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On the Hausdorff dimension of countable
intersections of certain sets of normal numbers

par Bill MANCE

Résumé. On démontre que l’ensemble des nombres qui sont Q-
normaux en distribution mais pas simplement Q-normaux en ratio
est de dimension de Hausdorff maximale. Sous certaines condi-
tions, on peut aussi démontrer que les intersections dénombrables
de ces ensembles sont encore de dimension maximale, en dépit du
fait qu’elles ne sont pas gagnantes (au sens de W. Schmidt). En
conséquence, nous pouvons construire plusieurs exemples expli-
cites de nombres qui sont simultanément normaux en distribution
mais pas simplement normaux en ratio par rapport à certaines fa-
milles dénombrables de suites de base. De plus, on démontre que
certains ensembles connexes sont soit gagnants, soit de première
catégorie.

Abstract. We show that the set of numbers that areQ-distribu-
tion normal but not simply Q-ratio normal has full Hausdorff di-
mension. It is further shown under some conditions that countable
intersections of sets of this form still have full Hausdorff dimen-
sion even though they are not winning sets (in the sense of W.
Schmidt). As a consequence of this, we construct many explicit
examples of numbers that are simultaneously distribution normal
but not simply ratio normal with respect to certain countable fam-
ilies of basic sequences. Additionally, we prove that some related
sets are either winning sets or sets of the first category.

1. Introduction

The Q-Cantor series expansion, first studied by G. Cantor in [2]1, is
a natural generalization of the b-ary expansion. Q = (qn)∞n=1 is a basic
sequence if each qn is an integer greater than or equal to 2. Given a basic
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1G. Cantor’s motivation to study the Cantor series expansions was to extend the well known

proof of the irrationality of the number e =
∑

1/n! to a larger class of numbers. Results along
these lines may be found in the monograph of J. Galambos [5]. See also [21] and [6].
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sequence Q, the Q-Cantor series expansion of a real x in R is the (unique)2
expansion of the form

(1.1) x = bxc+
∞∑
n=1

En
q1q2 . . . qn

,

where E0 = bxc and En is in {0, 1, . . . , qn − 1} for n ≥ 1 with En 6= qn − 1
infinitely often. We abbreviate (1.1) with the notation x = E0.E1E2E3 . . .
w.r.t. Q.

Clearly, the b-ary expansion is a special case of (1.1) where qn = b for
all n. If one thinks of a b-ary expansion as representing an outcome of
repeatedly rolling a fair b-sided die, then a Q-Cantor series expansion may
be thought of as representing an outcome of rolling a fair q1 sided die,
followed by a fair q2 sided die and so on.

For a given basic sequence Q, let NQ
n (B, x) denote the number of times

a block B occurs starting at a position no greater than n in the Q-Cantor
series expansion of x. Additionally, define3

Q(k)
n =

n∑
j=1

1
qjqj+1 . . . qj+k−1

and TQ,n(x) =

 n∏
j=1

qj

x (mod 1).

A. Rényi [17] defined a real number x to be normal with respect to Q if
for all blocks B of length 1,

(1.2) lim
n→∞

NQ
n (B, x)
Q

(1)
n

= 1.

If qn = b for all n and we restrict B to consist of only digits less than b,
then (1.2) is equivalent to simple normality in base b, but not equivalent to
normality in base b. A basic sequence Q is k-divergent if limn→∞Q

(k)
n =∞.

Q is fully divergent if Q is k-divergent for all k and k-convergent if it is not
k-divergent. A basic sequence Q is infinite in limit if qn →∞.

Definition. A real number x is Q-normal of order k if for all blocks B of
length k,

lim
n→∞

NQ
n (B, x)
Q

(k)
n

= 1.

We let Nk(Q) be the set of numbers that are Q-normal of order k. A real
number x is Q-normal if x ∈ N(Q) :=

⋂∞
k=1 Nk(Q) and x is simply Q-

normal if it is Q-normal of order 1. Additionally, x is Q-ratio normal of

2Uniqueness can be proven in the same way as for the b-ary expansions.
3For the remainder of this paper, we will assume the convention that the empty sum is equal

to 0 and the empty product is equal to 1.
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Figure 1.1

N(Q)RN(Q)

N(Q)∩RN(Q)RN(Q)∩DN(Q) N(Q)∩DN(Q)

N(Q)∩RN(Q)∩DN(Q)DN(Q)

order k (here we write x ∈ RNk(Q)) if for all blocks B1 and B2 of length k

lim
n→∞

NQ
n (B1, x)

NQ
n (B2, x)

= 1.

We say that x is Q-ratio normal if x ∈ RN(Q) :=
⋂∞
k=1 RNk(Q). A real

number x is Q-distribution normal if the sequence (TQ,n(x))∞n=0 is uniformly
distributed mod 1. LetDN(Q) be the set of Q-distribution normal numbers.

