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Journal de Théorie des Nombres
de Bordeaux 27 (2015), 463–482

Quadratic approximation to automatic continued
fractions

par Yann BUGEAUD

On the occasion of Axel Thue’s 150th birthday

Résumé. Nous étudions les ensembles des valeurs prises par
les exposants d’approximation quadratique w2 et w∗

2 évalués aux
nombres réels dont la suite des quotients partiels est engendrée par
un automate fini. Entre autres résultats, nous montrons que ces
ensembles contiennent tout nombre rationnel suffisamment grand
et également des nombres transcendants.

Abstract. We study the sets of values taken by the exponents
of quadratic approximation w2 and w∗

2 evaluated at real numbers
whose sequence of partial quotients is generated by a finite au-
tomaton. Among other results, we show that these sets contain
every sufficiently large rational number and also some transcen-
dental numbers.

1. Introduction and results

Throughout this paper, A denotes a finite or infinite set, called an alpha-
bet, and A∗ denotes the set of finite words over A. If A is finite, a morphism
is a map h from A∗ into itself such that h(xy) = h(x)h(y) for all finite words
x, y in A∗. Let k be a positive integer. The morphism h is called k-uniform
if h(a) has exactly k letters for every a in A. A sequence is k-automatic if
it is the image, under a coding, of a fixed point of a k-uniform morphism.
We refer to [10] for equivalent definitions of an automatic sequence and
classical results.

Let b ≥ 2 be an integer. In 1968, Cobham [19] asked whether a real num-
ber whose b-ary expansion can be generated by a finite automaton (in the
sequel, such a real number is called a b-ary automatic number) is always
either rational or transcendental. A positive answer to Cobham’s question
was given in [5], by means of a combinatorial transcendence criterion es-
tablished in [8]. In [1] we addressed the analogous question for continued
fraction expansions and gave a positive answer to it in [18]. Namely, we
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proved that a real number whose continued fraction expansion can be gen-
erated by a finite automaton (in the sequel, such a real number is called an
automatic continued fraction) is either quadratic or transcendental.

It is then natural to study the quality of algebraic approximations to
transcendental automatic continued fractions. This quality is measured by
means of the functions wd and w∗d introduced in 1932 by Mahler [23] and
in 1939 by Koksma [21], respectively. Let d ≥ 1 be an integer and ξ be a
real number. We let wd(ξ) denote the supremum of the real numbers w for
which

0 < |P (ξ)| < H(P )−w

has infinitely many solutions in integer polynomials P (X) of degree at most
d. Here, H(P ) stands for the naïve height of the polynomial P (X), that is,
the maximum of the absolute values of its coefficients. We let w∗d(ξ) denote
the supremum of the real numbers w∗ for which

0 < |ξ − α| < H(α)−w∗−1

has infinitely many solutions in algebraic numbers α of degree at most d.
Here, H(α) stands for the naïve height of the minimal defining polynomial
of α over Z. The exponents w1 and w∗1 coincide and, for every real number
ξ, we have

w∗2(ξ) ≤ w2(ξ) ≤ w∗2(ξ) + 1. (1.1)
For a proof of (1.1) and more results on wd and w∗d the reader is directed
to Chapter 3 of [12].

Transcendence measures for non-quadratic automatic continued fractions
(more precisely, upper bounds for the functions wd and w∗d evaluated at
automatic continued fractions) were obtained in [17]. For d ≥ 3, we applied
a general method described in [6, 7], while for d = 2 new arguments were
needed, which appeared to have interesting applications to the comparison
between Mahler’s and Koksma’s classifications. In particular, for any δ in
(0, 1], we gave [17] explicit examples of real numbers ξ defined by their
continued fraction expansion which satisfy w2(ξ) = w∗2(ξ)+δ. Furthermore,
we established, in a constructive way, that w∗2 (resp., w2) takes any value
greater than or equal to (3+

√
17)/2 (resp., (5+

√
17)/2). The main purpose

of the present work is to discuss Problem 5.4 of [17], recalled below.

Problem 1.1. Determine the set of values taken by the exponents w2 and
w∗2 at automatic continued fractions.

Among other results, we give a proof of (a quantitative form of) the
assertion following the statement of that problem, claiming that any suffi-
ciently large rational number is a value taken by the functions w2 and w∗2
at automatic continued fractions.
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Theorem 1.2. Let p/q be a rational number greater than (5 +
√

17)/2.
Then there exists an automatic continued fraction ξp/q such that

w2(ξp/q) = w∗2(ξp/q) + 1 = p/q.

We suspect that every rational number greater than or equal to 2 is a
value of w2 (resp., w∗2) evaluated at an automatic continued fraction. The
analogous result for b-ary automatic numbers, established in [13], asserts
that, for every integer b ≥ 2, every rational number greater than or equal
to 1 is a value of w1 evaluated at a b-ary automatic number. The key tool
for the proof is the use of continued fractions. Since we do not know any
algorithm which would give us all the best quadratic approximations to an
automatic continued fraction, it seems to be a difficult problem to replace
(5 +

√
17)/2 in the statement of Theorem 1.2 by a smaller value.

