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Computing L-Functions: A Survey
par HENRI COHEN

RESUME. Nous donnons un certain nombre de methodes pour le
calcul de fonctions L, y compris de degré strictement plus grand
que 2. Nous décrivons le calcul des coefficients de Dirichlet en uti-
lisant une grande variété de méthodes, par exemple 'utilisation
de la formule de Gross—Koblitz p-adique, et le calcul de trans-
formées de Mellin inverse et de fonctions gamma incomplétes gé-
néralisées. Nous mentionnons ensuite 'utilisation des équations
fonctionnelles approchées lissées, et les “formules explicites”. En-
fin, nous donnons un apergu de la théorie relativement récente des
motifs hypergéométriques, qui permettent de créer des fonctions
L de grand degré de maniere élémentaire.

Nous donnons aussi une breve liste des logiciels disponibles,
y compris certains qui sont capable de détecter heuristiquement
I'existence méme de fonctions L ne connaissant que leurs fac-
teurs gamma et leur conducteur. Comme applications, nous men-
tionnons en particulier la conjecture paramodulaire de Brumer—
Kramer, et les gros calculs de formes de Maass sur SL, (Z) pour
n = 2, 3 et 4 effectués par Farmer et al.

ABSTRACT. We survey a number of techniques for computing L-
functions, including those of degree larger than 2. We discuss the
computation of the Dirichlet coefficients using quite a variety of
methods, for instance using the p-adic Gross—Koblitz formula, and
the computation of inverse Mellin transforms and of generalized
incomplete gamma functions. We then explain the use of smoothed
approximate functional equations and of the so-called “explicit
formulas”. Finally, we discuss the recent and exciting topic of hy-
pergeometric motives, which allows to create L-functions of high
degree in an elementary way.

We also mention the available software, including some which
can detect heuristically the sheer existence of L-functions knowing
only their gamma factors and conductor. As applications, we men-
tion in particular the paramodular conjecture of Brumer—Kramer,
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and the large scale computations of Maass cusp forms for SL,,(Z)
for n = 2, 3, and 4 done by Farmer et al.

1. Definitions, Basic Examples, and Goals

The goal of this paper is to survey the remarkable progress done in the
past ten years on the computational aspects of L-functions, in particular
in higher degree.

1.1. Definitions. To set the stage, we need of course first to define the
L-functions that we study.

As a first approximation, we could say that an L-function is a Dirichlet
series Y.~ a(n)n™® which converges for R(s) sufficiently large, which can
be extended to the whole complex plane into a meromorphic function having
a finite number of poles with a functional equation of a specific type, and
which has an Euler product.

In fact, A. Selberg introduced a class which gives precise conditions to
have a nice theory. Modifying and restricting Selberg’s definition we set the
following. First we set

Ir(s) =7 %20(s/2), Tc(s)=Tgr(s)Tr(s+1)=2-(27)"°I(s),
and we make the following definition:

Definition. Let d be a nonnegative integer. We say that a Dirichlet series
L(s) = ¥,y a(n)n™* with a(1) = 1 is an L-function of degree d if the
following conditions are satisfied:

(1) (Ramanujan bound): we have a(n) = O(n®) for all € > 0, so that in
particular the Dirichlet series converges absolutely and uniformly in
any half plane R(s) > o > 1.

(2) (Meromorphy and Functional equation): The function L(s) can be
extended to C to a meromorphic function of order 1 having a finite
number of poles; furthermore there exist complex numbers A; with
nonnegative real part and a positive real number N (usually an inte-
ger) such that if we set

v(s) =N T[] Tr(s+ ) and A(s) =~(s)L(s)
1<i<d

we have the functional equation

A(s) =wA(1-73)
for some complex number w, called the root number, which will nec-
essarily be of modulus 1.
(3) (Euler Product): For R(s) > 1 we have L(s) = [[, Ly(s), where
the product is over all prime numbers, with Ly,(s) = [[;<;j<4(1 —
ap;p~*)7L, where some (or all) the «,; may be zero; the ay; are
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called the Satake parameters, and one requires the additional tech-
nical but necessary condition that there exists # < 1/2 such that

|ap.j| = O7).
Remarks.

(1) Since we want conjecturally our L-functions to satisfy the Riemann
hypothesis, it is easy to show that one must impose conditions on the
A; and the Satake parameters, for instance the ones given.

(2) We restrict to gamma factors of the above form, but more generally
the Selberg class allows I'(p;s+ A;) with p; positive real in the gamma
factors.

(3) Note that d is both the number of I'r factors, and the degree in p~*
of the Euler factors L,(s)™!, at least generically (the degree may
decrease for “bad” primes p).

(4) Most L-function have functional equations of the form

A(s) =wA(k —3)

for some k > 0, usually an integer. The above normalization, which
is standard in analytic number theory, amounts to replacing a(n) by
a(n)/n =72 or equivalently L(s) by Li(s) = L(s+ (k—1)/2) which
does satisfy Aj(s) = wA;1(1 —73).

(5) In practice N will be an integer, called the conductor, and the Satake
parameters will satisfy |ay ;| =1 for pt N, and o, ; = 0 or |y, | =
p~™/2 for some nonnegative integer m when p | N.

1.2. Examples. The only L-function of degree 0 is the constant 1. In
what follows, we give the most important examples, with mention of their
computability. ¢ The basic example of an L-function is of course Riemann’s
zeta function ((s) = >.,>;n” % withd = 1, \y =0, N =1, w = 1L
Extremely easy to computé.

e More generally we have the Dirichlet L-series L(x,s) =3, x(n)n~%,
where Y is a Dirichlet character. Also extremely easy to compute. One can
show that these are the only L-functions of degree 1.

e If F is an elliptic curve, the L-function L(FE, s) has degree 2. More gen-
erally, if f is a Hecke eigenform of integral weight k the L-function L(f, s)
also has degree 2 and satisfies a functional equation s — k& — s. One can
do the same for Maass forms. The L-functions of hololomorphic modular
forms are very easy to compute, those of Maass forms a little more difficult
because of the necessity of also computing the spectral parameters \;.

e More generally, one can associate L-functions to higher degree modu-
lar forms (for example Siegel modular forms), and even more generally to
automorphic representations. Although explicit, these are much more dif-
ficult to compute. A very special (but easily computable) case is that of
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symmetric powers of modular forms, for which many computations have
been done.

e To any algebraic variety defined, say, over Q, one associates local (ra-
tional) L-factors a la Weil, and a global L-function by replacing the formal
variable T' by p~* and taking the product over all p. In practice, one only
takes parts of the cohomology of the variety, thus obtaining the L-function
of a motive. The Euler factors at the “good” primes are relatively easy to
compute, but this is not at all the case for the bad primes, and similarly the
exponents of the bad primes in the “conductor”, essentially the constant
N, are not easy to compute.

e N. Katz and more recently F. Rodriguez-Villegas introduced the notion
of hypergeometric motive, which is a special case of the above, but with the
advantage that, at least again the Euler factors at the good primes are now
extremely easy to compute. This is the subject of active study, and we will
say more about this subject later.

1.3. Goals. We must now define what we mean by “computing L-func-
tions”. This involves many different aspects, all interesting in their own
right.

We first assume that we are “given” the L-function, in other words that
we are given an “efficient” algorithm to compute the a(n) (or the Euler
factors), and that we know the gamma factor v(s). The main computational
goals are then the following;:

(1) Compute L(s) for “reasonable” s: example, compute ((3). More so-
phisticated, but much more interesting: compute special values of
symmetric powers L-functions of modular forms, and check numeri-
cally the conjectures of Deligne on the subject.

