Rached Mneimné Frédéric Testard

 On products of singular elements

 On products of singular elements}

Journal de Théorie des Nombres de Bordeaux, tome 3, nº 2 (1991), p. 337-350
http://www.numdam.org/item?id=JTNB_1991__3_2_337_0
© Université Bordeaux 1, 1991, tous droits réservés.
L'accès aux archives de la revue «Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Séminaire de Théorie des Nombres, Bordeaux 3 (1991), 337-350

On products of singular elements

by Rached MNEIMNÉ and Frédéric TESTARD

Some rings, like the ring $M(n, K)$ of square matrices, do not contain irreducible elements: any singular element x can be written as the product $x=y z$ of two singular elements y and z. We shall call these rings S-rings. Our first purpose in this paper is to exhibit some examples of S-rings. For instance, we give a necessary and sufficient condition ensuring that $\mathbb{Z} / n \mathbb{Z}$ is an S-ring.

More generally, let us denote by $S_{i}(R)$ (or just S_{i} if no confusion is possible) the set of elements of a ring R, which can be written as the product of i singular elements; the sequence $\left(S_{i}\right)$ is decreasing (we only consider rings where left invertibility is equivalent to right invertibility) and moreover the ring R is an S-ring if and only if $S_{1}=S_{2}$. We denote by S_{∞} the intersection of all the S_{i}; when the sequence (S_{i}) is stationnary ($S_{i}=S_{k}$ whenever $i \geq k$), we have $S_{\infty}=S_{k}$ if k is the first index i such that $S_{i}=S_{i+1}$. There is a natural operation of the group $G L(R)$ of all invertible elements of the ring R on the set S_{i} defined by: $(g, x) \mapsto g x$ for $g \in G L(R)$ and $x \in S_{i}$, where $g x$ is the product in R of the two elements g and x. This defines clearly an operation of $G L(R)$ on S_{i}, hence also on $S_{i} \backslash S_{i+1}$ (elements of S_{i} which do not belong to S_{i+1}). Other natural operations could have been considered: $(g, x) \mapsto x g^{-1}$ or $(g, x) \mapsto g x g^{-1}$ or the following operation of $G L(R) \times G L(R)$ on S_{i} given by $\left(\left(g_{1}, g_{2}\right), x\right) \mapsto g_{1} x g_{2}^{-1}$. When the ring R is commutative, these operations bring nothing new. This is the case of the ring $K[A]$ of polynomial expansions of the matrix $A \in M(n, K)$ for which we dispose of a particularly nice description of the orbits of $G L(A)$ $(=G L(K[A]))-($ Part 3$)$.

In part 2, we study in an elementary way the ring $K[A]$ by giving a necessary and sufficient condition in order that the matrix A could be written as $P(A) Q(A)$, where P and Q are polynomials, with $P(A)$ and $Q(A)$ two singular matrices (i.e. $A \in S_{2}(K[A])$).

Part 4 is devoted to the solution of the following non trivial problem: given any matrix A, what is the maximal number $n(A)$ of singular and

[^0]permutable matrices A_{i} such that $A=A_{1} \cdots A_{m}$? A simple observation allows us to answer the same problem, for A and A_{i} bistochastic.

1. Examples of S-rings

We begin with an easy criterion
Lemma 1. Let E and F be two rings and $E \times F$ be their product ring; then $E \times F$ is an S-ring if and only E and F are S-rings. In particular, any finite product of fields is an S-ring.

Proof Consider a singular element (x, y) in $E \times F$. For instance, x is not invertible. We can find x_{1} and x_{2} two singular elements in E so that $x=x_{1} x_{2}$; then $(x, y)=\left(x_{1}, y\right) \cdot\left(x_{2}, 1\right)$ is the product of two singular elements of $E \times F$. Conversely, suppose that $E \times F$ is an S-ring and take x, any singular element in E. There exist two singular couples (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$ so that $(x, 1)=\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)$. Since $y_{1} \cdot y_{2}=1, x_{1}$ and x_{2} are not invertible, and E is an S-ring; the same argument works for F.

Lemma 2. Let p be a prime and α be a positive integer. The ring $R=$ $\mathbb{Z} / p^{\alpha} \mathbb{Z}$ is an S-ring if and only if $\alpha=1$.

Proof If $\alpha=1$, the ring R is a field and there is no problem; otherwise the class of p cannot be the product of two singular classes since it would imply $p-p^{2} k=c p^{\alpha}$ where k and c are integers, which is impossible if $\alpha \geq 2$.