It is easy to show that for every basic sequence Q, the set of Q-distribu-
tion normal numbers has full Lebesgue measure. For Q that are infinite in
limit, it has been shown that the set of all real numbers x that are Q-normal
of order k has full Lebesgue measure if and only if Q is k-divergent [12].
Early work in this direction has been done by A. Rényi [17], T. S̆alát [22],
and F. Schweiger [20]. Therefore if Q is infinite in limit, then the set of all
real numbers x that are Q-normal has full Lebesgue measure if and only if
Q is fully divergent. We will show that RN1(Q) is a set of zero measure if
Q is infinite in limit and 1-convergent. This will follow immediately from a
result of P. Erdős and A. Rényi [3].

Note that in base b, where qn = b for all n, the corresponding notions of
Q-normality, Q-ratio normality, and Q-distribution normality are equiva-
lent. This equivalence is fundamental in the study of normality in base b. It
is surprising that this equivalence breaks down in the more general context
of Q-Cantor series for general Q.
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We refer to the directed graph in Figure 1 for the complete containment
relationships between these notions when Q is infinite in limit and fully
divergent. The vertices are labeled with all possible intersections of one,
two, or three choices of the sets N(Q), RN(Q), and DN(Q). The set labeled
on vertex A is a subset of the set labeled on vertex B if and only if there is
a directed path from vertex A to vertex B. For example, N(Q)∩DN(Q) ⊆
RN(Q), so all real numbers that are Q-normal and Q-distribution normal
are also Q-ratio normal. These relations are fully explored and examples
are given in [10].

It is usually most difficult to establish a lack of a containment relation-
ship. The first non-trivial result in this direction was in [1] where a basic
sequence Q and a real number x is constructed where x ∈ N(Q)\DN(Q).4
By far the most difficult of these to establish is the existence of a basic
sequence Q where RN(Q) ∩DN(Q)\N(Q) 6= ∅. This case is considered in
[10] and requires more sophisticated methods. Other related examples may
be found in [11],[13], and [10].

It should be noted that for every Q that is fully divergent infinite and
infinite in limit, the sets RN(Q)\N(Q), DN(Q)\RN(Q), and N(Q)\DN(Q)
are non-empty. It is likely that RN(Q) ∩DN(Q)\N(Q) is also always non-
empty. In this paper, we will be concerned with the Hausdorff dimension
of sets of this form.
Definition. Let P = (pn) and Q = (qn) be basic sequences. We say that
P ∼s Q if

qn =
s∏
j=1

ps(n−1)+j .

The main result of this paper is the following theorem, which concerns
the Hausdorff dimension of countable intersections of sets of the form
DN(Q)\RN1(Q):
Theorem 1.1. Suppose that (Qj)∞j=1 is a sequence of basic sequences that
are infinite in limit. Then

dimH

 ∞⋂
j=1

DN(Qj)\RN1(Qj)

 = 1

if either of the following conditions hold.
(1) For all j, the basic sequence Qj is 1-convergent.
(2) The basic sequence Q1 is 1-divergent and there exists some basic

sequence S = (sn) with
Q1 ∼s1 Q2 ∼s2 Q3 ∼s3 Q4 · · · .

4This real number x satisfies a much stronger condition than not being Q-distribution normal:
TQ,n(x)→ 0.
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Corollary 1.1. Suppose that (Qj)∞j=1 is a sequence of basic sequences that
are infinite in limit. Then

dimH

 ∞⋂
j=1

DN(Qj)\RN(Qj)

 = dimH

 ∞⋂
j=1

DN(Qj)\N(Qj)

 = 1,

under the same conditions as Theorem 1.1. Additionally, for any Q that is
infinite in limit,

dimH (DN(Q)\RN(Q)) = dimH (DN(Q)\N(Q)) = 1.

Proof. This is immediate as N(Q) ⊆ RN(Q) ⊆ RN1(Q) for every basic
sequence Q that is infinite in limit. �

We note the following fundamental fact about Q-distribution normal
numbers that follows directly from a theorem of T. S̆alát [23]:5

Theorem 1.2. Suppose that Q = (qn) is a basic sequence and
limN→∞

1
N

∑N
n=1

1
qn

= 0. Then x = E0.E1E2 · · · w.r.t. Q is Q-distribution
normal if and only if (En/qn) is uniformly distributed mod 1.

The first part of Theorem 1.1 is trivial: we show in this case that the
sets DN(Qj)\RN1(Qj) are of full measure. Part (2) will be more difficult to
establish. We will provide an explicit construction of a Cantor set ΘQ,S (⋂∞
j=1 DN(Qj)\RN1(Qj) with dimH(ΘQ,S) = 1 by refining the methods

used in [13]. Moreover, this construction will give us explicit examples of
members of

⋂∞
j=1 DN(Qj)\RN1(Qj) for any collection of basic sequences

(Qj) that are infinite in limit with Q1 ∼s1 Q2 ∼s2 Q3 ∼s3 Q4 · · · . To
see that the second part of Theorem 1.1 would not immediately follow if
we were to prove that dimH (DN(Q)\RN1(Q)) = 1, consider two basic
sequences P = (pn) and Q = (qn) given by

(p1, p2, p3, · · · ) = (2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, · · · );
(q1, q2, q3, · · · ) = (4, 16, 16, 36, 36, 36, 64, 64, 64, 64, · · · ).