We address a related question.

Problem 1.3. To determine the set of values taken by w2 − w∗2 evaluated
at automatic continued fractions.

It follows from (1.1) that the set of real numbers defined in Problem 1.3
is contained in the interval [0, 1]. We are able to prove that this set includes
every rational number in [0, 1].

Theorem 1.4. For any rational number ρ in [0, 1], there exists an auto-
matic continued fraction ξρ such that

w2(ξρ)− w∗2(ξρ) = ρ.

At present, we do not know a single example of a b-ary automatic number
at which w1 takes an irrational value. It is thus quite tempting to conjecture
that the set of values taken by w1 at irrational b-ary automatic numbers is
equal to [1,+∞)∩Q. Likewise, we may suspect that the set of values taken
by w2, w

∗
2 and w2 − w∗2 at automatic numbers does not include irrational

numbers. All this would be supported by a result of Schaeffer and Shallit
[28] on the Diophantine exponent of automatic sequences, recalled at the
end of Section 2.

However, the situation with automatic continued fractions is rather dif-
ferent from that with b-ary automatic numbers.

Theorem 1.5. The set of values taken by any of the functions w2, w
∗
2 and

w2−w∗2 evaluated at automatic continued fractions includes transcendental
numbers.

Theorem 1.5 seems, at first sight, quite surprising. The key observation
is that a Lévy constant (see Section 4) does not exist for an arbitrary
automatic continued fraction. Furthermore, the values of w2 and w∗2 may
depend on the alphabet over which the automatic word is expressed. A
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similar situation does not seem to occur in the case of b-ary automatic
numbers; see [16] for a discussion.

The proofs of Theorems 1.2, 1.4 and 1.5 are constructive.
We end this section by a further open question.

Problem 1.6. Does there exist an automatic continued fraction ξ for which
w2(ξ) = 2?

The present paper is organized as follows. In Section 2 we recall the def-
initions of the initial critical exponent and the Diophantine exponent of
an irrational number, together with their connections to the exponents w2
and w∗2. Some results on continued fractions are given in Section 3. Sec-
tion 4 is devoted to a discussion of Lévy constants of automatic continued
fractions. In Section 5, we recall Liouville’s inequality, which bounds the
distance between two distinct algebraic numbers from below, and an appli-
cation. Sections 6 and 7 are devoted to the proofs of our theorem. Quadratic
approximation to Thue–Morse continued fractions is discussed in Section
8.

2. The initial critical exponent and the Diophantine exponent

The length of a word W over the alphabet A, that is, the number of
letters composing W , is denoted by |W |. For any positive integer k, we
write W k for the word W . . .W (k times repeated concatenation of the
wordW ). More generally, for any positive real number x, we letW x denote
the word W bxcW ′, where W ′ is the prefix of W of length d(x− bxc)|W |e.
Here, and in what follows, byc and dye denote, respectively, the floor and
ceiling of the real number y.

Let a = (a`)`≥1 be a sequence of elements from A that we identify with
the infinite word a1a2 . . . a` . . . The initial critical exponent of a, introduced
by Berthé, Holton and Zamboni [11] and denoted by ice(a), is the supremum
of the real numbers x for which there exist arbitrarily long prefixes of a
that can be expressed in the form V x, for a finite word V .

The Diophantine exponent of a, introduced in [4] and denoted by Dio(a),
is the supremum of the real numbers ρ for which there exist arbitrarily long
prefixes of a that can be expressed in the form UV x for some real number
x and finite words U, V such that |UV x|/|UV | ≥ ρ. It is clear from the
definitions that

1 ≤ ice(a) ≤ Dio(a) ≤ +∞
and that the initial critical exponent of an ultimately periodic sequence
is infinite. However, it is easy to construct sequences whose Diophantine
exponent is infinite but which are not ultimately periodic. The Diophantine
exponent of a can be viewed as a measure of periodicity of a. We stress that
both exponents are independent of the alphabet over which a is expressed.
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We define the initial critical exponent and the Diophantine exponent of
an irrational real number to be, respectively, the initial critical exponent
and the Diophantine exponent of its sequence of partial quotients.

Definition 2.1. Let ξ := [a0; a1, a2, . . . , a`, . . .] be an irrational real num-
ber. The initial critical exponent of ξ, denoted by ice(ξ), is the initial critical
exponent of the infinite word a1a2 . . . The Diophantine exponent of ξ, de-
noted by Dio(ξ), is the Diophantine exponent of the infinite word a1a2 . . .