Proposition 1. Let $R=\mathbb{Z} / n \mathbb{Z}$; the ring R is an S-ring if and only if $n=p_{1} \cdots p_{k}$ where the p_{i} are distinct primes.

Proof If $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$, the rings R and $\prod_{i=1}^{r}\left(\mathbb{Z} / p_{i}^{\alpha_{i}} \mathbb{Z}\right)$ are isomorphic. The conclusion follows easily from lemmas 1 and 2.

Proposition 2. Let X be a topological space and $R=C(X, \mathbb{R})$ be the ring of all continuous mappings from X to \mathbb{R}. Then R is an S-ring.

Proof The function f is singular in R if and only if it vanishes at some point of X. When it happens, the same is true for the two continuous mappings $f_{1}=f^{1 / 3}$ and $f_{2}=f^{2 / 3}$ and $f=f_{1} f_{2}$.

Proposition 3. Let R be the ring of all germs of C^{∞} real functions on a neighbourhood of zero. Then $f \in S_{i} \Leftrightarrow f(0)=f^{\prime}(0)=\cdots=f^{(i-1)}(0)=0$.

Proof Let us recall that a germ is an equivalence class with respect to the relation: $f \mathcal{R} g \Leftrightarrow f=g$ on a neighbourhood of zero. An element f of R is singular if and only if $f(0)=0$ and a straightforward application of Leibniz's derivation rule shows that if $f=f_{1} \cdots f_{i}$ is the product of i singular elements, the function f and its $i-1$ first derivatives vanish at 0 . Conversely, if this is true, Taylor's formula gives, for x small enough:

$$
f(x)=\frac{x^{i}}{(i-1)!} \int_{0}^{1}(1-t)^{i-1} f^{(i)}(t x) d t \text { and the conclusion follows. }
$$

Remark 1: This result provides an exemple of a ring where the sequence S_{i} is not stationnary and does not "converge" to 0 . Indeed the well known C^{∞}-function $f(x)=\exp \left(-1 / x^{2}\right)$ whenever $x \neq 0$, clearly belongs to all the S_{i} without being 0 . The explanation lies in the fact that the ring R of germs of C^{∞} functions which is a local ring (S_{1} is an ideal, hence the unique maximal ideal) is not noetherian: indeed, in a local noetherian ring, the intersection $\bigcap S_{i}$ is equal to $\{0\}$ as it results trivially from Krull's theorem (see e.g. Atiyah-Macdonald: Introduction to Commutative Algebra p. 110 -Addison-Wesley 1969).

Proposition 4. Let K be a field and $R=M(n, K)$ be the ring of square matrices $n \times n$ with coefficients in K. Then R is an S-ring.

Proof Let $A \in R$ be a singular matrix and $r<n$ be the rank of A. We know that A is equivalent to the matrix $J_{r}=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$ where I_{r} denotes the identity matrix of order r, i.e. there exist two invertible matrices P and Q such that $A=P J_{r} Q$. Since $J_{r}^{2}=J_{r}$, we get $A=X Y$ where $X=P J_{r}$ and $Y=J_{r} Q$ are singular matrices.

Corollary 1. The ring of bistochastic matrices of order n is an S-ring.
Proof Recall that a matrix $M=\left(a_{i, j}\right)$ is bistochastic if there exists d in K such that $\forall i, \sum_{j} a_{i j}=d$ and $\forall j, \sum_{i} a_{i j}=d$. It is easy to prove that M is bistochastic if and only if $M(H) \subset H$ and $M(D) \subset D$ where H denotes the hyperplane of K^{n} equipped with its canonical basis $\left\{e_{1} \ldots, e_{n}\right\}$, of equation $\sum_{i} x_{i}=0$ and D is the one dimensional subspace generated by $\sum_{i} e_{i}$. Hence, there exists an invertible matrix P, independent of M, satisfying $M=P\left[\begin{array}{cc}A & 0 \\ 0 & \lambda\end{array}\right] P^{-1}$; where A is an element of $M(n-1, K)$. This defines an isomorphism between the ring of bistochastic matrices and $M(n-1, K) \times K$ and the conclusion follows from lemma 1.

2. Singular polynomial decompositions of matrices

From now on, A will denote a square matrix, P and Q will be polynomials.

Proposition 5. The singular matrix A can be written as $P(A) Q(A)$, where $P(A)$ and $Q(A)$ are singular if and only if 0 is a simple root of the minimal polynomial of A.

