b
with (ã, b̃) 6= (1, 0). Then the previous case leads to the fourth and fifth
displayed possibilities.
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We can now prove Theorem 2. But first we remark that in the general
case δ = 1 both u and v must be transcendental over Q if T (u, v) is non-
empty. For example if u is algebraic over Q then P being torsion would
imply that t is algebraic over Q otherwise P would be identically torsion
contradicting the ramification (u 6= 0, 1). But then Q being torsion would
imply that v too is algebraic over Q.

Thus our linear relation takes the form v = au + b for rational a 6=
0, b. Suppose P = (u,

√
u(u− 1)(u− t)) has exact order r 6= 1 and Q =

(v,
√
v(v − 1)(v − t)) has exact order s 6= 1. Then we have

0 = B?
r(u, t), 0 = B??

s (v, t) = B??
s (au+ b, t)

where ?, ?? are taken from the set {∗, (0), (1), (∞)}. Now the equations

B?
r(X,T ) = B??

s (aX + b, T ) = 0

must define a variety with at least one curve component, else u would be
algebraic over Q. This implies by the irreducibility in Lemma 2.1 an identity
(3.1) for rational c 6= 0.

Now (a, b) 6= (1, 0) otherwise u = v which is forbidden by (1.4). So
Proposition 3.1 implies that r = s = 2 or r = s = 4. In the first case
u = 0, 1, t and v = 0, 1, t; however these too are forbidden by (1.4). In the
second case we find u+ v = 0 or u+ v = 2. This proves Theorem 2.

4. Proof of Theorem 1

There is a non-zero polynomial F0(U, V ) in Q[U, V ], irreducible over Q
of degree d, such that

(4.1) F0(u, v) = 0.

We are in the situation of the Proposition of [7] section 2, with the curve
C parametrized in affine A5 by

(u,
√
u(u− 1)(u− t), v,

√
v(v − 1)(v − t), t)

as t varies. So C is defined over K = Q(u, v). In [7] section 13 we took WK
in A7 parametrized by

(u,
√
u(u− 1)(u− t), v,

√
v(v − 1)(v − t), t, u, v)

as t, u, v vary subject only to (4.1). This is a surface defined over Q. We
took W0 as the projection to A3 parametrized by (u, v, t). This is also a
surface, of degree at most D0 = d. Now go back to the original complex
numbers u, v, t with P,Q torsion on Et. The arguments of [7], in particular
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equation (13.2) there, yield integers p, q, possibly depending on t, with (1.3)
and

0 < max{|p|, |q|} < (12D0)8 = (12d)8 = M.

By (1.5) this leads to an equation

Cpq(u, v, t) = 0

with

Cpq(U, V, T ) = Aq(U, T )Bp(V, T )−Ap(V, T )Bq(U, T )

and An, Bn suitably defined for n ≤ 0 as in [7] section 14.

Now the polynomial Cpq(u, v, T ) cannot be identically zero in T , oth-
erwise (1.3) would hold identically, which we have excluded with (1.4).
This leads at once to the estimate for the cardinality of T (u, v). Namely
Cpq(u, v, T ) has degree at most p2 + q2 − 1 ≤ 2M2 in T , so for such (p, q)
there are at most 2M2 values of t. This would give at most 2M2(2M+1)2 <
6(12d)32 in all, as was to be proved.

But how do we extract the set Fd?

We already remarked in the preceding section that both of u and v must
be transcendental over Q. This means that F0(U, V ) must involve both U
and V . A similar argument (without ramification) shows that t must be
transcendental over Q.

We claim that in fact P has order r < π(12d)17/2.

Suppose first that Cpq(U, V, T ) does not involve V . Then we get an
equation C(u, t) = 0, which must involve u because t is transcendental
over Q. It follows that [Q(u, t) : Q(t)] ≤ 2M2. But also B?

r(u, t) = 0
where the symbol ? represents superscripts ∗, (0), (1), (∞) restricted as in
Lemma 2.1, and it follows that 2M2 ≥ 1

6φ2(r) > 1
6

1
ζ(2)r

2 = 1
π2 r

2. This leads
to r < π

√
2M2 = π

√
2(12d)8 better than we claimed.

If Cpq(U, V, T ) does involve V , then the resultant G(U, T ) of F0(U, V )
and Cpq(U, V, T ) with respect to V is defined.