By truncating the continued fraction expansion of an irrational real num-
ber ξ and using the truncation as the period of a periodic continued fraction,
one constructs good quadratic approximations to ξ which allow us to bound
w∗2(ξ) from below. An easy calculation (see Section 11 in [17]) shows that

w∗2(ξ) ≥ Dio(ξ)− 1, (2.1)

if (q1/`
` )`≥1 converges, where (p`/q`)`≥1 denotes the sequence of convergents

to ξ. If, moreover, ξ has bounded partial quotients, then we also have
w2(ξ) ≥ Dio(ξ). (2.2)

and
w2(ξ) ≥ w∗2(ξ) ≥ 2 ice(ξ)− 1, (2.3)

as can be verified by an easy computation.
In all the explicit examples constructed in the present note, we have

equality in (2.1) and/or in (2.2). However, we do not have equality in (2.1),
(2.2) and (2.3) for all automatic continued fractions ξ. Indeed, the Dio-
phantine exponent of an automatic continued fraction can be less than 3,
while, by a result of Davenport and Schmidt [20], we have w∗2(ξ) ≥ 2 for
every real number ξ which is not algebraic of degree at most 2.

We conclude this section with an important result of Schaeffer and Shallit
[28], already alluded to in Section 1.

Theorem 2.2. The initial critical exponent and the Diophantine exponent
of a transcendental automatic continued fraction are always rational num-
bers.

Theorem 2.2 speaks in favour of the conjectures discussed in Section 1.

3. Continued fractions

We assume that the reader is already familiar with the theory of con-
tinued fractions. A classical reference is the monograph of Perron [25]. We
just recall two results from [17] and a classical lemma about continuants.
Throughout this text, a (resp., a1, . . . , an) means that the letter a (resp.,
the n letters a1, . . . , an) is repeated infinitely often.

In this section, the notation �a1,...,ah
means that the implicit numerical

constant only depends on a1, . . . , ah.



468 Yann Bugeaud

Lemma 3.1. Let ξ be a quadratic real number with ultimately periodic
continued fraction expansion

ξ = [0; a1, . . . , ar, ar+1, . . . , ar+s],
and let ξ′ denote its Galois conjugate. Then we have

|ξ − ξ′| ≥ H(ξ)−1. (3.1)
Let (p`/q`)`≥1 denote the sequence of convergents to ξ. Assume that r ≥ 3
and s ≥ 1. If ar−2, ar−1 and ar are not greater than M and if ar 6= ar+s,
then we have

|ξ − ξ′| �M2 q−2
r .

Proof. To establish (3.1), it is sufficient to note that, if the minimal defining
polynomial of ξ over Z is aX2 + bX + c, then

|ξ − ξ′| =
√
b2 − 4ac
a

.

The last assertion of the lemma follows from Lemma 6.1 in [17]. �

Lemma 3.2. Let b, c and d be distinct positive integers. Let n ≥ 3 be an
integer and a1, . . . , an−2 be positive integers. Set

ξ := [0; a1, . . . , an−2, b, c, b].
Then the height of ξ satisfies

q2
n �b,c H(ξ)�b,c q

2
n,

where qn is the denominator of the rational number
pn/qn := [0; a1, . . . , an−2, b, c].

Let m ≥ 3 be an integer and set
ζ := [0; a1, . . . , an−2, b, c, b, b, . . . , b, d],

where the periodic part b, b, . . . , b, d has length m. Then the height of ζ
satisfies

qnqn+m �b,c,d H(ζ)�b,c,d qnqn+m.

where qn+m is the denominator of [0; a1, . . . , an−2, b, c, b, b, . . . , b, d].

Proof. This is Lemma 6.3 in [17]. �

If a1, . . . , am are positive integers, then, by definition, the continuant
Km(a1, . . . , am) is the denominator of the rational number [0; a1, . . . , am].

Lemma 3.3. For any positive integers a1, . . . , am and any integer k with
1 ≤ k ≤ m− 1, we have

Km(a1, . . . , am) = Km(am, . . . , a1),
Km(a1, . . . , am) ≤ (1 + max{a1, . . . , am})m,
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Km(a1, . . . , am) ≥ max{(min{a1, . . . , am})m, 2(m−1)/2},
and

Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am) ≤ Km(a1, . . . , am)
≤ 2Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am).

Proof. See, e.g., on page 15 of [25]. �

4. Lévy constants

Definition 4.1. Let ξ := [0; a1, a2, . . .] be an irrational real number and let
(p`/q`)`≥1 denote the sequence of its convergents. The Lévy constant of ξ is
the value

lim
`→+∞

log q`
`

,

if this limit exists and, otherwise, we say that ξ has no Lévy constant.

Lévy [22] established that π2/(12 log 2) is the Lévy constant of almost
all real numbers, in the sense of Lebesgue measure.

We omit the proof of the next lemma, which is a short and easy compu-
tation.

Lemma 4.2. For every integer m ≥ 1 the Lévy constant of the quadratic
number [0;m] is

Km := m+
√
m2 + 4
2 .