Proof Let us recall that the minimal polynomial of A is the unitary generator π of the ideal of all polynomials which vanish at A. The roots of π in the field K are the eigenvalues of A in K. In particular, 0 is a root of π since A is singular.

The sufficient condition is easy to prove: one can write, $0=\pi(A)=$ $\lambda A+A Q(A)$ with $\lambda \neq 0, Q$ being a polynomial vanishing at 0 ; so that $A=(-A / \lambda) Q(A)$ and the conclusion follows, since $Q(A)$ is singular $(Q(A)$ admits $Q(0)=0$ as an eigenvalue). Conversely, if $A=P(A) Q(A)$, the minimal polynomial of A divides the polynomial $X-P(X) Q(X)$: it is enough to prove that 0 is a simple root of $X-P(X) Q(X)$. Let us first remark that the equality $A=P(A) Q(A)$ remains true for any matrix B similar to A, so that, considering an upper triangular matrix B similar to A, (we could need to extend the ground field) we get $\lambda_{i}=P\left(\lambda_{i}\right) Q\left(\lambda_{i}\right)$ for any eigenvalue λ_{i} of A this implies that if $\lambda_{i} \neq 0, P\left(\lambda_{i}\right) \neq 0$ and $Q\left(\lambda_{i}\right) \neq 0$, so necessarily, since $P(A)$ and $Q(A)$ are singular, $P(0)=Q(0)=0$ and the required conclusion follows easily.

Remark 2: An equivalent way to characterize such matrices is the following: 0 is a simple root of the minimal polynomial if and only if $\operatorname{ker}(A)=$ $\operatorname{ker}\left(A^{2}\right)$.

Remark 3: Let R be the ring $K[A]$; it results from the proof of proposition 5 that if $A \in S_{2}$, then $A \in S_{i}, \forall i$ (once we have written $A=(-A / \lambda) Q(A)$, we obtain $A=\left(A / \lambda^{2}\right) Q(A) Q(A)$, and so on). We will understand the situation much better in the following section (see Remark 8).

Corollary 2. For $A=B^{k}$, there exist polynomials P and Q so that $A=P(A) Q(A)$ with $P(A)$ and $Q(A)$ singular matrices if and only if 0 is a root of the minimal polynomial of B of order $\leq k$.

Proof This is an easy consequence of the fact already noticed in remark 2 , that the order of 0 in the minimal polynomial of a matrix M is the first step where the increasing sequence $\operatorname{ker}\left(M^{i}\right)$ becomes stationnary: we have $\operatorname{ker}\left(B^{k}\right)=\operatorname{ker}(A) \subset \operatorname{ker}\left(B^{k+1}\right) \subset \cdots \subset \operatorname{ker}\left(B^{2 k}\right)=\operatorname{ker}\left(A^{2}\right)$.

3. The ring $K[A]$ for itself

In this section it will be assumed that the field K is algebraically closed, although most results can be stated in a more general context; let us recall that the ring $R=K[A]=\{P(A), P \in K[X]\}$ is isomorphic to the quotient ring $K[X] /(\pi)$, where (π) denotes the principal ideal generated by the minimal polynomial of A. Writing π in the form $\pi(X)=\prod_{i}\left(X-\lambda_{i}\right)^{\alpha_{i}}\left(\lambda_{i} \in\right.$ $K, \alpha_{i} \in \mathbb{N}^{\star}$) it follows from the chinese remainder theorem (or from an adequate computation of the dimension of the underlying vector spaces) that $K[A]$ is isomorphic to the product ring $\prod_{i} K[X] /\left(X-\lambda_{i}\right)^{\alpha_{i}}$, so that we obtain, as for the ring $\mathbb{Z} / n \mathbb{Z}$, a first result:

Proposition 6. The ring $K[A]$ is an S-ring if and only if A is diagonalisable.

Proof This is again a straightforward consequence of lemma•1, once we know that a matrix A can be reduced to the diagonal form if and only if the minimal polynomial of A has simple roots.

Remark 4: If K is no more algebraically closed, we can replace the statement of proposition 6 by the more general one: the ring $K[A]$ is an S-ring if and only if A is semisimple (i.e. diagonalisable over an extension K^{\prime} of K).

Remark 5: It is not worthless to note that an element $M=P(A)$ of the ring $R=K[A]$ is invertible if and only if $\operatorname{det}(M) \neq 0$ or still, if and only if $P(X)$ and $\pi(X)$ are coprime: the first criterion results for instance, from a direct application of Cayley-Hamilton theorem; as for the second it is, in view of the isomorphism $K[A] \cong K[X] /(\pi)$, a consequence of Bezout theorem.