(2) Check the numerical validity of the functional equation, and in pass-
ing, if unknown, compute the numerical value of the root number w
occurring in the functional equation.

(3) Compute L(s) for s = 1/2+ it for rather large real values of ¢, and/or
make a plot of the corresponding Z function (see below).

(4) Compute all the zeros of L(s) on the critical line up to a given height,
and check the Riemann hypothesis.

(5) Compute the residue of L(s) at s = 1 (typically): for instance if
L is the Dedekind zeta function of a number field, this gives the
product hR.

(6) Compute the order of the zero of L(s) at s = 1/2 (if it has one),
and the leading term in the Taylor expansion: for instance this gives
the analytic rank of an elliptic curve, together with the Birch and
Swinnerton-Dyer data.
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Unfortunately, we are not always given an L-function completely explic-
itly. We can lack more or less partial information on the L-function:

(1) One of the most frequent situations is that one knows the Euler fac-
tors for the “good” primes, as well as the corresponding part of the
conductor, and that one is lacking both the Euler factors for the bad
primes and the bad part of the conductor. The goal is then to find
numerically the missing factors and missing parts.

(2) A more difficult but much more interesting problem is when essen-
tially nothing is known on the L-function except ~(s), in other words
the I'g factors and the constant IV, essentially equal to the conductor.
It is quite amazing that nonetheless one can quite often tell whether
an L-function with the given data can exist, and give some of the
initial Dirichlet coefficients (even when several L-functions may be
possible).

(3) Even more difficult is when essentially nothing is known except the
degree d and the constant NN, and one looks for possible I'p factors:
this is the case in the search for Maass forms over SL,(Z), which has
been conducted very successfully for n = 2, 3, and 4.

1.4. Software. Many people working on the subject have their own soft-
ware. I mention the available public data.!

e M. Rubinstein’s C++ program lcalc, which can compute values of
L-functions, make large tables of zeros, and so on. The program uses C++
language double, so is limited to 15 decimal digits, but is highly optimized,
hence very fast, and used in most situations. Also optimized for large values
of the imaginary part using the Riemann—Siegel formula. Available in Sage.

e T. Dokshitser’s program computel, initally written in GP/Pari,
rewritten for magma, and also available in Sage. Similar to Rubinstein’s,
but allows arbitrary precision, hence slower, and has no built-in zero finder,
although this is not too difficult to write. Not optimized for large imaginary
parts. The details of this package are explained in his paper [6].

e Last but not least, not a program but a huge database of L-functions,
modular forms, number fields, etc. .., which is the result of a collaborative
effort of approximately 30 to 40 people headed by D. Farmer. This database
can of course be queried in many different ways, it is possible and useful to
navigate between related pages, and it also contains knowls, bits of knowl-
edge which give the main definitions. In addition to the stored data, the
site can compute on the fly (using the software mentioned above, essen-
tially Pari, Sage, and lcalc) additional required information. Available at
http://wuw.lmfdb.org

INote added in proof: thanks to work of B. Allombert, K. Belabas, P. Molin, and the author,
in the development version of Pari/GP there is now available a large and efficient package for
L-function computation


http://www.lmfdb.org
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2. Elementary Results, Sophisticated Analysis

2.1. More Examples. Evidently, many interesting results have and con-
tinue to be found. Before mentioning new results, let me explain some
results that can be obtained using more sophisticated programs, but using
only analytical methods. The problem is this: given a product of I'g factors
G(s) = [li<j<aI'r(s + Aj), find integers N such that v(s) = N*/2G(s) is
the gamma factor of an L-function with integral coefficients (note that this
is not part of the definition of an L-function). If the search limit for N is
small enough (say NV < 200) and d is small, this can usually be done.

Note that if L;i(s) and La(s) are L-functions with corresponding gamma
factors G;(s), the function Lj(s)L2(s) is also an L-function with gamma
factor G1(s)G2(s). An L-function which cannot be written nontrivially as
L1Ly will be called primitive, and evidently we may restrict to primitive
L-functions.

In what follows, we give a few examples of primitive L-functions with
integer coefficients.

(1) G(s) = I'r(s). Possible N, and at most unique: N = 1, 5, 8, 12,
13, 17, etc. .. These exist and correspond to the L-function associated
to an even primitive real Dirichlet character. Equivalently, the non-
primitive L-function ((s)L(s) is the Dedekind zeta function of a real
quadratic field when N > 1.

(2) G(s) = I'r(s + 1). Possible N, and at most unique: N = 3, 4, 7,
8, 11, 15, etc. .. These exist and correspond to the L-function asso-
ciated to an odd primitive real Dirichlet character. Equivalently, the
nonprimitive L-function {(s)L(s) is the Dedekind zeta function of an
imaginary quadratic field.

(3) G(s) =Tg(s)% Possible N: 49, 81, 148, 169, etc. .. These correspond
to Artin L-functions (x(s)/((s), where (x(s) is the Dedekind zeta
function of a totally real cubic field.

(4) G(s) = I'r(s)I'r(s + 1) = I'c(s). Possible N: N = 23, 31, 44, 59,
76, etc. . . These correspond to to Artin L-functions (i (s)/((s), where
Ck (s) is the Dedekind zeta function of a complex cubic field. Other
values of N are N = 39, 47 (two L-functions), 55, etc..., and corre-
spond to binary theta series which are Hecke eigenforms.

(5) G(s) =Tr(s+1/2)I'r(s+3/2) =Tc(s+1/2). Possible N: N = 11,
14, 15, 17, 19, 20, 21, 24, 26 (two L-functions), 27, 30, etc. .. These
L-functions do exist, and correspond to elliptic curves defined over Q,
or equivalently by Wiles, to modular eigenforms of weight 2.

More generally, G(s) = I'r(s + (k — 1)/2)Tr(s + (kK + 1)/2) =
Ic(s+ (k—1)/2) correspond to modular eigenforms of weight k.
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(6) G(s) = I'r(s)T'r(s + 1)2. These correspond to symmetric squares
of modular forms of weight 1, which in small levels are binary theta
series.

(7) G(s) =Tr(s+1)?T'r(s+2). These correspond to symmetric squares
of modular forms of weight 2.

(8) G(s) =Tgr(s+1/2)?Tr(s+3/2)?2 =Tc(s+1/2)% These correspond
conjecturally to the global L-function of curves of genus 2, their ja-
cobians, and more generally to abelian surfaces defined over Q.

(9) G(s) = Tr(s + 1/2)Tr(s + 3/2)Tr(s + k — 3/2)Tr(s + k — 1/2) =
Ie(s +1/2)Tc(s + k — 3/2). These correspond to the spinor L-
functions of Siegel modular forms of degree 2 and weight k. In par-
ticular, for k£ = 3 this is the same gamma factor as the one of hy-
pergeometric motives of degree 4 and motivic weight 2, a special case
coming from part of the cohomology of the Dwork quintic pencil.

We could of course continue at will. Evidently none of the above results
are new, but it is interesting to note that the possible L-functions for given
gamma factors can be found experimentally by using (rather sophisticated)
purely analytic techniques, with no input whatsoever from number theory
or algebraic geometry.

2.2. New Results: I, Maass forms. I now mention what I consider to
be the two most spectacular results (more precisely conjectures) that have
been obtained using these methods, and a third, less spectacular but still
quite interesting.

I heartily thank David Farmer for helping me write this section, which is
essentially a paraphrase of a text that he sent me. I refer to [7] for technical
details.