M. Queffélec [27] proved that a wide class of automatic continued frac-
tions have a Lévy constant. Before stating her result, we need to recall some
definitions. A morphism h from A∗ into A∗ is called primitive if for all let-
ters a, b in A there exists a positive integer n such that b occurs in hn(a).
An automatic sequence is minimal if the underlying (uniform) morphism is
primitive. By minimal automatic continued fraction, we mean a real num-
ber whose continued fraction expansion can be generated by a primitive
uniform morphism. Note that an infinite word w is minimal if, and only if,
corresponding to every block W occurring in w, there exists an integer kW
such that every block of length kW of w contains at least one occurrence
of W ; see Section 10.9 of [10] for additional results.

Theorem 4.3. Every minimal automatic continued fraction has a Lévy
constant.

The conclusion of Theorem 4.3 does not hold in general for an automatic
continued fraction which is not minimal.

Theorem 4.4. There exist automatic continued fractions which do not
have a Lévy constant.
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We point out that there exist transcendental automatic continued frac-
tions which are minimal and have a Lévy constant; see below, in the proof
of Theorem 1.2.

To establish Theorem 4.4, we explicitly construct an automatic contin-
ued fraction which does not have a Lévy constant. This real number will
subsequently be used in the proof of Theorem 1.5.

Proof. Let a, b, c be distinct positive integers. Let u ≥ 1 and v ≥ 2 be
integers and consider the fixed point w beginning with c of the (u + v)-
uniform morphism

a 7→ au+v, b 7→ bu+v, c 7→ caubv−1,

namely
w := caubv−1au(u+v) . . .

Let ξ denote the continued fraction associated to w deprived of its first
letter, namely

ξ := [0; a, . . . , a, b, . . . , b, a, . . .],
and let (p`/q`)`≥1 be the sequence of its partial quotients. It is easily seen
that blocks of the letter a and blocks of the letter b alternate. Precisely, we
have

w(u+v)j = · · · = w(u+1)(u+v)j−1 = a

and
w(u+1)(u+v)j = · · · = w(u+v)j+1−1 = b,

for j ≥ 0.
Let ε > 0. It follows from Lemma 3.3 that(
Ku
aK

v−1
b

)(1−ε)(u+v)j/(u+v−1) ≤ q(u+v)j ≤
(
Ku
aK

v−1
b

)(1+ε)(u+v)j/(u+v−1)

and(
Ku(u+v)
a Kv−1

b

)(1−ε)(u+v)j/(u+v−1) ≤ q(u+1)(u+v)j

≤
(
Ku(u+v)
a Kv−1

b

)(1+ε)(u+v)j/(u+v−1)
,

when j is large enough. Consequently,
u

u+ v − 1 logKa + v − 1
u+ v − 1 logKb

and
u(u+ v)

(u+ 1)(u+ v − 1) logKa + v − 1
(u+ 1)(u+ v − 1) logKb

are limit points of the sequence ((log q`)/`)`≥1.
Taking, for example, u = 1, v = 2, we get that

(KaKb)1/2 and (K3
aKb)1/4
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are distinct limit points of (q1/`
` )`≥1. This provides us with a family of

explicit examples of automatic continued fractions which do not have a
Lévy constant. �

5. Liouville’s inequality and an application

By Liouville’s inequality, we mean a non-trivial lower bound for the dis-
tance between two distinct algebraic numbers. For instance, it follows from
Theorem A.1 of [12] that

|α− β| ≥ 10−2 ·H(α)−2 ·H(β)−2 (5.1)

holds for distinct algebraic numbers α and β of degree at most two. When
the Galois conjugate of α is very close to α, then (5.1) can be considerably
improved; see [17].

Furthermore, it is well known that if a real number ξ has a dense (in a
suitable sense) sequence of very good algebraic approximations, then w∗2(ξ)
can be determined. A precise statement, which relies on a refinement of
(5.1), is Lemma 7.3 from [17], recalled below. It also includes results on
w2(ξ).

Lemma 5.1. Let ξ be a real number. Assume that there exist positive real
numbers c1, c2, c3, δ, ρ, θ and a sequence (αj)j≥1 of quadratic numbers such
that

c1H(αj)−ρ−1 ≤ |ξ − αj | ≤ c2H(αj)−δ−1.

and
H(αj) ≤ H(αj+1) ≤ c3H(αj)θ,

for j ≥ 1. Set ε = 0 or assume that there exist c4 ≥ 1 and 0 < ε ≤ 1 such
that

|αj − α′j | ≤ c4H(αj)−ε,
for j ≥ 1, where α′j denotes the Galois conjugate of αj. Then we have

δ ≤ w∗2(ξ) ≤ ρ

when
(ρ− 1)(δ − 1 + ε) ≥ 2θ(2− ε).

Furthermore, if ε > 0, then we have

δ ≤ w∗2(ξ) ≤ ρ and w2(ξ) = w∗2(ξ) + ε,

when
(δ − 2 + ε)(δ − 1 + ε) ≥ 2θ(2− ε)

and

lim
j→+∞

log |αj − α′j |
logH(αj)

= −ε.
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6. Proofs of Theorems 1.2 and 1.4

Proofs of Theorem 1.2 and the case ρ = 1 of Theorem 1.4.
Let p/q be a rational number greater than (5 +

√
17)/2 and let I be a

closed interval in ((5 +
√

17)/2, p/q), whose center θ is irrational. Let b be
an integer such that θ + p−b is in I. Let a ≥ 3 and J ≥ 3 be integers such
that

θ < qpa−1(θ + p−b)−J < θ + p−b. (6.1)
These numbers exist since the sequence (pa/(θ+p−b)J)a,J≥3 is dense in the
set of positive real numbers.