Define the sequences (En) and (Fn) by
(E1, E2, E3, · · · ) = (0, 1, 0, 2, 1, 3, 0, 3, 1, 4, 2, 5, 0, 4, 1, 5, 2, 6, 3, 7, · · · );
(F1, F2, F3, · · · ) = (0, 0, 8, 0, 12, 24, 0, 16, 32, 48, · · · ).

Let x =
∑∞
n=1

En
p1···pn and y =

∑∞
n=1

Fn
q1···qn . Clearly, x ∈ DN(P ) and y ∈

DN(Q) by Theorem 1.2. However, y = 0.00002000204000204060 · · · w.r.t.

5The original theorem of T. S̆alát says: Given a basic sequence Q and a real number x with
Q-Cantor series expansion x = bxc+

∑∞
n=1

En
q1q2...qn

, if limN→∞
1
N

∑N

n=1
1
qn

= 0 then x is Q-
distribution normal iff En = bθnqnc for some uniformly distributed sequence (θn). N. Korobov
[7] proved this theorem under the stronger condition that Q is infinite in limit. For this paper,
we will only need to consider the case where Q is infinite in limit.
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P , so y /∈ DN(P ). Furthermore, note that

x = 0.2273(10)(17)4(13)(22)(31) · · · w.r.t. Q.

So TQ,n(x) < 1/2 for all n and x /∈ DN(Q). Thus, we have demon-
strated an example of two basic sequences P and Q with P ∼2 Q where
DN(P )\DN(Q) 6= ∅, DN(Q)\DN(P ) 6= ∅, and DN(P ) 6= DN(Q). It should
be noted that these examples are in sharp contrast with a well known the-
orem of W. M. Schmidt [18]:

Theorem 1.3. We write r ∼ s if there exist integers n,m with rn = sm. If
r ∼ s, then any number normal to base r is normal to base s. If r � s, then
the set of numbers which are normal to base r but not even simply normal
to base s has the power of the continuum.

While there is no reason to expect uncountable intersections to preserve
Hausdorff dimension, it is not immediately clear that there are not numbers
that are Q-distribution normal for every basic sequence Q that is infinite
in limit. If this were the case then it might be possible that Theorem 1.1
could be extended to arbitrary uncountable intersections.

Theorem 1.4. There is an uncountable family of basic sequences (Qj)j∈J
that are infinite in limit such that⋂

j∈J
DN(Qj)\RN1(Qj) = ∅.

Theorem 1.4 can be proven with only a trivial modification of the proof
of Theorem 1.1.4 in the dissertation of P. Laffer [9]. P. Laffer’s Theorem
1.1.4 shows that no number is Q-distribution normal for all basic sequences
Q. It should be noted that every irrational number is Q-distribution normal
for uncountably many basic sequences Q and not Q-distribution normal for
uncountably many basic sequences Q. P. Laffer [9] also provides further
refinements of these statements.

Moreover, we will also show the following for Q that are infinite in limit:
(1) The sets DN(Q)c and RN2(Q)c are α-winning sets (in the sense of

Schmidt’s game) for every α in (0, 1/2).
(2) DN(Q) and RN1(Q) are sets of the first category.

2. Properties of RNk(Q), and DN(Q)

2.1. Winning sets. In [19], W. Schmidt proposed the following game
between two players: Alice and Bob. Let α ∈ (0, 1), β ∈ (0, 1), S ⊆ R, and
let ρ(I) denote the radius of a set I. Bob first picks any closed interval B1 (
R. Then Alice picks a closed interval A1 ( B1 such that ρ(A1) = αρ(B1).
Bob then picks a closed interval B2 ( A1 with ρ(B2) = βρ(A1). After this,
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Alice picks a closed interval A2 ( B2 such that ρ(A2) = αρ(B2), and so on.
We say that the set S is (α, β)-winning if Alice can play so that

(2.1)
∞⋂
n=1

Bn ( S.

The set S is (α, β)-losing if it is not (α, β)-winning. S is α-winning if it
is (α, β)-winning for all 0 < β < 1. Winning sets satisfy the following
properties:

(1) If S is an α-winning set, then the Hausdorff dimension of S is 1.
(2) The intersection of countably many α-winning sets is α-winning.
(3) Bi-Lipshitz homeomorphisms of R preserve winning sets.

We write windim S to be the supremum of all α such that S is α-winning.
N. G. Moshchevitin [14] proved

Theorem 2.1. Let (tn) be a sequence of positive numbers and

∀ε > 0 ∃N0 ∀n ≥ N0 : tn+1
tn
≥ 1 + 1

nε
.

Then for every number δ > 0 the set

Aδ =
{
x ∈ R : ∃c(x) > 0 ∀n ∈ N ‖tnx‖ >

c(x)
nδ

}
is an α-winning set for all α in (0, 1/2). Thus, windim Aδ = 1/2.

Corollary 2.1. For every basic sequence Q, windim DN(Q)c = 1/2. More-
over, DN(Q)\RN1(Q) is not an α-winning set for any α.