The computation of Maass forms for SLo(Z) and subgroups is a priori
not easy. However, using analytic (as opposed to algebraic or geometric)
methods, H. Stark showed that it could in fact be done rather easily, and
this was pursued very successfully by D. Hejhal and others.

On the other hand, very few results were known for subgroups of SL ;(Z)
for J > 3. Farmer, Koutsoliotas, and Lemurell have obtained remarkable
(numerical) results for the case J = 3 and J = 4, more precisely for small
index subgroups of SL3(Z) and for SL4(Z) and Sp,(Z). Let me briefly ex-
plain their results and sketch their methods.

Their approach (which in fact is the main theme of this paper) is to
completely ignore the underlying Maass form and focus on the L-functions.

These L-functions satisfy a functional equation of the form

J
(2.1) A(s) == N*2 ] Tr(s + d; +ir;)L(s) = A(1 — s)
j=1
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where J; = 0 or 1, 3°1<;<;r; = 0, and J = 3 or 4. The analogue of the
Selberg eigenvalue conjecture is the assertion that the r; are real, which
is assumed in their calculations. The integer N is the “level”, which is 1
when dealing with SL3(Z) or SL4(Z); if N > 1 we are dealing with a
congruence subgroup. The case of Sp,(Z) refers to J = 4 where the spectral
parameters come in conjugate pairs: {ri,r2,r3, 74} = {A1, —A1, A2, — A2},
and the Dirichlet coefficients are also real.

Thus, once the degree J, the level N, and the shifts d; are chosen, one
must find parameters r; and Dirichlet coefficients such that the L-function
satisfies (2.1). This is of course much too weak a condition, so as explained
above, one must also add the conditions that the L-function must have an
Euler product, and the Dirichlet coefficients must satisfy the Ramanujan
bound.

The method, which is briefly described in the discussion of the approxi-
mate functional equation in Section 6, involves choosing two test functions
in the approximate functional equation. The equality of the (purported)
L-values is interpreted as a linear equation in the unknown Dirichlet series
coefficients. By making several such choices one obtains a linear system of
equations, which the coefficients of the L-function (if it exists) must sat-
isfy. One then adds to this linear system nonlinear equations coming from
the existence of the Euler product, such as a(6) = a(2)a(3). Even so, the
resulting system will generally still have a large number of solutions, most
of which are extraneous. However these extraneous solutions can usually
be eliminated because they do not satisfy the Ramanujan bound.

Note that an extra difficulty in this problem (as was the case for SLy(Z))
is that one must not only search for the Dirichlet coefficients, but also for
the spectral parameters r;.

Using this method approximately 2000 L-functions of Maass forms have
been found for SL3(Z), with a few dozen on subgroups up to level 9. A
few dozen have also been found for SL4(Z), and a few hundred for Sp,(Z).
These data are available in the LMFDB mentioned above.

It is of course highly plausible that corresponding Maass forms exist in
all the cases found, but as far as I know no proofs have been given for
J > 3.

2.3. New Results: II, the paramodular conjecture. Since L-func-
tions seem to be quite well determined (at least up to finite dimensionality)
by their gamma factor v(s) = N%/2G(s), in other words by the gamma
product G(s) and the conductor N, it is very tempting to guess, or even
conjecture, that if two L-functions have the same ~y(s), and perhaps also
the first few Dirichlet coefficients, then they will in fact be equal. Let us
pretend that we are ignorant for the moment.
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We have seen that the (normalized) gamma factor of a modular eigenform
of weight 2 on T'g(N) is N3/?T'g(s41/2)'r(s+3/2) = N*/?T'¢c(s41/2). On
the other hand, if E is an elliptic curve defined over Q of conductor N with
complex multiplication, its L-function is a product of two Hecke L-functions
and it is easy to see that it will have the same gamma factor. This leads us
to believe that it is also the L-function of a modular eigenform of weight
2 on I'g(N). This was indeed proved by Shimura, and this observation
led Taniyama—Shimura—Weil to formulate the conjecture, finally proved by
Wiles and successors, that it should hold true for all elliptic curves over Q,
not only those with complex multiplication.

We can now do the same for abelian surfaces defined over Q. Among
the uninteresting ones are products of two elliptic curves, which by the
modularity theorem thus have an L-function with gamma factor N*/?T'c(s+
1/2)%, where N is the conductor of the abelian surface, in this particular
case equal to the product of the conductors of the elliptic curve factors. As
for elliptic curves, it is reasonable to expect that for all abelian surfaces
defined over Q the L-function extends to a holomorphic function on the
whole plane with functional equation having as gamma factor N/ Pe(s+
1/2)%. This is what we have indicated in the table given in Section 2.1. Now
if we look at the end of this table, we note that the spinor L-function of
Siegel modular forms of degree 2 and weight k have G(s) = T'c(s + (k —
1)/2)2: this coincides with the one for abelian surfaces when k = 2. We
can thus suspect that there is a conjectural correspondence between such
surfaces and Siegel modular forms of degree 2 and weight 2, modular with
respect to a suitable subgroup of Sp,(R) linked with the conductor N of
the abelian surface.

In a remarkable work, Brumer—Kramer, helped by essential computa-
tions of Poor—Yuen, have made the above observation into a very precise
conjecture, which generalizes the Taniyama—Shimura—Weil conjecture. It
would take a complete talk in itself to explain in detail the conjecture and
the numerical verifications that have been done, but I will try to give some
insight. I heartily thank Armand Brumer for help in writing this section.

First, on which subgroup of Sp,(R) should the forms be modular? Let
us look again at the simpler case of elliptic curves. The subgroup I'g(N)
enters the picture naturally because Yy(INV) = H/I'o(N) is the moduli space
of elliptic curves together with a cyclic subgroup of order N, and the mod-
ularity conjecture is equivalent to the existence of a morphism from the
compactification Xo(N) to the elliptic curve.

For abelian surfaces, there exists a group K (V) called the paramodular
group of level N, such that Hy /K (N) is the moduli space of abelian surfaces
with polarization (1, N), where as usual Hy is the Siegel upper half space.
This group can of course be explicitly described: it is not a subgroup of



708 Henri COHEN

Sp4(Z), but of Sp,(Q) (exactly one coefficient out of 16 may be nonintegral).
One defines K (N) = yM4(Z)y~! NSp,(Q), where v is the diagonal matrix
with diagonal coefficients (1,1, N, 1). It is immediate to show that

* x  x/N %

Nx % * *
KN)=99€54(Q), 9= | vy Ne  « Nel (0
Nx % * *

where the x denote integers.

Second, to obtain an exact bijection between the two sides, one needs on
both sides to exclude certain elements. On the abelian surface side, we must
restrict to (isogeny classes of) abelian surfaces A with trivial endomorphism
group, i.e., Endg(A4) = Z. On the modular side, we must exclude certain
Siegel modular forms on K(N) which can be obtained by lifting certain
Jacobi forms by using what is called a Gritsenko lift. This is not difficult to
define, but I will not do it here. The paramodular conjecture of Brumer—
Kramer is then as follows (see [3]):

Paramodular Conjecture. Paramodular Conjecture. There is a bijection
between on the one hand:

e Isogeny classes of abelian surfaces A defined over Q with conductor
N and Endg(A) = Z, and on the other hand:

e Lines of non-lift weight 2 Hecke cusp newforms F' on K(N) with
rational eigenvalues.