Set r0 := pb and r1 := dθpbe. For j = 2, . . . , J , set rj = dθrj−1e.
Observe that

rj − 1 < θrj−1 < rj , j = 1, . . . , J,
hence,

θ <
rj
rj−1

< θ + 1
rj−1

≤ θ + p−b, j = 1, . . . , J. (6.2)

Consequently,
r1
pb
,
r2
r1
, . . . ,

rJ
rJ−1

are all in I. Since
qpa+b−1

rJ
= qpa−1 × rJ−1

rJ
× · · · × r1

r2
× pb

r1
,

we deduce from (6.1) and (6.2) that

θ < qpa−1(θ + p−b)−J ≤ qpa+b−1

rJ
≤ qpa−1θ−J < θ + p−b;

thus the rational number qpa+b−1/rJ belongs to the interval I.
Define the sequence y = (yn)n≥1 by setting yn = 2 if n is of the form pharj

or qp(h+1)a+b−1 for some integers h ≥ 0 and j = 0, . . . , J , and setting yn = 1
otherwise. It follows from Theorem 5.6.3 of [10] that y is an automatic
sequence. The first indices n at which yn = 2 are
pb, r1, r2, . . . , rJ , qp

a+b−1, pa+b, par1, p
ar2, . . . , p

arJ , qp
2a+b−1, p2a+b, . . .

The quotient of any two consecutive elements of the latter sequence is
always greater than (5 +

√
17)/2 and at most equal to p/q, with equality

for infinitely many indices. The Diophantine exponent of y is then equal to
p/q. Define

ξp/q := [0; y1, y2, . . . , yn, . . .] = [0; 1, 1, . . . , 1, 2, 1, . . .].
Let (nk)k≥1 denote the increasing sequence of integers n such that yn = 2.
For k ≥ 1, set

ξk := [0; y1, . . . , ynk
, 1].
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By Lemmas 3.2 and 3.3 and classical results on continued fractions, we have

qnk+1 � qnk
K
nk+1−nk

1 , H(ξk) � q2
nk

and |ξp/q − ξk| � q−2
nk+1 . (6.3)

Consequently, there exists an absolute constant c1 such that H(ξk+1) ≤
c1H(ξk)p/q. Define ϕk by H(ξk+1) = c1H(ξk)ϕk . Observe that ϕk ≤ p/q
and that ϕk > (5 +

√
17)/2 when k is sufficiently large.

Let ζ be a quadratic real number with large height and let k be the
integer defined by H(ξk) ≤ H(ζ) < H(ξk+1). The constants c2, c3, . . . below
are absolute. By (5.1) and the triangle inequality, we have

|ξp/q − ζ| ≥ 10−2 ·H(ξk)−2 ·H(ζ)−2 − |ξp/q − ξk|

and we deduce that |ξp/q − ζ| ≥ c2H(ζ)−4 as soon as

H(ζ) ≤ c3H(ξk)ϕk−1. (6.4)
Likewise, using the inequality

|ξp/q − ζ| ≥ 10−2 ·H(ξk+1)−2 ·H(ζ)−2 − |ξp/q − ξk+1|,

we see that |ξp/q − ζ| ≥ c4H(ζ)−p/q whenever

H(ζ) ≥ c5H(ξk)2ϕk/(−2+p/q). (6.5)
Since p/q ≥ ϕk > (5 +

√
17)/2 (here, we use that H(ξ), hence k, is suffi-

ciently large), we get
2ϕk < (−2 + p/q)(ϕk − 1).

By (6.4) and (6.5), this shows that every quadratic number ζ with suf-
ficiently large height and which does not belong to the sequence (ξk)k≥1
satisfies

|ξp/q − ζ| ≥ c6H(ζ)−p/q.
Furthermore, there are arbitrarily large integers k for which nk+1/nk = p/q
and

|ξp/q − ξk| ≤ c7H(ξk)−p/q.
We conclude that w∗2(ξp/q) = p/q − 1. It follows from Lemma 3.1 that
|ξk − ξ′k| ≤ c8H(ξk)−1 for k ≥ 1. Thus, our construction shows that every
very good quadratic approximation to ξp/q has its Galois conjugate also
very close to ξp/q, hence, we deduce that w2(ξp/q) = p/q, as claimed. Also
note that the automatic continued fraction ξ is not minimal, while (6.3)
implies that logK1 is the Lévy constant of ξ.