Proof. Let tn = q1q2 · · · qn. Clearly, for all δ > 0, Aδ ( DN(Q)c. Thus,
windim DN(Q)c = 1/2. But DN(Q)c ∩ DN(Q) = ∅ and the property of
being α-winning is preserved by countable intersections, so DN(Q) and
DN(Q)\RN1(Q) are not α-winning sets for any α. �

Lemma 2.1. If Q is infinite in limit, x ∈ RN2(Q), and t is a non-negative
integer, then

lim
n→∞

NQ
n ((t), x) =∞.

Proof. Since Q is infinite in limit and x ∈ RN2(Q), for all i, j ≥ 0, we have

lim
n→∞

NQ
n ((t, i), x)

NQ
n ((t, j), x)

= 1.

So, for all j there is an n such that NQ
n ((t, j), x) ≥ 1. Since there are

infinitely many choices for j, the lemma follows. �

Let FZ(Q) be the set of real numbers whose Q-Cantor series expansion
contains at most finitely many copies of the digit 0.

Corollary 2.2. If Q is infinite in limit, then FZ(Q) ( RN2(Q)c.
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Theorem 2.2. If Q is infinite in limit, then windim RN2(Q)c = 1/2. More-
over, if Q is 1-divergent, then windim N1(Q)c = 1/2.

Proof. We note that windim FZ(Q) = 1/2 by Theorem 2.1. The first con-
clusion follows directly from this and Corollary 2.2. If Q is 1-divergent and
x ∈ N1(Q), then every digit occurs infinitely often in the Q-Cantor series
expansion of x. So, FZ(Q) ( N1(Q)c and windim N1(Q)c = 1/2. �

It should be noted that Theorem 2.2 is in some ways stronger than
the corresponding result for b-ary expansions. The original proof due to
W. Schmidt that the set of numbers not normal in base b is 1/2-winning
heavily uses the fact that a real number x is normal in base b if and only
if x is simply normal in base bk for all k. In fact, the set of numbers not
normal of order 2 in base b is not an α-winning set for any α. The reasoning
used in the proof of Theorem 2.2 and in the preceeding lemmas only works
because Q is infinite in limit.

2.2. DN(Q), RNk(Q), and Nk(Q) are sets of the first category.
Given a sequence Z = (z1, . . . , zn) in R and 0 < γ ≤ 1, we define

An([0, γ), z) := |{i; 1 ≤ i ≤ n and {zi} ∈ [0, γ)}|.

Theorem 2.3. For any basic sequence Q, the set DN(Q) is of the first
category.

Proof. We define

(2.2) Gm =
∞⋂
n=m

{
x ∈ R : An([0, 1/2), TQ,n−1(x))

n
< 2/3

}
and put G =

⋃∞
m=1Gm. Clearly, DN(Q) ( G and each of the sets Gm is

nowhere dense, so DN(Q) is of the first category. �

We also note the following, which is proven similarly to Theorem 2.3.

Theorem 2.4. For any basic sequence Q and positive integer k, the set
RNk(Q) is of the first category. Since Nk(Q) ( RNk(Q), Nk(Q) is also of
the first category.6

3. Proof of Theorem 1.1

Suppose that Q is a basic sequence and x = E0.E1E2 · · · w.r.t. Q. We
let S(x) be the set of all positive integers which occur at least once in the
sequence (En). P. Erdős and A. Rényi [3] proved the following theorem.

Theorem 3.1. If Q is infinite in limit and 1-convergent, then the density
of S(x) is with probability 1 equal to 0.

6Nk(Q) could be empty. See Proposition 5.1 in [12]. It is proven in [10] that Nk(Q) ( RNk(Q)
for all Q that are infinite in limit.
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Corollary 3.1. If Q is infinite in limit and 1-convergent, then

λ(RN1(Q)) = 0.

The first part of Theorem 1.1 follows immediately from Corollary 3.1 as
the sets DN(Q)\RN1(Q) have full measure when Q is infinite in limit and
1-convergent. The remainder of this paper will be devoted to proving the
second part of Theorem 1.1.

3.1. Construction of ΘQ,S. For the rest of this section, we fix basic
sequencesQ = (qn) and S = (sn). We letQ1 = Q and define basic sequences
Qj = (qj,n) by

Q1 ∼s1 Q2 ∼s2 Q3 ∼s3 Q4 · · · .
We will define the following notation. Let Sj =

∏j−1
k=1 sj and set νj =

min
{
t ∈ Z : qm ≥ S2j

j for m ≥ t
}
. Put l1 = s1ν2 and

lj =

(∑j−1
k=1 Sklk

)
· (2jsjνj+1 − 1)
Sj

.

Given l1, l2, · · · , lj , define Lj =
∑j
k=1 Sklk. Thus, we may write

lj = Lj−1 · (2jsjνj+1 − 1)
Sj

.

Let U = {(j, b, c) ∈ N3 : b ≤ lj , c ≤ Sj}. Put

φ(j, b, c) = Lj−1 + (b− 1)Sj + c.