In this correspondence, the Hasse—Weil L function of the abelian surface
A should be equal to the spinor L-function attached to the Siegel cusp form
F', and the ¢-adic Galois representation attached to F' should be isomorphic
to that on the Tate module Ty(A).

Note that Hecke cusp newforms on K (N) cannot be normalized by set-
ting a(1) = 1 as one does for ordinary newforms, and this is why one must
consider “lines” of such newforms, i.e., up to a multiplicative constant.

Note also that any abelian surface A defined over Q and not covered
by the above conjecture is of “GLs-type”, and so analogously to the case
of elliptic curves with CM its L-series is a product of L-series attached to
classical elliptic modular forms. This can be shown using work of Shimura,
Ribet, and Khare-Wintemberger.

To be able to test this conjecture, it is of course necessary to gather
evidence on both sides, and both are difficult.

e On the abelian side, Brumer and Kramer developped sophisticated
methods originating with Fontaine and Schoof, using group schemes and
class field theory to exclude certain conductors. On the other hand, they



Computing L-Functions: A Survey 709

had to construct sufficiently many examples of abelian surfaces of small
conductor, not necessarily isogenous to jacobians.

The upshot was that for prime conductors p < 600, there exists an
abelian surface of conductor p if and only if

p € {277,349, 353, 389, 461, 523,587} .

e The modular side, due to Poor—Yuen [10] is also quite hard. The prob-
lem is that the explicit computation of Sa(K(N)) is very difficult because
2 is a “small weight”. This is more or less analogous to the difficulty of
computing ordinary modular cusp forms of weight 1. Instead, they begin
by computing in Sy (K (N)) which is quite explicit, and using quite a num-
ber of tricks they manage at least to construct a non-lift for p = 277, and
to check that the corresponding first Fourier coefficients agree. Since their
initial paper, other methods have been used, for instance using Borcherds
products, to construct non-lifts, so it can be hoped that the conjecture can
be checked for many more N and a large number of Euler factors.

As a final note, the paramodular conjecture has been proved by Johnson—
Leung and Roberts in the special case where A/Q is the Weil restriction of
a modular elliptic curve E/k not isogenous to its conjugate, where k is a
real quadratic field, using a lift from Hilbert modular forms to paramodular
forms.

2.4. New Results: III, Hypergeometric Motives. We will mention
hypergeometric motives later. The recent impetus on the subject started
with the study by P. Candelas, X. de la Ossa, F. Rodriguez—Villegas, the
author, and others, of the L-function associated to part of the cohomology
of the Dwork quintic pencil

T3+ x5+ 25 + 2 + 22 — 5Yrrar3rars = 0

for ¢ #£ 0,1, c0.

As for all hypergeometric motives, the computation of the Euler factors
at the good primes presents no difficulty and can be done using a recipe due
to Katz and Rodriguez—Villegas. Furthermore, since one easily computes
the Hodge numbers, the gamma factor is given by a recipe of Serre. Using
the functional equation that the L-function must satisfy, we have been able
to find (initially conjecturally) recipes for all the Euler factors (thus at
all the bad primes), for the conductor, and for the root number. I have
been told, but cannot give a reference, that thanks to recent work these
experimental observations are now in principle proved.

Once again, a comparison of the gamma factors shows that the L-func-
tions should be the spinor L-function of a Siegel modular form of degree 2
and weight 3. The smallest possible conductor corresponding to the quintic
is 525, which seems “small”, but nonetheless Siegel form experts consider
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that proving the existence of a form of degree 2, weight 3, and level 525 is
completely out of reach for the moment.

3. Number-Theoretical Tools

To achieve the above goals, we need some tools which, although for the
most part technical in nature, are of course absolutely essential. The first
kind of tools are number-theoretical, for the computation of a(n), and the
second kind are purely (real or complex) analytic. To compute a(n), we
have at our disposal (at least) four rather different methods:

(1) The “elementary” methods: naive or baby-step giant step point count-
ing on varieties, or direct computation of the coefficients of g-expan-
sions for modular forms for instance.

(2) Expression of a(n) in terms of Gauss sums or Jacobi sums and the
use of theta functions to compute them.

(3) ¢-adic methods: this is linked to étale cohomology and is the basic
idea behind Schoof’s algorithm for counting points on elliptic curves
over finite fields of large characteristic, and much more recently on
the Edixhoven—Couveignes method for computing coefficients of cusp
forms.

(4) p-adic methods: these come in several flavors, more or less linked
to crystalline cohomology: the Saito—Mestre methods for counting
points in small characteristic, Kedlaya’s algorithm using Monsky—
Washnitzer cohomology for counting points on hyperelliptic curves
in small characteristic, the use of Morita’s p-adic gamma function
and the Gross—Koblitz formula for computing a(n) when expressed
as coeflicients of a hypergeometric motive.

To illustrate, let us take the following specific example: the function
f(7) = n(27)*n(107)? is a modular Hecke eigenform of weight 2 on T'g(20)
with trivial character. Writing f(7) = 3,51 a(n)q" with as usual ¢ = >™7,
we have L(f,s) = Y ,>;a(n)n™® and we need to compute a(n). In fact,
since f is an eigenform, it is only necessary to compute a(p), since a(p¥) is
given by the recursion a(p¥) = a(p)a(p*~') — x(p)pa(p*=?) with x(p) = 1
unless p = 2 or p = 5, in which case x(p) = 0, and a(mn) = a(m)a(n)
whenever m and n are coprime.

Thus, let us look at the different methods available to us. Note that
we may have two different goals in mind, in particular if there are storage
problems: first compute a large table of a(n) up to some large bound, and
second compute individual values of a(n), for n relatively large.

1) Computing directly from the g-expansion. Recall that n(r) = 1 +
n

Zle(—1)m(q(3m2_m)/2 + ¢®m*+m)/2) has a completely explicit ex-

pansion. Thus, by using FFT multiplication techniques, performing
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two multiplications of power series, we can compute the power series
expansion of f(7) to X terms in time O(X), where O(X®) means
O(Xo*te) for all e > 0. This is good, since it gives an average of
5(1) per coefficient, and one cannot hope to do much better than
that. However this is very specific to such products, and more general
modular forms may not be computable in this way. In fact we can
do better if we notice that n(7)n(57) is the modular form of weight
1 associated to a Hecke character, hence with explicit coefficients, so
that only one FFT multiplication will be needed.

A more sophisticated but efficient method, but this time to compute
individual values, is to use the Eichler—Selberg trace formula. In our
case, we have dim(S2(I'9(20))) = 1, so a(p) is simply equal to the
trace of T'(p) acting on that space. Explicitly, we find that

1 2 —p
a(p):p_5_2|t|§/2 <1+< 5 >>

2_
x Y alp, f,t)B(ged(20, f))R <4(tf2p)>7
f2(4(t2-p))

where the first sum is over all positive and negative ¢ (such that

(t25_p) # —1, and one can regroup t and —t when t # 0), the second
sum is over all f > 0 such that 4(t* — p)/f? = 0 or 1 modulo 4,
(D) = h(D)/(w(D)/2) is the modified class number of the quadratic
order of (negative) discriminant D, except that we set h'(—=3) = 1/3
and h'(—4) = 1/2, a(p, f,t) is the number (equal to 0, 1, or 2) of
e = +1 such that p + 1 4 2¢t = 0 (mod 4gcd(4, f)), and finally
B(9) = g1lp=25, pr0sg(1 +1/p)-