Proof of the case ρ = 0 of Theorem 1.4.
Let v ≥ 2 be an integer and let av = a1,va2,v . . . denote the fixed point

of the (2v)-uniform morphism
2 7→ (23)v, 3 7→ (23)v−124, 4 7→ 22v.
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For k ≥ 0, let Uk denote the prefix of av of length 2 · (2v)k. Observe that
U

2v−1/2
k is a prefix of av.
Set ξk := [0;Uk, Uk, . . .]. Observe that

H(ξk) ≤ 5|Uk|

and
|ξ − ξk| ≤ 2−(4v−1)|Uk| ≤ 2−3v|Uk| ≤ 5−cv|Uk| ≤ H(ξk)−cv,

with c = (3 log 2)/(log 5). Note that, here and below, we make no effort to
refine the estimates.

Let ζ be a quadratic number of sufficiently large height and with ζ 6= ξk
for every k ≥ 1. Let k be such that

5|Uk| ≤ H(ζ) < 5|Uk+1| = 52v|Uk|.

We deduce from (5.1) that

|ξ − ζ| ≥ |ζ − ξk| − |ξ − ξk| ≥ 10−2 ·H(ζ)−25−2|Uk| − 5−cv|Uk|,

thus,
|ξ − ζ| ≥ 10−3 ·H(ζ)−4

as soon as
H(ζ) ≤ 10−3 · 5(cv−2)|Uk|/2. (6.6)

On the other hand, assuming that v > 12c (which ensures that cv ≥ 3 +
(8v/(cv − 2))), we get again by (5.1) that
|ξ − ζ| ≥ |ζ − ξk+1| − |ξ − ξk+1|

≥ 10−2 ·H(ζ)−25−4v|Uk| − 5−2cv2|Uk| ≥ 10−3 ·H(ζ)−25−4v|Uk|,

and we deduce that
|ξ − ζ| ≥ (103H(ζ))−2−8v/(cv−2)

when (6.6) does not hold.
Since cv ≥ 2 + (8v/(cv− 2)), the sequence (ξk)k≥1 comprises all the best

approximants to ξ and we get

w∗2(ξ) = lim sup
k→+∞

− log |ξ − ξk|
logH(ξk)

− 1.

We do not know the exact value of w∗2(ξ). We only know that, since the
Galois conjugate ξ′k of ξk is negative, it satisfies |ξk − ξ′k| ≥ 1/3. Combined
with the fact that the other approximants to ξ are much less good (since
cv ≥ 3 + (8v/(cv − 2))), it follows from (1.1) that w2(ξ) = w∗2(ξ).
Completion of the proof of Theorem 1.4.

To complete the proof of Theorem 1.4, it then remains for us to treat
the case where ρ is in (0, 1) ∩Q.
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Let r/s be a rational number in (0, 1) with r and s positive, and set

η = 2(s− r)
r

.

Let a be a positive integer. We consider the sequence

ra, ra(1 + η), . . . , ra(1 +mη), r2a, r2a(1 + η), . . . , r2a(1 +mη), r3a, . . .

where m is the largest integer such that 1 + mη < ra, that is, the largest
integer smaller than r(ra − 1)/(2(s− r)).

Let (yn)n≥1 be the sequence defined by setting:
yn = 2, if there is an integer k ≥ 1 such that n = rak;
yn = 3, if there are integers j = 1, . . . ,m and k ≥ 1 such that n = rak(1 +
jη);
yn = 1, otherwise.

It follows from Theorem 5.6.3 and Corollary 5.4.5 of [10] that (yn)n≥1 is
an automatic sequence. Set

ξ := [0; y1, y2, . . . , yn, . . .].

Let (p`/q`)`≥1 denote the sequence of convergents to ξ. For k ≥ 1,

ξk := [0; y1, y2, . . . , yrak−1, 2, 1, . . . , 1, 3]

is a good approximant to ξ. Let ε be a real number in (0, 0.1). By Lemmas
3.2 and 3.3 and the theory of continued fractions,

K
−2ra(k+1)(1+ε)
1 ≤ |ξ − ξk| ≤ K

−2ra(k+1)(1−ε)
1

and
K

(2+η)rak(1−ε)
1 ≤ H(ξk) ≤ K

(2+η)rak(1+ε)
1

hold when k is sufficiently large. Furthermore, it follows from Lemma 3.1
that the Galois conjugate ξ′k of ξk satisfies

K
−2rak(1+ε)
1 ≤ |ξk − ξ′k| ≤ K

−2rak(1−ε)
1 ,

provided that k is large enough. We deduce from Lemma 5.1 applied with
θ = ra(1 + 3ε) that

w∗2(ξ) = 2ra

2 + η
− 1 and w2(ξ) = 2ra − η

2 + η
,

when a is sufficiently large; thus,

w2(ξ)− w∗2(ξ) = 2
2 + η

= r

s
.