If this resultant were identically zero, then the two polynomials would
have a non-trivial common factor D(U, V, T ) in Q[U, V, T ]. As this divides
F0(U, V ) it must be independent of T and in fact identical with F0(U, V ) up
to constants. So F0(U, V ) would divide Cpq(U, V, T ). However as p, q vary,
these Cpq(U, V, T ) have up to constants at most finitely many divisors of
degree d (and probably none independent of T ), and so it suffices to include
those irreducible ones (independent of T ) among the set Fd.
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Thus we can assume that G(U, T ) is not identically zero. Now the equa-
tion G(u, t) = 0 shows as above that P has order at most π

√
N , where N

is the degree of G. Clearly N ≤ 4dM2 < (12d)17 and so our claim follows.

Of course the same argument applies to Q. There are thus positive inte-
gers r and s, both at most π(12d)17/2, such that

Br(u, t) = Bs(v, t) = 0.
Both Br(U, T ) and Bs(V, T ) must involve T (again ramification), so their
resultant H(U, V ) with respect to T is defined. Again it is non-zero, this
time because a common factor would have to be independent of both V and
U and so in Q[T ]; however this is absurd because there can be no algebraic
(or even complex) number t0 with Br(U, t0) = Bs(V, t0) = 0 from (1.6).

And now H(u, v) = 0 shows that it suffices also to include in Fd all
irreducible factors of H(U, V ) of degree d up to constants. Using the remark
immediately following the proof of Lemma 2.2 we find that the degree of
H is at most 2r2s2 ≤ 2π4(12d)34, so it can have at most 2π4(12d)33 <
200(12d)33 such factors.

Finally it is now clear how to compute everything effectively.

5. Specialization

It is easy to deduce the case δ = 1 from Raynaud’s work. Suppose the
complex number t 6= 0, 1 is such that P and Q in (1.2) are both torsion.
Then t is transcendental over Q otherwise u and v would both be in Q. So
there is an isomorphism σ from Q(t) to some field F independent of t. We
can extend to a bigger field containing also the coordinates of P and Q.
Then σ(P ) and σ(Q) are torsion on Eσ(t) and (σ(P ), σ(Q)) lies on a fixed
curve, even defined over Q, on A = Eσ(t) × Eσ(t) defined over F . We are
therefore in the situation of Manin-Mumford over the fixed field F .

Now σ applied to (1.4) and the discussion around (1.3) shows that
qσ(P ) 6= pσ(Q) for any integers p and q not both zero. It follows from
Raynaud’s Theorem 1 (p. 207 but also p.226) of [10] that the number of
(σ(P ), σ(Q)) is at most finite. So σ(P ) and σ(Q) have orders bounded above
independently of t. So also P and Q, which leads to the desired finiteness
of the set of complex numbers t.

Using our bicyclotomic polynomials (which imply standard properties of
good reduction) we can specialize t to some algebraic τ and thus reduce to
Manin-Mumford over Q.

Namely as in section 4 there is a non-zero polynomial F0 over Q, irre-
ducible over Q, such that F0(u, v) = 0. We start by finding an algebraic
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(and even rational) τ such that the curve F0 = 0 relating the abscissas on
Eτ × Eτ does not have any one-dimensional torsion translate as a compo-
nent.

For such a torsion translate is defined by an equation qP̃ − pQ̃ = R with
a torsion point R. By considering geometric degrees we can easily bound
|q|, |p| and then assume them fixed. Now we can choose algebraic u0, v0 with
F0(u0, v0) = 0 but

u0v0(u0 − 1)(v0 − 1)(u0 − v0) 6= 0
as in (1.4). Then

R(t) = q(u0,
√
u0(u0 − 1)(u0 − t))− p(v0,

√
v0(v0 − 1)(v0 − t))

cannot be identically torsion, say of order n, on Et by (1.4) and the dis-
cussion around (1.3) after multiplying by n. It now suffices to find τ such
that R(τ) is not torsion on Eτ . This can be done for example by appealing
to Silverman’s Theorem to the effect that an inadmissible τ has bounded
height; or we could also use the results of [4] implying that such τ are
sparse.

Having found τ , suppose now the complex number t 6= 0, 1 is such that
P has exact order r 6= 1 and Q has exact order s 6= 1. Then we have
(5.1) B?

r(u, t) = B??
s (v, t) = 0

as in section 3. Consider the variety with coordinates (U,W, V, Z, T ) in A5

subject to
F0(U, V ) = B?

r(U, T ) = B??
s (V, T ) = 0

and of course
W 2 = U(U − 1)(U − T ), Z2 = V (V − 1)(V − T ).