Even though the formula looks complicated, it is immediate to
program, and since one can compute class numbers in time O(1), this
gives a O(p'/2) method for computing a(p). Note that this method
is much less specific, and can be applied to any modular form of
any reasonable weight and level. For instance, to my knowledge it
gives the fastest practical way to compute individual values of 7(p),
where 7 is the Ramanujan tau function. For instance, if we define
H(N) =¥ p2n h'(—N/f?), the Hurwitz class number, applying the
trace formula to PSLy(Z) gives

7(p) = 42p° — 90p* — 75p® — 35p® —9p— 1 — Z sPOH (4p — %),
0<s<2pl/2

and even better, if we apply the trace formula to I'g(2) and set
Hy(N) = H(N) + 2H(N/4) (where H(N) must be computed from
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H(N/4) when both terms occur), we have the faster formula
7(p) = 28p° — 28p® — 90p* — 35p3 — 1

— 128 Z s%(4s? — 9ps® 4 Tp?) Ha(4(p — %))
0<s<pl/2

(for instance, 8 minutes for p = 1012 + 39 on a quadcore laptop).
As a special case of hypergeometric motives (see below), it is easy to
show that for p > 5 we have

a(p) = % (1 + >0 x@)J 06X X)) :
— P XFX0

where y runs over all nontrivial characters of F; and J is the standard
triple Jacobi sum. This expression can be used in many different ways:

e Directly: we compute each individual term and sum over all char-
acters, for a total of approximately p? operations. Using the symmetry
X — X reduces this trivially to p?/2 operations.

e Working in Z[X]/(XP~! — 1). Let g be a primitive root modulo
p, and set

P(X)= Y x(relog (g modpt g
1<n<p—-2

P(X) =P (X)Py(X) (mod XP~ 11y,

It is not difficult to show that if we write P(X) = >2<,<,—2 c(n) X"
and if we set £ = —log,(2) mod p — 1 with 0 < ¢ < p — 2 we have

a(p) =p—3— (~FV/E _(0).

This gives a much faster O(p'*¢) method for computing a(p). The

main disadvantage of this method is that we also need O(p) storage,
which can become prohibitive.

e Using theta functions: if x® is nontrivial we have J(x,x,x) =
a(x)?/9(x?), where g(x) is a Gauss sum (and when x? is trivial but x
is not we have J(x, x, x) = —g(x)?/p). Even though this looks like we
are complicating matters, we can compute g(x) in O(p'/?) operations
using an idea of Louboutin: indeed, if x is an even character, the
functional equation of the theta function implies that

— pl/2 > m>1 X(m) exp(—wm? /p)
Yoms1 XL (m) exp(—mm?/p) |
with a similar formula for x odd, and since the series converge very

fast and g(x) needs to be known to only a reasonable accuracy (recall
that a(p) is an integer), this indeed leads to a O(p'/?) algorithm for

g(x)
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computing g(x), hence a 5(1)3/ 2) algorithm for a(p), so slower than
the preceding one, but not requiring much storage.

Note that if the denominator vanishes there exist similar fast for-
mulas. Louboutin conjectures that this never happens, but note that
similar quantities for nonprime p can vanish, see [5].

e Using a congruence: it is easy to show that

3n)!
alp)= Y énn?g (mod p) ,
0<n<(p—1)/3

and on the other hand, the Hecke or Hasse—Weil bounds imply that
la(p)| < 2p'/2, so the congruence determines a(p) as soon as p > 17.
Since the summands can be computed recursively, this again gives a
O(p'*#) method for computing a(p), this time with no storage.

e Using Morita’s p-adic gamma function and the Gross—Koblitz for-
mula: (in fancy language, this is a crystalline method). In the present
very simple case, it does not bring us much, but in the general case
it is the most powerful method available. As for many “natural” con-
gruences, the congruence that we have just given is only the first level
of a p-adic equality for a(p). Indeed, as before the Jacobi sums which
enter into the formula for a(p) can be expressed in terms of Gauss
sums, and it is a remarkable result of Gross and Koblitz that all Gauss
sums over finite fields can be expressed as simple products of values
of Morita’s p-adic gamma function at rational arguments. There is
no need for us to define it, simply note that it is very easy to com-
pute, and that, as any p-adic function, it gives congruences modulo
any power of p, so that if a(p) mod p was not sufficient to determine
a(p), we could for instance immediately determine a(p) mod p? for in-
stance. In our example (where we do not need the congruence modulo

p? since |a(p)| < 2p'/?) we have for p > 5:

alp)= %(1 + 3pn(Hs, — Hy))
<(p-1)/3 '

3n—(p—1))!
(p—1)/3<n<2(p—1)/3

where Hy, =3 1<;<, 1/J is the harmonic sum.

Using elliptic curves: since f(7) is a modular form of weight 2 on
I'9(20) with trivial character, it corresponds to an elliptic curve of
conductor 20, and in fact up to isogeny there is only one such curve
E, with minimal equation y*> = 2® + (z + 2)? (an isogenous curve is
y?> = 23 +22 —1x), so for p > 7 we have a(p) = p+1—|E(F,)|. Using a
remarkable algorithm due to R. Schoof, we can compute a(p) in time
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polynomial in log(p), hence extremely fast. This algorithm, now called
the SEA algorithm (S=Schoof, E=Elkies, A=Atkin) is implemented
in many packages and is very efficient. It consists in computing a(p)
modulo ¢ for sufficiently many small primes ¢ and reconstructing a(p)
using the Chinese remainder theorem. This is an ¢-adic method, as
opposed to the p-adic methods seen above, and in our specific case is
the fastest available.

For higher weight modular forms, for instance for A(7), a similar
algorithm has been developed by Edixhoven, Couveignes, et. al., but
for now it does not seem to be very practical, although it is a theorem
that it has a polynomial running time in log(p).

4. Inverse Mellin Transforms

We also need a number of more or less sophisticated analytic tools. Two
types of formulas that are of constant use are on the one hand the ap-
prozimate functional equation (a misnomer since it is not approximate but
exact), and explicit formulas, a vague name but which refers more precisely
to the link via Fourier transforms between primes and zeros of L-functions,
as developed by Weil, Stark, Odlyzko, Poitou, Serre, etc... We will state
these formulas below, but for now note that for the approximate functional
equation we will in particular need to compute inverse Mellin transforms.

4.1. Definitions. Recall that if f(t) is a reasonably behaved function, its
Mellin transform M(f)(s) is defined by

M = [Ten g

Although by far not the weakest possible conditions, we will require that
f be a C*° function on |0, o0[, tending exponentially to 0 as t — oo in
the sense that |f(t)| = O(e=") for some a > 0 and b > 0, and that
around 0 we have f(t) = O(t~¢) for all € > 0. Under these conditions, the
integral converges absolutely for all s such that ®(s) > 0, uniformly for
R(s) > 0 > 0, so it defines a holomorphic function in f(s) > 0.

The main result that we will need is the Mellin inversion formula (in fact
a variant of Fourier inversion), which says the following: if g(s) = M(f)(s)
then for all ¢ > 0 and ¢ > 0 we have

1

0 =5= | el ds.

An auxiliary but sometimes useful result is the convolution formula: if
gi(s) = M(fi)(s) for i = 1 and 2, then g192(s) = M(f1 * f2)(s), where
the convolution fi % fo is given by

(Fr i) = [ 50000 F = [T (0200 + A0HRO T
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In view of the approximate functional equation, it will be necessary to
compute many (sometimes millions) of values of f(t) = M~1(g)(t), in fact
at equally spaced points. A large number of methods have been suggested
to do this computation, and we review a few, with no pretense at being
exhaustive.