Note that φ : N3 → N is a bijection. Define

(i(n), b(n), c(n)) = φ−1(n)

and put a(n) = Si(n). Let

F =
{(
F(j,b,c)

)
(j,b,c)∈U

⊆ N3
∣∣∣∣∣ F(j,b,c)
qφ(j,b,c)

∈ Vj,b,c

}
,

where

Vj,b,c =


[

1
qφ(j,b,c)

, 2
qφ(j,b,c)

)
if j = 1

[
c

a(φ(j,b,c)) + 1
a(φ(j,b,c))2 ,

c
a(φ(j,b,c)) + 2

a(φ(j,b,c))2

]
if j > 1

.

Given F ∈ F, we set EF,n = Fφ−1(n), EF = (EF,n)∞n=1, and put

xF =
∞∑
n=1

EF,n
q1q2 . . . qn

.
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We set ΘQ,S = {xF : F ∈ F}. It will be proven that ΘQ,S is non-empty,
has full Hausdorff dimension, and

ΘQ,S (
∞⋂
j=1

DN(Qj)\RN1(Qj).

3.2. Distribution normality of members of ΘQ,S.

Let ω(n) = #{EF,n : F ∈ F}.

Lemma 3.1. ω(n) = 1 if i(n) = 1 and

ω(n) ≥ q1−1/i(n)
n > 2

if i(n) ≥ 2.

Proof. By construction, EF,n = 1 when i(n) = 1. If i(n) ≥ 2, then
EF,n
qn
∈
[
c(n)
a(n) + 1

a(n)2 ,
c(n)
a(n) + 2

a(n)2

]
,

which has length 1/a(n)2. Thus,

ω(n) = 1 + bqn · (1/a(n)2)c ≥ qn
a(n)2 .

By construction, qn ≥ a(n)2i(n), thus q1/i(n)
n ≥ a(n)2. So q

1/i(n)
n
a(n)2 ≥ 1 and

qn
a(n)2 ≥ q

1−1/i(n)
n . Additionally, n ≥ ν2, so qn ≥ s2·2

1 ≥ 16. Thus, q1−1/i(n)
n ≥

4 > 2. �

Lemma 3.1 guarantees that ΘQ,S is non-empty, but will also be critical in
determining dimH(ΘQ,S). If xF =

∑∞
n=1

EF,n
q1q2···qn , then the Qj-Cantor series

expansion of xF is

xF =
∞∑
n=1

EF,j,n
qj,1qj,2 · · · qj,n

,

where

EF,j,n =
Sj∑
v=1

EF,Sj ·(n−1)+v ·
Sj∏

w=v+1
qSj ·(n−1)+w

 and qj,n =
Sj∏
w=1

qSj ·(n−1)+w.

Lemma 3.2. For all j, n ≥ 1

0 ≤ EF,j,n
qj,n

−
EF,Sj ·(n−1)+1

qSj ·(n−1)+1
<

Sj
qSj ·(n−1)+1

;

lim
n→∞

EF,j,n
qj,n

−
EF,Sj ·(n−1)+1

qSj ·(n−1)+1
= 0.
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Proof.

0 ≤EF,j,n
qj,n

−
EF,Sj ·(n−1)+1

qSj ·(n−1)+1
=
∑Sj
v=2

(
EF,Sj ·(n−1)+v ·

∏Sj
w=v+1 qSj ·(n−1)+w

)
∏Sj
w=1 qSj ·(n−1)+w

≤
Sj∑
v=2

(qSj ·(n−1)+v − 1)
∏Sj
w=v+1 qSj ·(n−1)+w∏Sj

w=1 qSj ·(n−1)+w
<

Sj∑
v=2

∏Sj
w=v qSj ·(n−1)+w∏Sj
w=1 qSj ·(n−1)+w

=
Sj∑
v=2

1∏v−1
w=1 qSj ·(n−1)+w

= 1
qSj ·(n−1)+1

·
Sj∑
v=2

1∏v−1
w=2 qSj ·(n−1)+w

≤ Sj
qSj ·(n−1)+1

→ 0, as qSj ·(n−1)+1 →∞.

�

Lemma 3.2 suggests the key observation that the Qj-distribution nor-
mality of a member of ΘQ,S is determined entirely by its digits (En) in
base Q, where n ≡ 1 (mod Sj). Thus, we prove the following.

Lemma 3.3. For all j ≥ 1, Sj+1 divides Lj.

Proof. We prove this by induction. The base case holds as L1 = l1 = s1ν2.
Assume that Sj |Lj−1. Then

Lj =Lj−1 + Sj ·
Lj−1 · (2jsjνj+1 − 1)

Sj
= 2jLj−1νj+1sj(3.1)

=
(

2jνj+1 ·
Lj−1
Sj

)
Sjsj =

(
2jνj+1 ·

Lj−1
Sj

)
Sj+1.(3.2)

�

Lemma 3.4. For all j ≥ 1, lj is an integer, lj ≥ jsj, and Lj ≥ νj+1 − 1.