The proof of Theorem 1.4 is complete.
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7. Proof of Theorem 1.5

To show that the exponents w2 and w∗2 take transcendental values at
some automatic continued fractions, we consider the family of automatic
continued fractions defined in the proof of Theorem 4.4. We keep the same
notation. For j ≥ 1, set

αj := [0;w1, . . . , w(u+v)j−1, a]
and

βj := [0;w1, . . . , w(u+1)(u+v)j−1, b].
It follows from Lemma 3.2 that
(7.1) H(αj) � q2

(u+v)j and H(βj) � q2
(u+1)(u+v)j ,

where (as below) the numerical constants implied by � depend only on a
and b. Observe that

|ξ − αj | � q−2
(u+1)(u+v)j � H(βj)−1

and
|ξ − βj | � q−2

(u+v)j+1 � H(αj+1)−1.

We need to precisely estimate the growth of the sequence (q`)`≥1. It follows
from the calculation performed in the proof of Theorem 4.4 that

α := lim sup
j→+∞

− log |ξ − αj |
logH(αj)

= log(Ku(u+v)
a Kv−1

b )
log(Ku

aK
v−1
b )

and

β := lim sup
j→+∞

− log |ξ − βj |
logH(βj)

= log(Ku(u+v)
a K

(u+v)(v−1)
b )

log(Ku(u+v)
a Kv−1

b )
.

We select u, v, a and b in such a way that α and β are both large. To do
this, observe first that αβ = u+ v, choose u large and set v = u+ 1. This
gives

α = log(K2u+1
a Kb)

log(KaKb)
and β = log(K2u+1

a K2u+1
b )

log(K2u+1
a Kb)

.

Now choose b equal to ba
√
uc or ba

√
uc+ 1, in such a way that

√
a and

√
b

do not belong to the same quadratic field. Observe that α and β are then
of the order of magnitude of

√
u. Furthermore,

logH(αj) �
2(u+ v)j

u+ v − 1(u logKa + (v − 1) logKb)

is of the order of magnitude of uj
√
u and

logH(βj) �
2(u+ v)j

u+ v − 1(u(u+ v) logKa + (v − 1) logKb)
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is of the order of magnitude of uj+1. The quotients

logH(βj)
logH(αj)

and logH(αj+1)
logH(βj)

are both of the order of magnitude of
√
u. Lemma 5.1 then shows that,

provided that u is sufficiently large, all the best approximations to ξ belong
to the sequences (αj)j≥1 and (βj)j≥1. Keeping in mind that, by (7.1) and
Lemma 3.1, the αj ’s and the βj ’s are very close to their Galois conjugate,
we get

w∗2(ξ) + 1 = w2(ξ) = max{α, β}.

Note that α and β are quotients of logarithms of real algebraic numbers
greater than 1. Thus, by the Gelfond–Schneider theorem, they are rational
or transcendental. Here, they are transcendental since

√
a and

√
b do not

belong to the same quadratic field.

Similar ideas can be used to prove that the function w2 − w∗2 can take
transcendental values at automatic continued fractions.

Let a, b, c, d be distinct positive integers. Let s, t, u be integers greater
than or equal to 2 and consider the fixed point w beginning with d of the
(t+ su)-uniform morphism

a 7→ at+su, b 7→ bt+su, c 7→ bt+su−1c, d 7→ dat−1(bu−1c)s,

namely,
w := dat−1bu−1cbu−1c . . .

We assume that t is large compared to su.
Denote by ξ the continued fraction associated with w deprived of its first

letter, namely
ξ := [0; a, . . . , a, b, . . . , b, c, b, . . .],

and let (p`/q`)`≥1 be its sequence of partial quotients. For j ≥ 0 and h =
0, 1, . . . , s− 1, we have

w(t+su)j = · · · = wt(t+su)j−1 = a,

w(t+hu)(t+su)j = · · · = w(t+(h+1)u)(t+su)j−2 = b,

and
w(t+(h+1)u)(t+su)j−1 = c.

For j ≥ 1, set

γj := [0;w1, . . . , wt(t+su)j−1, b, . . . , b, c].
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Let ε be a positive real number. Lemma 3.2 and a rapid calculation show
that(

K2(t−1)(t+su)
a K2su+u

b

)(1−ε)(t+su)j/(t+su−1) ≤ H(γj)

≤
(
K2(t−1)(t+su)
a K2su+u

b

)(1+ε)(t+su)j/(t+su−1)

and(
K2(t−1)
a K2su

b

)(1−ε)(t+su)j+1/(t+su−1) ≤ − log |ξ − γj |

≤
(
K2(t−1)
a K2su

b

)(1+ε)(t+su)j+1/(t+su−1)
,

when j is large enough. Consequently,

lim
j→+∞

− log |ξ − γj |
logH(γj)

− 1 =2(t− 1)(t+ su) logKa + 2su(t+ su) logKb

2(t− 1)(t+ su) logKa + (2su+ u) logKb
− 1

= (2su(t+ su− 1)− u) logKb

2(t− 1)(t+ su) logKa + (2su+ u) logKb
.