It is clearly of dimension at most 1 defined over Q containing the point
Π = (u,w, v, z, t), where w =

√
u(u− 1)(u− t), z =

√
v(v − 1)(v − t);

and the transcendence of t noted above shows that it has at least one curve
component Crs also containing Π. We are going to specialize Π over Q in
the sense of [13] (p.26). This requires a little care, as it lies on the variety
Crs depending on the unknown r, s.

But we can certainly start by specializing t to τ .

Next by (5.1) u, v and so w, z are integral over Q[t]. So by Propo-
sition 22 of [13] (p. 41) we can indeed specialize (u,w, v, z, t) to some
(urs, wrs, vrs, zrs, τ). In particular on Eτ the point (urs, wrs) still has order
r and the point (vrs, zrs) still has order s. Further F0(urs, vrs) = 0. From
the choice of τ we conclude that r and s are bounded and this implies the
finiteness of the original set of t as desired.
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We finish this section with a brief sketch of how to specialize u and v
rather than t.

We follow the preceding argument until the curve Crs. From the irre-
ducibility of B?

r , B
??
s it can be seen that the degree ∆rs of Crs is at least

δ(r2 + s2)− c; here and elsewhere δ, c denote positive absolute constants.

We intersect Crs with a hyperplane Hλ defined by U = λT . For generic λ
there will be ∆rs different intersection points. However we wish to choose
non-generic λ and indeed some fixed λ independent of r and s. But then
there could be fewer intersection points.

We can resolve this by noting that Br(U, T ) = 0 on Crs and so
Br(λT, T ) = 0 on the intersection. For generic λ this latter polynomial
has degree ∆r ≥ δr2 − c. Now an argument based on the stability (or uni-
formity) of values of the functional Néron-Tate height on a family of elliptic
surfaces shows that the degree of Br(λT, T ) is at least ∆r − c for all λ out-
side a finite set independent of r. It follows that for such λ the set Crs ∩Hλ

has at least ∆rs − c points counted with multiplicity. We fix such a λ.

Another argument based on Wang’s proof of the effective Roth theorem
for function fields shows that the multiplicities of zeroes of Br(λT, T ) are
at most εr2 + C, where C depends only on the arbitrary ε > 0.

It follows that for any N the set Crs ∩Hλ has at least N different points
provided r and s are sufficiently large with respect to N . These take the
form Πt = (λt, wt, vt, zt, t) with fixed algebraic functions wt, vt, zt of t. So
we have found many t with the points (λt, wt), (vt, zt) both torsion on Et.
But this can be made to contradict the finiteness result of [7].

A variation on this argument is to note that if our result for transcen-
dence degree 1 is false, then there exist infinitely many pairs (r, s) above.
Now for each such (r, s) we can find at least one Πt (t = trs 6= 0, 1) on
Crs ∩ Hλ (for this we still need the effective Roth argument). Clearly for
different (r, s) the trs are different, and we conclude as above.

Yet another variation enables us to reduce directly to the case δ = 0.
One can show as in the proof of Lemma 2.3 that the degree of B∗n(X,T ) in
T is 1

4φ2(n) for odd n 6= 1, and that the degrees of B(0)
n (X,T ), B(1)

n (X,T ),
B

(∞)
n (X,T ) in T are 1

12φ2(n) for even n 6= 2. We now intersect with
U = λ in a similar way, leading to many t with (λ,

√
λ(λ− 1)(λ− t)),

(µ,
√
µ(µ− 1)(µ− t)) both torsion, where F0(λ, µ) = 0.
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6. Examples

Here, for the possible amusement of the reader, we exhibit here some of
the shorter polynomials.

First, the Bn = Bn(X,T ) (usually reducible), for convenience together
with the An = An(X,T ) for n = 1, 2, 3.

Of course A1 = X,B1 = 1. Then

A2 = X4 − 2TX2 + T 2, B2 = 4X3 − (4T + 4)X2 + 4TX,

A3 = X9 − 12TX7 + (8T 2 + 8T )X6 + 30T 2X5 − (48T 2 + 48T 3)X4 +
(16T 4 + 68T 3 + 16T 2)X3 − (24T 4 + 24T 3)X2 + 9T 4X,

B3 = 9X8 − (24T + 24)X7 + (16T 2 + 68T + 16)X6 − (48T 2 + 48T )X5 +
30T 2X4 + (8T 3 + 8T 2)X3 − 12T 3X2 + T 4.