4.2. Simple Cases. First note that in the simplest cases f(t) will be an
explicit and easily computable function. Here is a simple table, including
some elementary transformations

| 9(s) [f() =M (g)(0)]
I'(s/2) 2 exp(—t?2)
I'((s+1)/2) 2t exp(—t?)
I'(s) exp(—t)
I'(s/2)I'((s+1)/2) 2 exp(—2t)
['(s/2)? 4K (2t)
T(s/2)T((s + 2)/2) AtF (21)
['(s)? 2Ko(2v/1)
T(s)T(s+ 1) 2VtK:(2V/1)
m°y(s) f(t/m)
59(s) —tf'(t)
91(8)g2(s) (f1% f2)()

4.3. Computation for small t. All these inverse Mellin transforms have
something in common: their computation for small ¢ and large ¢ will be
very different. Take the simplest case where f(t) = exp(—t). When ¢ is not
too large we can use the power series f(t) = > ,~¢(—1)"t"/n!. However
when ¢ becomes large enormous cancellation occurs, and it is not advised
to compute exp(—t) by its power series, although it is of course possible
since it has infinite radius of convergence.

Thus we first consider the computation of f(t) for “small” ¢. As for
exp(—t), in every case, this leads to a power series (with possible occurences
of powers of log(t)) with infinite radius of convergence: we simply shift the
line of integration in the formula for the inverse Mellin transform towards
—oo and keep track of the residues that we catch; it is then a simple matter
of bookkeeping.

However, the analysis does not stop here. Indeed, we then need to evalu-
ate this power series at ¢ (and in fact for a huge number of different ¢): this
seems very straightforward (apply some sort of Horner scheme for instance),
but can in fact be considerably improved by using continued fractions, and
we will see that this is essential for large t.
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For now, consider the following simplest example:

Let f(t) = exp(—t). We compute the power series expansion S of f to 35
terms, say, so that 1/35! < 107%°, my computer working at a default preci-
sion of 38 decimal digits. Note that inverse Mellin transforms will be used
additively so we need absolute and not relative accuracy. Using the trun-
cated power series S for t = 2 gives only 30 decimal digits (23° /35! ~ 10739),
On the other hand, transforming formally S into a continued fraction and
evaluating at t = 2 gives perfect (i.e., less than 1073%) accuracy. Similarly,
for ¢ = 4 one obtains respectively 19 and 29 digits of accuracy. In the
present example, the continued fraction is completely explicit, and these
results can be proved. We leave to the reader to prove that

exp(—t) = 1+t/(=1+t/(=2+t/(3+t/(2+t/(=5+t/(=24+t/(T+ - ))))))) ,

where the sequence of odd terms is —1, 3, —5, 7, etc..., and that of even
terms is —2, 2, =2, 2,...

4.4. Computation for large t. As already mentioned, we can use the
generalized power series expansion for any value of ¢, since the radius of
convergence is infinite. However when ¢ is at all large, this is not the best
method by far. It is easy to show that all the inverse Mellin transforms
that we consider have an explicit asymptotic expansion as t — oo, which is
nonconvergent in general, see [4] and [2].

As an example, consider f(t) = Ko(t), the K-Bessel function which oc-
curred in some of the above examples. Its (nowhere convergent) asymptotic
expansion is as follows:

2n')
— / ot -
Ko(t) Z 25nn|3 "

n>0

The error is smaller than the absolute value of the first neglected term,
and the smallest term in the expansion is for n close to 2¢, which gives an
absolute error of approximately e=3/(ty/2). Thus, if we want 38 decimal
digits, this is obtained only for ¢ > 28, corresponding to n = 56 for instance.
Thus assume that we choose n = 50, and that we evaluate both by the
truncated series and by the corresponding continued fraction. For ¢ = 28
the results are of course perfect for both methods. On the other hand, for
t =20, 15, 10, 5, 2, 1 we get 28, 19, 8, 0, 0, 0 correct decimals by using the
series, but > 38, > 38, 36, 26, 17, 12 correct decimals by using the continued
fraction. It would seem in fact that the continued fraction converges for all
t, and rather fast.

Thus, the method suggested by T. Dokshitser is the following: both for
small ¢ and large ¢, after removing the log terms (for small ¢) or the expo-
nential and power factors (for large ), which are always known explicitly,
convert the power series and the asymptotic series into a continued fraction,
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and when evaluating f(¢) use one or the other continued fraction depending
on the size of t.

There are many problems to be solved before using this method: first, for
a given accuracy, one must compute the number of terms to be taken in the
power series or the asymptotic expansion (which will essentially correspond
to the number of terms in the continued fraction), and second one has to
determine the threshold which will say when ¢ is “small” or “large”. The
program computel written by T. Dokshitser does this quite well, but not
perfectly. As mentioned above, it is available in Pari/GP, Sage, and magma.

Probably the main drawback of this method is that very little can be
proved, so for now the method is heuristic. However I will venture a guess:
since this method is so useful, I believe that it should not be difficult to
prove that the method works, to find the exact rate of convergence of the
continued fraction, explicit upper bounds for the error, and a good estimate
of the threshold, but to my knowledge nobody has done so in the decade
since the publication of Dokshitser’s paper. The only case where it has been
proved (apart from the elementary cases of the exponential and related
functions) is for the K-Bessel functions, where the continued fraction is
sufficiently regular to be analyzed.

5. Generalized Incomplete Gamma Functions

Another tool that we need is the computation of what one can call
a generalized incomplete gamma function: as above let g(s) be a prod-
uct of I'g factors, and let f(¢) be its inverse Mellin transform, so that
g(s) = [o°t°f(t)dt/t. We define the generalized incomplete gamma func-
tion associated to g as the two-variable function

os.0) = [T s

t Y

where usually z € Rxq, so that ¢g(s,0) = g(s). We can also define the
complementary function as the integral from 0 to x, and if needed we will
use both.

The simplest case is f(t) = e™!, g(s) = ['(s), and the function g(s, ) is
then simply called the incomplete gamma function and denoted I'(s, z).

We can use similar tools to those used for computing inverse Mellin
transforms, but here with the added complication that we must deal with
two variables s and z.

5.1. The Incomplete Gamma Function. Consider first the incomplete
gamma function I'(s, z), in other words

o0 dt
I(s,z) = / tSet <
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When z is close to 0, the best is to use power series expansions. There are
in fact two such expansions:

[(s,z) =T(s) —a® ) (-1)"

n>0

=T(s) —a%e ™"y *

nZOs(s—i—l)'--(s#—n) )

x’l’b

(n+s)n!

n

It is in fact easy to show that the second expansion is slightly better.

As for inverse Mellin transforms, these series have infinite radius of con-
vergence, so can be used for all x, but when z is a little large there will be
enormous cancellation and they should not be used.

Again as for inverse Mellin, there are asymptotic formulas as x — oo,
which are nonconvergent unless s is a positive integer:

[(s,z) =z le™® Z(s —1)(s=2)---(s—n)z™".
n>0
Once again, we can convert this asymptotic series into a continued fraction,
but in this simplest case we obtain a very simple continued fraction, and it
is easy to prove that it converges for all z and to give its rate of convergence:

S,—T

rde
F(S,CC): 1(1_3> 9
r+1—-5— 22— s)
r+3—-§s— ————
r+5—s5—"

and if we denote by p, /¢, the nth convergent, we have

Dn 2m —4v/nx
(s, x) o~ Ta=9) S)e .
Using all this precise information, it is not difficult to decide which formula
to use depending on s and z, and how many terms to take.