(7.2)

Furthermore, the Galois conjugate γ′j of γj satisfies(
K2(t−1)(t+su)
a K2su

b

)(1−ε)(t+su)j/(t+su−1) ≤ − log |ξ − γ′j |

≤
(
K2(t−1)(t+su)
a K2su

b

)(1+ε)(t+su)j/(t+su−1)
,

again when j is large enough. Consequently, letting Pj(X) denote the min-
imal defining polynomial of γj over Z, we get

lim
j→+∞

− log |P (γj)|
logH(γj)

= 2(t− 1)(t+ su) logKa + (2su(t+ su)− u) logKb

2(t− 1)(t+ su) logKa + (2su+ u) logKb
.

Observe also that

lim
j→+∞

logH(γj+1)
logH(γj)

= t+ su.

Choosing our parameters in such a way that logKb exceeds t2 logKa, the
limit in (7.2) is greater than 2(t + su)/3. By Lemma 5.1, the sequence
(γj)j≥1 comprises all the best approximants to ξ. This implies that we have

w2(ξ) = lim
j→+∞

− log |P (γj)|
logH(γj)

and
w∗2(ξ) = lim

j→+∞

− log |ξ − γj |
logH(γj)

− 1.

In particular,

w2(ξ)− w∗2(ξ) = 2(t− 1)(t+ su) logKa + 2su logKb

2(t− 1)(t+ su) logKa + (2su+ u) logKb
.
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By choosing a and b such that
√
a and

√
b do not belong to the same

quadratic field and applying the Gelfond–Schneider theorem, this proves
that the function w2 − w∗2 takes transcendental values at some automatic
continued fractions.

8. The Thue–Morse continued fraction

The Thue–Morse sequence t = (tn)n≥0 on the alphabet {a, b} is defined
as follows: tn = a (respectively, tn = b) if the sum of binary digits of n is
even (respectively, odd). This sequence viewed as the infinite word

t = abbabaabbaababbabaababbaabbabaab . . .

was introduced by Thue [30] in 1912 and then considered nine years later
by Morse [24] in a totally different context. It is not ultimately periodic.
This is an automatic sequence, also defined as the fixed point beginning
with a of the uniform morphism τ defined by

τ(a) = ab, τ(b) = ba.

More information on the Thue–Morse sequence can be found in [9]. Noticing
that, for n ≥ 1, the word τn(abbab) = τn(abb)τn(ab) is a prefix of t, we see
that the initial critical exponent of t is greater than or equal to 5/3.

By a Thue–Morse continued fraction, we mean a real number whose
sequence of partial quotients is the Thue–Morse sequence on some alphabet
{a, b}, where a and b are distinct positive integers. Applying a deep result
of Schmidt [29] stating that any real algebraic number ζ of degree at least
three satisfies w2(ζ) = w∗2(ζ) = 2, M. Queffélec [26] showed in 1998 that the
Thue–Morse continued fractions are transcendental. Subsequently [27], she
simplified her proof, by showing that any Thue–Morse continued fraction ξ
has a Lévy constant (see Theorem 4.3 above). Combined with the fact that
ice(t) ≥ 5/3, this immediately gives, by (2.3),

w2(ξ) ≥ w∗2(ξ) ≥ 7/3, (8.1)
and hence, by [29], the transcendence of ξ.

An alternative proof was subsequently given in [2, 3], based on another
result from [29] on the simultaneous approximation of a real number and
its square by rational numbers with the same denominator and the fact
that arbitrarily long prefixes of t are palindromes. More precisely, for an
irrational real number θ, we let λ2(θ) denote the supremum of the real
numbers λ for which the inequality

max{||qθ||, ||qθ2||} < q−λ

is satisfied for infinitely many positive integers q. Here, || · || denotes the
distance to the nearest integer. Schmidt [29] established that any real alge-
braic number ζ of degree at least three satisfies λ2(ζ) = 1/2. As observed in
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[2, 3], if the continued fraction expansion of θ begins with infinitely many
palindromes, then we have

λ2(θ) ≥ 1, (8.2)
and we deduce from Schmidt’s result that θ is either quadratic or transcen-
dental.

This point of view, together with a classical transference principle, allows
us to improve the lower bound for w2(ξ) given in (8.1).

Theorem 8.1. Let a = a1a2 . . . be an infinite word on a finite alphabet
composed of positive integers. If arbitrarily long prefixes of a are palin-
dromes and if a is not ultimately periodic, then the continued fraction

ξa := [0; a1, a2, . . .]
satisfies w2(ξa) ≥ 3. Thus, any Thue–Morse continued fraction ξ satisfies
w2(ξ) ≥ 3.

Proof. It suffices to observe that Khintchine’s transference principle (see,
e.g., Proposition 3.3 in [14]) implies that

w2(θ) ≥ 2λ2(θ) + 1,
for any real number θ not algebraic of degree at most two. Combined with
(8.2) this proves the theorem. �

We conclude with an open question.

Problem 8.2. Determine w2(ξ) and w∗2(ξ) when ξ is a Thue–Morse con-
tinued fraction.

The analogue of Problem 8.2 for real numbers whose b-ary expansion is
a Thue–Morse sequence was solved in [15].
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