Then the irreducible B∗n = B∗n(X,T ) for n = 1, 3, 5.

Again B∗1 = 1. Then

B∗3 = 3X4 − 4(T + 1)X3 + 6TX2 − T 2,

B∗5 = 5X12−(20T +20)X11 +(16T 2 +94T +16)X10−(80T 2 +80T )X9−
105T 2X8 + (360T 3 + 360T 2)X7 − (240T 4 + 780T 3 + 240T 2)X6 + (64T 5 +
560T 4 + 560T 3 + 64T 2)X5 − (160T 5 + 445T 4 + 160T 3)X4 + (140T 5 +
140T 4)X3 − 50T 5X2 + T 6.

Finally the irreducible B(0)
n = B

(0)
n (X,T ), B(1)

n = B
(1)
n (X,T ), B(∞)

n =
B

(∞)
n (X,T ), for n = 2, 4, 6, 8, 10.

Now B
(0)
2 = X,B

(1)
2 = X − 1, B(∞)

2 = X − T . Then

B
(0)
4 = X2 − T, B(1)

4 = X2 − 2X + T, B
(∞)
4 = X2 − 2TX + T ,

B
(0)
6 = X4 − 6TX2 + (4T 2 + 4T )X − 3T 2,

B
(1)
6 = X4 − 4X3 + 6TX2 − 4T 2X + T 2,

B
(∞)
6 = X4 − 4TX3 + 6TX2 − 4TX + T 2,

B
(0)
8 = X8 − 20TX6 + (32T 2 + 32T )X5 − (16T 3 + 58T 2 + 16T )X4 +

(32T 3 + 32T 2)X3 − 20T 3X2 + T 4,

B
(1)
8 = X8−8X7 +(20T +8)X6− (32T 2 +24T )X5 +(16T 3 +54T 2)X4−

(32T 3 + 24T 2)X3 + (20T 3 + 8T 2)X2 − 8T 3X + T 4,

B
(∞)
8 = X8 − 8TX7 + (8T 2 + 20T )X6 − (24T 2 + 32T )X5 + (54T 2 +

16T )X4 − (24T 3 + 32T 2)X3 + (8T 4 + 20T 3)X2 − 8T 4X + T 4,



Bicyclotomic polynomials and impossible intersections 655

B
(0)
10 = X12−50TX10+(140T 2+140T )X9−(160T 3+445T 2+160T )X8+

(64T 4 +560T 3 +560T 2 +64T )X7− (240T 4 +780T 3 +240T 2)X6 +(360T 4 +
360T 3)X5 − 105T 4X4 − (80T 5 + 80T 4)X3 + (16T 6 + 94T 5 + 16T 4)X2 −
(20T 6 + 20T 5)X + 5T 6,

B
(1)
10 = X12 − 12X11 + (50T + 16)X10 − (140T 2 + 80T )X9 + (160T 3 +

335T 2)X8 − (64T 4 + 464T 3 + 264T 2)X7 + (208T 4 + 508T 3 + 208T 2)X6 −
(264T 4 + 464T 3 + 64T 2)X5 + (335T 4 + 160T 3)X4 − (80T 5 + 140T 4)X3 +
(16T 6 + 50T 5)X2 − 12T 6X + T 6,

B
(∞)
10 = X12−12TX11 +(16T 2 +50T )X10−(80T 2 +140T )X9 +(335T 2 +

160T )X8−(264T 3+464T 2+64T )X7+(208T 4+508T 3+208T 2)X6−(64T 5+
464T 4 + 264T 3)X5 + (160T 5 + 335T 4)X4 − (140T 5 + 80T 4)X3 + (50T 5 +
16T 4)X2 − 12T 5X + T 6.

7. The (A, B) model

Here, for the possible convenience of the reader, we exhibit the first few
terms of the multiplication polynomials for the model y2 = x3 + Ax + B.
They can be calculated by using weight arguments to see the general forms

(7.1) xn
2 + λnAx

n2−2 + µnBx
n2−3 + · · ·

for the numerator and

(7.2) n2xn
2−1 + νnAx

n2−3 + · · ·

for the denominator, where λn, µn, νn depend only on n. We convert from
Legendre Y 2 = X(X − 1)(X − T ) using

(7.3) x = X − 1
3(T + 1)

and we find

(7.4) A = −1
3(T 2 − T + 1), B = − 1

27(T + 1)(T − 2)(2T − 1).