Note that when |s| is large, in particular if s = 1/2+it with ¢ large in the
context of looking for zeros of L-functions, we encounter a new difficulty
when z is close to |s|: in that case we have to use other kinds of formulas
called uniform asymptotic expansions, whose study was initiated by Temme.

5.2. The General Case. For general incomplete gamma functions the
situation will be similar: for small x use a generalized power series expan-
sion, for large x use an asymptotic expansion after converting it into a
continued fraction. This continued fraction will conjecturally converge for
all x, and it is possible to give a good estimate of the rate of convergence.
However, to my knowledge, nothing is proved except in the simplest cases
such as the incomplete gamma function itself.
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6. Smoothed Approximate Functional Equations

As mentioned at the beginning, to perform computations on L-functions
we have at our disposal two main analytic tools, which are the smoothed
approximate functional equations, and the explicit formulas. Although the
L-functions we consider have at the same time a functional equation and an
Euler product, note that the smoothed approximate functional equations
need only the existence of a functional equation, (the explicit formulas
usually need both, although for certain applications which only use the
Hadamard product, this is not necessary).

We have the following theorem, easily proved by complex integration,
here taken from Rubinstein [11]:

Theorem 6.1. Assume that L(s) = > ,~; a(n)n™*% satisfies the assump-
tions of Definition 1.1, and in particular that we have a functional equation
A(s) = wA(1 —3), with A(s) = y(s)L(s) and vy(s) = N3/?T[j<;cqTr(s +
\;). For simplicity of exposition, assume that L(s) has no poles in C. Let
g(s) be an entire function such that for fized s we have |A(z2+s)g(z+s)/z| —
0 as I(2) — oo in any bounded strip |R(z)| < a. We have

A =3 " psmy 1wy

n>1 n>1

Zgnz fo(l—s,n),

where

T y(2)g(2)a”

fi(s,z) = 2° dz and
o—ioco zZ—S
o+100 ? —z
o) o [T AT
o—100 Z—S

and where o is any real number greater than the real parts of all the poles

of v(z) and than R(s).

Several comments are in order concerning this theorem:

(1) It is very easy to modify the formula to take into account possible
poles of L(s), see [11] once again.

(2) The functions f;(s,x) are exponentially decreasing as x — oo, and in
fact one can give a rather precise formula giving their behavior. Thus
this gives fast formulas for computing values of L(s) for reasonable
values of s. The very simplest case of this approximate functional
equation, even simpler than the Riemann zeta function, is for the
computation of the value at s = 1 of the L-function of an elliptic
curve E': if the sign of its functional equation is equal to +1 (otherwise
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L(E,1) =0), we have

a(n) —9 N1/2

L _ mn/

(B1) =2y " ,
n>1

where N is the conductor of the curve, a formula which is immedi-
ate from the (unsmoothed) approximate equation, corresponding to
g(s) =1 in the theorem.

It is not difficult to show that as n — co we have

fi(s,n) ~C - tag—md(n/N1/2)2/

for some explicit constants a and C' (in the preceding example d = 2).
Thus, we have the so-called N/ 2_paradigm: the series of the theorem
indeed converge exponentially fast, but we need at least 5(]\[ 1/2)
terms to obtain any accuracy at all. This is an extremely serious lim-
itation, and probably the most important question in this field of
computational number theory: is it possible to do any better? In par-
ticular cases (such as L(E, 1) above, or some other special values),
there are often other methods using the deeper structure of the prob-
lem to find the result, but for instance I am pretty sure that nobody
has a method faster than O(N'/2) to compute L(E, ), say (not that
this number has any interest).

Note, however, that quite surprisingly there are some apparent
counterexamples to this paradigm: for instance, in [8], Hiary has
shown that if the conductor N is far from squarefree, for instance
if N =m3, at least in the case of Dirichlet L-functions the computa-
tion can be done in time O(m) = O(N''/3).

The theorem can be used with g(s) = 1 to compute values of L(s)
for “reasonable” values of s. When s is unreasonable, for instance
when s = 1/2 + T with T large (to check the Riemann hypothesis
for instance), one chooses other functions g(s) adapted to the com-
putation to be done, such as g(s) = e or g(s) = e~2(5750)%; T refer
to Rubinstein’s paper for detailed examples.

By choosing two very simple functions g(s) such as a® for two dif-
ferent values of a close to 1, one can compute numerically the value
of the root number w if it is unknown. In a similar manner, if the
a(n) are known but not w nor the conductor N, by choosing a few
easy functions g(s) one can find them. But much more surprisingly, as
mentioned at the beginning of this paper, if almost nothing is known
apart from the gamma factors and IV, say, by cleverly choosing a num-
ber of functions g(s) and applying techniques from numerical analysis
one can prove or disprove (numerically of course) the existence of an
L-function having the given gamma factors and conductor, and find
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its first few Fourier coefficients if they exist. This method has been
used extensively by D. Farmer in his search for GL3(Z) and GL4(Z)
Maass forms, but also by Poor and Yuen, in computations related to
the paramodular conjecture of Brumer—Kramer and abelian surfaces,
and by A. Mellit in the search of L-functions of degree 4 with integer
coefficients and small conductor.

Note that very recent unpublished work of P. Molin (personal communi-
cation) shows that to compute values of L(s) one can dispense completely
with the approximate functional equation, hence with generalized incom-
plete gamma functions. As mentioned in a note added in the beginning, his
method is now available as part of a large Pari/GP package included in the
development version.

7. Explicit Formulas

The term “explicit formula” has been used at least since Weil to denote an
exact equality linking sums over primes to sums over zeros of L-functions.
Of course this basic idea is due to Riemann. Here, we usually assume that
our L-function has both a functional equation and an Euler product, al-
though in some cases (but not for the statement of the theorem), the Euler
product is not necessary.

Let us consider the simplest example of this, known to Riemann. It is
not difficult to show that for all s € C we have the identity

s(s = )m*T(s/2)¢(s) = (1 = s/p) ,
P
where p runs over the nontrivial zeros of ((s), and where it is understood
that p and 1 — p are grouped together (otherwise the product does not
converge). On the other hand, if #(s) > 1 we have the Euler product ((s) =
[,A-p° )~1. Thus, taking the logarithmic derivative and expanding we
obtain for R(s) > 1:

1+ 1 +¢(s/2)_log(7r)_ Z log;p:Z 1

s s—1 2 2 pms ps—p’

m>1, p

which is indeed a formula of the indicated type, where ¥ (s) = I'(s)/T'(s) is
the logarithmic derivative of the gamma function. In itself this formula is
not very interesting, although by not expanding the Euler product (which
is of course contrary to the spirit of explicit formulas), one can compute
explicitly sums and products linked to the nontrivial zeros such as -, pF
for k > 1, TT,(1 —1/p%), or [],(1 —4/p?).

The proof of the above identity is easily done by integrating A’(s)/A(s)
around a suitable contour and applying the residue theorem, thus catching
the poles p of A’/A. The idea of explicit formulas is, instead of integrating
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A'/A, to choose a suitable test function ®, and integrate ®(s)A’(s)/A(s).
We will thus essentially obtain a sum of ®(p) (plus some other explicit
expressions), and using the Euler product of ¢, this will be equal as above
to a sum over prime powers of an integral transform of ®, essentially its
Fourier, Laplace, or Mellin transform, depending on the normalization. The
computations are very easy, the only slight difficulty in the proof lying in
their justifications.