Proof. l1 = s1ν2 is an integer. To show that lj is an integer for j ≥ 2, we
write

(3.3) lj = Lj−1
Sj
· (2jsjνj+1 − 1),

which is an integer by Lemma 3.3. Since νj+1 ≥ 1, 2νj+1jsj − 1 ≥ jsj .
Thus, by (3.3), lj ≥ jsj . The last assertion follows directly from (3.1). �

Definition. For a finite sequence z = (z1, . . . , zn), we define the star dis-
crepancy D∗n = D∗n(z1, . . . , zn) as

sup
0<γ≤1

∣∣∣∣A([0, γ), z)
n

− γ
∣∣∣∣ .
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Given an infinite sequence w = (w1, w2, . . .), we define
D∗n(w) = D∗n(w1, w2, . . . , wn).

For convenience, set D∗(z1, . . . , zn) = D∗n(z1, . . . , zn).
Theorem 3.2. The sequence w = (w1, w2, . . .) is uniformly distributed mod
1 if and only if limn→∞D

∗
n(w) = 0.

We will make use of the following definition from [8]:
Definition. For 0 ≤ δ < 1 and ε > 0, a finite sequence x1 < x2 < · · · < xN
in [0, 1) is called an almost-arithmetic progression-(δ, ε) if there exists an η,
0 < η ≤ ε, such that the following conditions are satisfied:
(3.4) 0 ≤ x1 ≤ η + δη;

(3.5) η − δη ≤ xn+1 − xn ≤ η + δη for 1 ≤ n ≤ N − 1;

(3.6) 1− η − δη ≤ xN < 1.
Almost arithmetic progressions were introduced by P. O’Neil in [16]. He

proved that a sequence (xn) of real numbers in [0, 1) is uniformly distributed
mod 1 if and only if the following holds: for any three positive real numbers
δ, ε, and ε′, there exists a positive integer N such that for all n > N , the
initial segment x1, x2, . . . , xn can be decomposed into an almost-arithmetic
progression-(δ, ε) with at most N0 elements left over, where N0 < ε′N . We
will use the following theorem from [15]:
Theorem 3.3. Let x1 < x2 < · · · < xN be an almost arithmetic progress-
ion-(δ, ε) and let η be the positive real number corresponding to the sequence
according to Definition 3.2. Then

D∗N ≤
1
N

+ δ

1 +
√

1− δ2
for δ > 0 and D∗N ≤ min

(
η,

1
N

)
for δ = 0.

Corollary 3.2. Let x1 < x2 < · · · < xN be an almost arithmetic progress-
ion-(δ, ε) and let η be the positive real number corresponding to the sequence
according to Definition 3.2. Then D∗N ≤ 1

N + δ.
For j < k set

YF,j,k,b =
(
EF,φ(j,b,1+Sjn)

qφ(j,b,1+Sjn)

)Sk/Sj−1

n=1
and let D∗F,j,k,b = D∗(YF,j,k,b). Put

YF,j = YF,j,j+1,1YF,j,j+1,2 . . . YF,j,j+1,l1YF,j,j+2,1

× YF,j,j+2,2 . . . YF,j,j+2,l2YF,j,j+3,1.

If we prove that YF,j is uniformly distributed mod 1, it will immediately
follow that xF ∈ DN(Qj).
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Lemma 3.5. If F ∈ F and j < k, then YF,j,k,b is an almost arithmetic
progression-

(
1

SjSk
,
Sj
Sk

)
. Thus,

(3.7) D∗F,j,k,b ≤ |YF,j,k,b|+
1

SjSk
= Sj
Sk

+ 1
SjSk

≤ 2Sj
Sk
.

Proof. We verify only (3.5) as (3.4) and (3.6) may be verified similarly.
Note that

EF,φ(k,b,1+Sjn)

qφ(k,b,1+Sjn)
∈
[

1 + Sjn

Sk
+ 1
S2
k

,
1 + Sjn

Sk
+ 2
S2
k

]
;

EF,φ(k,b,1+Sj(n+1))

qφ(k,b,1+Sj(n+1))
∈
[

1 + Sj(n+ 1)
Sk

+ 1
S2
k

,
1 + Sj(n+ 1)

Sk
+ 2
S2
k

]
.

Therefore,

EF,φ(k,b,1+Sj(n+1))

qφ(k,b,1+Sj(n+1))
−
EF,φ(k,b,1+Sjn)

qφ(k,b,1+Sjn)
≤
(

1 + Sj(n+ 1)
Sk

+ 2
S2
k

)

−
(

1 + Sjn

Sk
+ 1
S2
k

)

= Sj
Sk

+ 1
S2
k

.

Similarly, it may be shown that
EF,φ(k,b,1+Sj(n+1))

qφ(k,b,1+Sj(n+1))
−
EF,φ(k,b,1+Sjn)

qφ(k,b,1+Sjn)
≥ Sj
Sk
− 1
S2
k

.

Thus, with η = ε, we have η − δη ≤
EF,φ(k,b,1+Sj(n+1))
qφ(k,b,1+Sj(n+1))

−
EF,φ(k,b,1+Sjn)
qφ(k,b,1+Sjn)

≤
η + δη. �

We will need the following corollary of Theorem 2.6 in Chapter 2 of [8].

Corollary 3.3. If t is a positive integer and for 1 ≤ j ≤ t, zj is a finite
sequence in R with star discrepancy at most εj, then

D∗
(
zl11 · · · z

lt
t

)
≤
∑t
j=1 lj |zj |εj∑t
j=1 lj |zj |

.