We substitute (7.3) and (7.4) into (7.1) and (7.2), compare with the first
part of Lemma 2.2, not forgetting to translate back with an extra 1

3(T +1),
and equate some coefficients to find the values of λn, µn, νn. We find

λn = −1
6n

2(n2 − 1), µn = − 2
15n

2(n4 − 1), νn = 1
30n

2(n2 − 1)(n2 + 6).
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8. Appendix

Here we strengthen Theorem 1 as follows.

Theorem 1. For each positive integer d there is an effectively computable
finite set Fd of polynomials in Q[U, V ], irreducible over Q and of degree
d, with the following property. Suppose u, v in (1.4) are complex numbers,
not both algebraic over Q, and algebraically dependent over Q through a
polynomial over Q irreducible over Q of degree d. Then the set T (u, v) is
effectively computable. If further F (u, v) 6= 0 for every F in Fd, then the
set T (u, v) is empty.

Proof. This will also show, as for Theorem 1, that the cardinality of T (u, v)
is bounded effectively in terms of d. However here we adopt instead a Galois
strategy, similar to that for Lang’s original problem of curves in G2

m. This
will lead to better estimates.

There is an irreducible relation F0(u, v) = 0, where F0 in Q[U, V ] has
degree d. Let us consider the set T = T (u, v) and pick a t in T , letting
r, s denote the exact orders of the corresponding points P,Q on Et with
abscissas u, v respectively.

As noted in section 4 above, t is transcendental, like u, v; hence as in
section 5 we may regard t as an independent variable, with the proviso
that then u, v are viewed as certain algebraic functions of t, that is, the
abscissas of the torsion points P,Q in Et(Q(t)), still of the same orders.
We want to prove a bound depending only on d for these orders.

The curve Et is isomorphic (over Q(t)) to a curve Ěj defined over Q(j)
by a Weierstrass equation as in section 3, with transcendental invariant
j = j(Et) = 256 (t2−t+1)3

t2(1−t)2 .

Now Q(t) becomes the field generated over Q(j) (or even Q) by the 2-
torsion on Ěj . After this isomorphism, we get torsion points P̌ , Q̌ in Ěj . The
abscissas ǔ, v̌ of P̌ , Q̌ are also easily expressed as certain linear functions of
u, v with coefficients in Q(t).

These abscissas together with the corresponding ordinates generate over
Q(j) fields contained in modular function fields of levels r, s, as explained
for example in [3]. As such, these fields are subfields of the correspond-
ing field whose level is the lowest common multiple k of 2, r, s, denoted
here Kk; that is, Kk = Q(j, Ěj [k]) is the field generated over Q(j) by
the coordinates of all torsion points on Ěj of order dividing k. Now the
Galois structure of Kk/Q(j) is well known to be the maximal possible
one. Namely, viewing the k-torsion on Ěj as a finite group isomorphic to
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Z/kZ×Z/kZ, and viewing the Galois action through its natural represen-
tation as a subgroup of GL2(Z/kZ), we know that the Galois image is in
fact the whole group GL2(Z/kZ) (see also Lemma 10.1 of [7]). Moreover,
by Corollary 1(ii),(iii) of [3] (p.68), the Galois group of Q(j, Ěj [k]) over
Q(j) corresponds to SL2(Z/kZ).

The original equation F0(u, v) = 0 relating the abscissas of the points on
Et yields a similar equation F̌0(ǔ, v̌, t) = 0, where F̌0(U, V, t) in Q(t)[U, V ]
again has degree d in U, V . This equation yields a curve C in Ěj × Ěj ,
defined over Q(t). Note that this curve C is possibly reducible, but since
F̌0 defines an irreducible (over Q) curve in the (U, V )-plane, it gives rise to
at most four components in Ěj × Ěj : in fact, C is the inverse image of the
plane curve F̌0 = 0, through the x̌ × x̌-map, of degree 4, from Ěj × Ěj to
projective P1×P1. Also, if Z is an irreducible component of C, then every
other component is obtained as the image of Z by some automorphism
[±1]× [±1] of Ěj × Ěj , where [n] denotes multiplication by n.

Let us now use the Galois group over Q(t) of the modular function
field Kk of level k; this Galois group is represented as the subgroup Γ of
GL2(Z/kZ) of index 6 consisting of the matrices congruent to the identity
(mod 2), and so it contains all [`] with ` prime to k.