The reader can find a general version in Mestre’s paper [9], we simply
give without technical details the formula for Dirichlet L-series, the general
case being very similar:

Theorem 7.1. Let x be an even primitive Dirichlet character of conduc-
tor N, and let F' be a real function satisfying a number of easy technical
conditions. We have the explicit formula:

S 00) == 5 B (¢ )k logir) + NI (~klog(r)
P pk>1

2w, /_ O; F(z) cosh(z/2) dz + F(0) log(N/x)

+/°° (e“’”F(O) e e/4 F(m/2)+F(—x/2)) iz,
0

T Cl—e@ 2

where N1 s the Kronecker symbol and where we set
D(s) = / F(z)e= 12 gy

and as above the sum on p is a sum over all the nontrivial zeros of L(x, s)
taken symmetrically (3-, = Hmr—eo 3 5(p)<1)-

Remarks.

(1) Write p = 1/2+1v (if the GRH is true all y are real, but even without
GRH we can always write this). Then

o(p) = [ Fla)e"do = F(3)

is simply the value at v of the Fourier transform Fof F.
(2) It is immediate to generalize to odd x or to more general L-functions,
see [9].

This theorem can be used in several different directions, and has been an
extremely valuable tool in analytic number theory. Just to mention a few:

(1) Since the conductor N occurs, we can obtain lower bounds on N, pos-
sibly assuming certain conjectures such as the generalized Riemann
hypothesis. For instance, this is how Stark—Odlyzko—Poitou—Serre find
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discriminant lower bounds for number fields. This is also how Mestre
finds lower bounds for conductors of abelian varieties, and so on.

(2) When the L-function has a zero at its central point (here of course it
usually does not, but for more general L-functions it is important),
this can give good upper bounds for the order of the zero. For instance,
using this formula, J. Bober et al. have proved that the elliptic curves
of very high rank > 20 found by a number of people do have exactly
the claimed rank (and no larger), assuming both the GRH and the
Birch and Swinnerton-Dyer conjecture.

(3) More generally, suitable choices of the test functions can give infor-
mation on the nontrivial zeros p of small imaginary part.

(4) In [1], A. Booker explains in great detail how to use, among other
tools, the explicit formula both to verify Artin’s conjecture on the
holomorphy of L-functions, and the Generalized Riemann Hypothe-
sis to moderately large heights. In particular, he gives a completely
rigorous method to compute (to moderate accuracy) all the zeros of
an L-function on the critical line, without missing any.

8. Hypergeometric Motives

We finish this paper by describing in some detail the notion of hyper-
geometric motives, initially introduced by N. Katz, but put in the present
completely explicit form by F. Rodriguez—Villegas, and which is currently
the subject of active research. Note that thanks to the work of M. Watkins,
there is now a remarkable magma package for working with hypergeometric
motives.

To any algebraic variety defined over Q, say, one can associate a local
zeta function, or better local L-functions depending on the splitting of
the cohomology of the variety, at least for all primes except the “bad”
ones, finite in number. These are (for smooth, projective varieties at least)
rational functions, and replacing the formal variable T" by p~® and taking
the product leads to global L-functions attached to the variety or parts of
its cohomology. Ignoring the fact that completing these L-functions at the
bad primes is often difficult, this leads to interesting L-functions of higher
degree, but which may not be easy to compute explicitly.

An example where this can easily be done is in the case of dimension 0:
this amounts to studying the Dedekind zeta function of number fields, and
there are very efficient methods for doing this, and for computing it, al-
though as far as I am aware the only available implementation is due to my
ex-student E. Tollis in Pari/GP (hence in Sage) more than 12 years ago,
and is far from being optimal, but nobody has taken the time to improve
it since.
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The idea of Katz and Rodriguez-Villegas is instead to introduce directly
the local and global L-functions (at least for the good primes), without ex-
plicit reference to the underlying variety (which of course exists: we call the
process of finding equations for that variety, which is not necessary, reverse
engineering). This is done by using a finite field variant of hypergeometric
functions.

Let me give a short and unmotivated introduction to this: let v(7) =
Yons1 T I™ € Z[T] be a polynomial satisfying the conditions v(0) = 0 and
7'(1) = 0 (in other words 7o = 0 and 3, ny, = 0). For any finite field F,
with ¢ = p/ and any character y of F* o> recall that the Gauss sum g(x) is
defined by

= Y x(x) exp(2miTrg, /5, (x)/p) -
z€FY

We set

X) = [T sx")

n>1

and for any t € F, \ {0,1}

d
aq(v;t) = 1q_q (1+ > X(Mt)Qq(%X)) ;

X7X0

where as usual x¢ is the trivial character and d is an integer and M a
nonzero rational number which can easily be given explicitly (M is simply
a normalization parameter, since one could change Mt into t). Then the
“theorem” of Katz is that for ¢ # 0,1 the quantity a,(7;t) is the trace of
Frobenius on some motive defined over Q (I put theorem in quotes because
it is not completely clear what the status of the proof is, although there
is no doubt that it is true). In the language of L-functions this means the
following: define a la Weil the formal power series

f
Ly(v;t;T) = exp (Z o ('y;t)]}) :

=1

Then L, is a rational function of 7', satisfies the local Riemann hypothesis,
and if we set

L(vyit;s) = HL (vitsp®) 7",

then L once completed at the “bad” primes and the prime at infinity (i.e.,
suitable gamma factors) should satisfy a functional equation of the standard

type.
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The work being done on this subject goes in a number of different direc-
tions.

e Find a suitable recipe for the Euler factors and the conductor at the
bad primes. This can be done experimentally using the methods described
above, and is very successful. However one then needs theoretical methods
to prove that the experimental guesses are correct, and this is being done
in particular by D. Roberts and F. Rodriguez-Villegas. Note that some of
the bad primes are “tame” and quite well understood, but some are wild
and much less well understood.

e Perform the reverse engineering for many interesting examples, in other
words find an equation of an algebraic variety to which the motive corre-
sponds. This has in particular been done by F. Beukers, M. Watkins, and
the author. As an example, we have found that the Artin motive corre-
sponding to W (Fy), the Weyl group of Fy, with (T) = T*2-T¢-T4-T34+T
and parameter ¢, comes from counting points on the affine elliptic surface
y? = 2% + 22 + c23 + 2, where ¢ = —27t/4.

e Link the L-functions of hypergeometric motives with L-functions of
automorphic forms. Many such links clearly exist, but almost none are
proved. The link is easy to guess simply by looking at the gamma factors,
which are given for hypergeometric motive through its Hodge numbers, a
conjecture due to Corti and Golyshev, and thanks to the well-known recipe
of Serre. We thus find ordinary elliptic modular forms (equivalently, elliptic
curves over QQ), symmetric squares of them, Siegel modular forms, and so
on.

e Classify hypergeometric motives corresponding to Calabi—Yau man-
ifolds. Note for instance that the whole subject was given a new impe-
tus after the work of Candelas—De la Ossa and Rodriguez-Villegas on the
Calabi—Yau quintic x“;’ + 1:3 + :cg + :c;? + xg — bYxizorzxaxs = 0, since the
interesting part of its cohomology corresponds to the hypergeometric mo-
tive with «(T') = T® — 5T. The L-function of the corresponding motives
should correspond to Siegel modular forms of degree 2 and weight 3, but
as already mentioned, the smallest conductor of such a motive (525) is
larger than what experts in Siegel modular forms can tabulate. However,
I have been told, but have no reference, that such Calabi—Yau manifolds
have indeed been proved to be modular, so in this case the existence of the
corresponding Siegel modular form is a theorem.
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