For any given positive integer n and j < i(n), we can write n = Li(n)−1
Sj

+
mj(n), where mj(n) can be uniquely written in the form

mj(n) = αj(n)
Si(n)
Sj

+ βj(n),
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with 0 ≤ αj(n) ≤ li(n) and 0 ≤ βj(n) < Si(n)
Sj

. For j < t, define

fj,t(w, z) =
Lj/Sj +

∑t−1
k=j+1 2lk + 2w + z

Lj/Sj +
∑t−1
k=j+1 lk ·

Sk
Sj

+ St
Sj
w + z

;

ε̄j,t =
Lj/Sj +

∑t−1
k=j+1 2lk + St/Sj

Lj/Sj +
∑t−1
k=j+1 lk ·

Sk
Sj

+ St/Sj
.

The following lemma is proven similarly to Lemma 11 in [1].

Lemma 3.6. If 1 ≤ j < t and (w, z) ∈ {0, · · · , lt} × {0, · · · , St/Sj}, then
fj,t(w, z) < fj,t(0, St/Sj) = ε̄j,t.

Lemma 3.7. Suppose that j < i(n). Then
D∗n(YF,j) ≤ fj,i(n)(αj(n), βj(n)) < ε̄j,i(n).

Proof. This follows from Lemma 3.5, Corollary 3.3, and Lemma 3.6. �

We will need the following basic lemma.

Lemma 3.8. Let L be a real number and (an)∞n=1 and (bn)∞n=1 be two
sequences of positive real numbers such that

∞∑
n=1

bn =∞ and lim
n→∞

an
bn

= L.

Then
lim
n→∞

a1 + a2 + . . .+ an
b1 + b2 + . . .+ bn

= L.

Lemma 3.9. The limit limt→∞ ε̄j,t is equal to 0.

Proof. For 1 ≤ k ≤ j, put ak = bk = Lj
jSj

. For k > j, set ak = 2lk + Sk+1−Sk
Sj

and bk = lk · SkSj + Sk+1−Sk
Sj

. Clearly, ε̄j,t = a1+···+at−1
b1+···+bt−1

for t > j. Then

ak
bk

= 2lkSj + Sk+1 − Sk
lkSk + Sk+1 − Sk

≤ lkSj
lkSk

+ Sk+1 − Sk
lkSk

= 1
sjsj+1 · · · sk−1

+ sk − 1
lk

<
1

sjsj+1 · · · sk−1
+ 1
k
→ 0,

by Lemma 3.4. Thus, the conclusion follows directly from Lemma 3.8. �

Theorem 3.4. If F ∈ F, then xF ∈
⋂∞
j=1 DN(Qj).

Proof. Let j ≥ 1 and F ∈ F. By Lemma 3.7 and Lemma 3.9, YF,j is
uniformly distributed mod 1. Thus, by Lemma 3.2, xF ∈ DN(Qj). �

Theorem 3.5. If F ∈ F, then xF /∈
⋃∞
j=1 RN1(Qj).
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Proof. By construction, EF,n 6= 0 for all natural numbers n and F ∈ F.
Note that EF,j,n can only be equal to 0 if

Sj∑
v=1

EF,Sj ·(n−1)+v ·
Sj∏

w=v+1
qSj ·(n−1)+w

 = 0.

But this is impossible as EF,Sj ·(n−1)+v 6= 0 for all v. Thus, EF,j,n 6= 0 for
all j and n, so xF /∈

⋃∞
j=1 RN1(Qj). �

Corollary 3.4. We have the following containment

ΘQ,S (
∞⋂
j=1

DN(Qj)\RN1(Qj).

We note the following theorem that is proven similarly to Theorem 3.8
and Theorem 3.10 in [13].

Theorem 3.6. The set ΘQ,S is perfect and nowhere dense.

3.3. Hausdorff dimension of ΘQ,S. We will make use of the following
general construction found in [4]. Suppose that [0, 1] = I0 ) I1 ) I2 ) . . .
is a decreasing sequence of sets, with each Ik a union of a finite number
of disjoint closed intervals (called kth level basic intervals). Then we will
consider the set ∩∞k=0Ik. We will construct a set Θ′Q,S that may be written
in this form such that dimH (ΘQ,S) = dimH

(
Θ′Q,S

)
.

Given a block of digits B = (b1, b2, . . . , bs) and a positive integer n, define

SQ,B = {x = 0.E1E2 . . . w.r.t Q : E1 = b1, . . . , Et = bs}.

Let Pn be the set of all possible values of En(x) for x ∈ ΘQ,S . Put J0 = [0, 1)
and

Jk =
⋃

B∈
∏k

n=1 Pn

SQ,B.

Then Jk ( Jk−1 for all k ≥ 0 and ΘQ,S = ∩∞k=0Jk, which gives the following.

Proposition 3.1. The set ΘQ,S can be written in the form ∩∞k=0Jk, where
each Jk is the union of a finite number of disjoint half-open intervals.