And the Galois group Gal(Q(j, Ěj [k])/Q(t)) is Ω = Γ∩SL2(Z/kZ), also
of index 6 in SL2(Z/kZ). Hence if g is in Ω, then g fixes a field of definition
for C, so Cg = C.

Take now ` > 1 be prime to k and let us extend [`] to an automorphism of
Q(t) over Q(t). If L is a (Galois) number field such that F0, F̌0, C are defined
over L(t), suppose that this automorphism acts on L as σ in Gal(L/Q). (It
may happen that this σ is not uniquely determined by `.)

Then for all g in Ω we have

(8.1) (P̌ g, Q̌g) ∈ C, (`P̌ g, `Q̌g) ∈ Cσ.

We note that the stabilizer in SL2(Z/nZ) of a point of order n has size
n. This follows as in the proof of Lemma 10.1 of [7]; the Euler function
φ1 there drops out. Thus the orbit of the point under SL2(Z/nZ) has size
φ2(n) = n2∏

p|n(1− 1
p2 ) > 6

π2n
2, just as in Lemma 10.1; this is behind the

irreducibility of the polynomials B?
n(X,T ) in Lemma 2.1 over Q or C.

We need here the orbit of (P̌ , Q̌) under Ω, but this can be found as
follows. We work first in SL2(Z/kZ), and by the Chinese Remainder The-
orem it suffices to work in SL2(Z/peZ) for each prime power pe dividing
k. If p 6= 2 then at least one of P̌ , Q̌, considered in (Z/peZ)2, has order
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pe, and so its stabilizer has size pe. So that of (P̌ , Q̌) has size at most
pe. If p = 2 then at least one of P̌ , Q̌, considered in (Z/2eZ)2, has or-
der either 2e or 2e−1. If the former, then the stabilizer in SL2(Z/2eZ) has
size 2e as before. But if the latter, then we get 2e−1 multiplied by the in-
dex [SL2(Z/2eZ) : SL2(Z/2e−1Z)] = 8, that is 4.2e. Multiplying over all
primes p, we see that the stabilizer of (P̌ , Q̌) in SL2(Z/kZ) has size at most
4k. So also in the subgroup Ω; and so the orbit under Ω has size at least
kφ2(k)/6

4k > k2

4π2 .

Now only two cases can occur.

I: There is no component common to both Cσ and [`]C.

Then by Bezout’s theorem applied to the projection of these curves to
P1 × P1 (this is a bit simpler than working in Ěj × Ěj) we find that the
cardinality of Cσ ∩ [`]C is at most 4d2`2, whence, by (8.1) and the above
orbit calculations, k ≤ 4πd`.

If for some real λ ≥ 41 we cannot take ` ≤ λ then all primes p ≤ λ
divide k. In particular ϑ(λ) ≤ log k in the standard notation of prime
number theory. However by the Corollary 3.16 (p.70) of [11] we have ϑ(λ) >
λ(1− 1

log λ) > 1
2λ. So choosing λ = 41 + 2 log k we deduce ` ≤ λ.

It follows that

(8.2) k ≤ 4πd(41 + 2 log k)

which is at most 4πd(41+4
√
k) ≤ 180πd

√
k. This gives log k ≤ 2 log(180πd)

and then from (8.2)

k ≤ 4πd(41 + 4 log(180πd)) ≤ 180πd log(180πd).

In this case the order of torsion is likewise bounded for both points.
Each double relation rP = sQ = 0 yields, on eliminating t as in section
4, a relation between u, v (nontrivial because the Bn(X,T ) are essentially
monic in X), which possibly gives an element of Fd. Clearly only finitely
many elements can arise in this way, and they can be computed.

II: There is a component common to both Cσ and [`]C.

Let [`]Z be such a component, where Z is a component of C. We have
already noted that every other component is obtained as the image of one
of them by some µ = [±1]× [±1] on Ěj × Ěj . Then we have µZσ = [`]Z for
some such µ. Iterating shows that [`m]Z = Z for some m ≥ 1. But then by
general theory Z is a translate by a torsion point of an irreducible algebraic
subgroup.
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However this would say that the original relation F0(u, v) = 0 defines a
union of at most four torsion translates of an algebraic subgroup. In turn,
the original points P,Q on Et with abscissas u, v respectively would be lin-
early dependent on Et, which we can exclude, for instance by ramification,
as in section 1.

This completes the proof. �

Remark. It is probably possible to obtain quantitatively better estimates
by transposing to this elliptic context the cyclotomic arguments of Beukers
and Smyth [2].
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