We now set Ik = Jk for all k ≥ 0 and put Θ′Q,S = ∩∞k=0Ik. Since each set
Jk consists of only a finite number of intervals, the set Ik\Jk is finite.

Lemma 3.10. For all Q and S, we have dimH (ΘQ,S) = dimH
(
Θ′Q,S

)
.

Proof. The lemma follows as Θ′Q,S\ΘQ,S is a countable set. �

We need the following key theorem from [4].
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Theorem 3.7. Suppose that each (k − 1)th level interval of Ik−1 contains
at least mk k

th level intervals (k = 1, 2, . . .) which are separated by gaps of
at least εk, where 0 ≤ εk+1 < εk for each k. Then

dimH

( ∞⋂
k=0

Ik

)
≥ lim inf

k→∞

log(m1m2 · · ·mk−1)
− log(mkεk)

.

Theorem 3.8. Suppose that Q is infinite in limit and

(3.8) log qk = o

(
k−1∑
n=1

log qn

)
.

Then dimH (ΘQ,S) = 1.

Proof. We wish to better describe the kth level basic intervals Jk in order
to apply Theorem 3.7. We note that when a(k) > 1, each kth level basic
interval is contained in

(3.9)
[
k−1∑
n=1

En
q1 · · · qn

+ 1
q1 · · · qk−1

·
(
c(k)
a(k) + 1

a(k)2

)
,

k−1∑
n=1

En
q1 · · · qn

+ 1
q1 · · · qk−1

·
(
c(k)
a(k) + 2

a(k)2

)]

for some (E1, E2, · · · , Ek−1) ∈
∏k−1
n=1 Pn. Thus, by Lemma 3.1, there are at

least q1−1/i(k−1)
k−1 kth level basic intervals contained in each (k − 1)th level

basic interval. By (3.9), they are separated by gaps of length at least

(
k−2∑
n=1

En
q1 · · · qn

+ Ek−1 + 1
q1 · · · qk−1

+ 1
q1 · · · qk−1

·
(
c(k)
a(k) + 1

a(k)2

))

−
(
k−1∑
n=1

En
q1 · · · qn

+ 1
q1 · · · qk−1

·
(
c(k)
a(k) + 1

a(k)2

))

=(Ek−1 + 1)− Ek−1
q1 · · · qk−1

− 1
q1 · · · qk−1

1
a(k)2 = 1− 1/a(k)2

q1 · · · qk−1
.
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Thus, we may apply Theorem 3.7 withmk = q
1−1/i(k−1)
k−1 and εk = 1−1/a(k)2

q1···qk−1
.

But 1− 1/a(k)→ 1, so

dimHΘQ,S ≥ lim inf
k→∞

log
∏k−1
n=L1

q
1−1/i(n)
n

− log
((
q

1−1/i(k)
k + 1

)
· 1
q1q2···qk−1

)
= lim inf

k→∞

∑k−1
n=1

(
1− 1

i(n)

)
log qn∑k−1

n=1 log qn −
(
1− 1

i(k)

)
log qk

= lim inf
k→∞

∑k−1
n=1

(
1− 1

i(n)

)
log qn∑k−1

n=1 log qn
= 1

by Lemma 3.8 and (3.8) since

lim
k→∞

(
1− 1

i(k−1)

)
log qk−1

log qk−1
= lim

k→∞

(
1− 1

i(k)

)
= 1.

Thus, dimHΘQ,S = 1. �

Clearly, every 1-convergent basic sequence satisfies (3.8). So, part (2) of
Theorem 1.1 follows by Corollary 3.4 and Theorem 3.8.

4. Further Remarks

We observed after Lemma 3.2 that it was key to be able to approximate
En
qn

for n ≡ 1 (mod Sj). Part (2) of Theorem 1.1 can be extended to a larger
intersection of sets of the form DN(Q)\RN1(Q) by estimating En

qn
for n ≡ r

(mod Sj), r = 0, 1, · · · , Sj − 1. Given Q = Q1 ∼s1 Q2 ∼s2 Q3 · · · , define
Qj,k = (qj,k,n) by

qj,k,n =


∏k
j=1 qj if n = 1

∏s
j=1 qs(n−1)+j+k if n > 1

,

so Qj = Qj,0. With only small modifications of the preceeding proofs, we
may conclude that

ΘQ,S (
∞⋂
j=1

Sj−1⋂
k=0

DN(Qj,k)\RN1(Qj,k)

and

dimH

 ∞⋂
j=1

Sj−1⋂
k=0

DN(Qj,k)\RN1(Qj,k)

 = 1.
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The techniques introduced in this paper are unlikely to settle the following
questions. For an arbitrary countable collection of infinite in limit basic
sequences (Qj), is it true that

dimH

 ∞⋂
j=1

DN(Qj)\RN1(Qj)

 = 1?

A more difficult problem would be to construct an explicit example of a
member of

⋂∞
j=1 DN(Qj)\RN1(Qj). The problem gets much harder if we

loosen the restriction that Qj is infinite in limit. In fact, it is still an open
problem to construct an explicit example of a member of DN(Q) for an
arbitrary Q. See [9] for more information.
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