Before we start the study of the sets S_{i} for the ring $K[A]$, together with their $G L(A)$-action, we give a general lemma which can be more easily stated if the underlying set of the group $G L(R)$ of a ring R is denoted by $S_{0}(R)$:

Lemma 3. Let E and F be two rings and $E \times F$ be their product ring. Then, for $n \geq 1$

$$
S_{n}(E \times F)=\bigcup S_{i}(E) \times S_{j}(F) \text { the union being taken over } i+j \geq n
$$

Proof Let $x=x_{1} \cdots x_{i}$ be an element of $S_{i}(E)$ and $y=y_{1} \cdots y_{j}$ an element of $S_{j}(F)$ where all the $\left(x_{k}, y_{k}\right)$ are singular unless $i=0$ or $j=$ 0 . We write $(x, y)=\left(x_{1}, 1\right) \cdots\left(x_{i}, 1\right)\left(1, y_{1}\right) \cdots\left(1, y_{j}\right)$; the element (x, y)
belongs to $\left.S_{i+j}(E \times F) \subset S_{n}\right)$, since $i+j \geq n \geq 1$. Conversely, let $(x, y)=$ $\left(x_{1}, y_{1}\right) \cdots\left(x_{n}, y_{n}\right)$ be an element of $S_{n}(E \times F)$ where all the couples $\left(x_{i}, y_{i}\right)$ are singular. We write $(x, y)=\left(x_{1} \cdots x_{n}, y_{1} \cdots y_{n}\right)$ and we denote by i the number (possibly equal to 0) of x_{k} which are singular in E, so there are ($n-i$) elements x_{k} which are invertible; the corresponding y_{k} are necessarily singular, so that at least $j \geq n-i$ elements among the y_{k} are singular and $y \in S_{j}(F)$; the result then follows from the hypothesis $x \in S_{i}(E)$.

Remark 6: The lemma can be easily extended by induction to the case of a finite product of rings E_{1}, \ldots, E_{f}.

Remark 7: For $n \geq 2$, the indexation in lemma 3 could be replaced by $i+j=n$. (For $n=1$, this is no more true because the factor $S_{1} \times S_{1}$ cannot be taken into account). In the case of k rings, we get the same for $n \geq k$.

Proposition 7. Let $R=K[A]$ and $\pi(X)=\prod_{i}\left(X-\lambda_{i}\right)^{\alpha_{i}}, i=1, \ldots, r$ the minimal polynomial of A, then $S_{\infty}=S_{\rho}$ where $\rho=\sum_{i}\left(\alpha_{i}-1\right)+1$.

Proof Since the sets S_{i} behave well under ring isomorphisms, we look at the problem in the ring $R=\prod_{i} R_{i}$, where R_{i} denotes the quotient ring $K[X] /\left(X-\lambda_{i}\right)^{\alpha_{i}}$. Let $x=\left(x_{1}, \ldots, x_{r}\right)$ belong to $S_{\rho}(R)$; we shall prove that one of the components of x is zero, this will imply clearly that $x \in S_{\infty}$. From lemma 3, we have $x_{j} \in S_{\beta_{j}}\left(R_{j}\right)$, where $\sum_{j} \beta_{j} \geq \rho$, so that one of the β_{i}, say β_{k} is $\geq \alpha_{k}$ (otherwise, we would have $\sum_{j} \beta_{j} \leq \sum_{j}\left(\alpha_{j}-1\right)<\rho$) which ensures $x_{k} \in S_{\alpha_{k}}\left(R_{k}\right)=\{0\}$. To end the proof, we notice that the element $x=\left(\left(X-\lambda_{1}\right)^{\alpha_{1}-1}, \ldots,\left(X-\lambda_{r}\right)^{\alpha_{r}-1}\right)$ is in $S_{\rho-1}$ but not in S_{ρ} (no component of x is equal to zero!)

Again Lemma 3 will be of use to establish the following criterion:
Proposition 8. An element $P(A)$ in the ring $R=K[A]$ belongs to S_{2} if and only if P vanishes at at least two eigenvalues not necessary distinct of A or at an eigenvalue of order one in the minimal polynomial of A.

Proof We keep the notation introduced in the precedent proof; the isomorphism between the ring $R=K[A]$ and the ring ΠR_{i} is given by $P(A) \mapsto P_{i}$ where P_{i} denotes the class of the polynomial $P(X)$ in the quotient R_{i}. Hence, the element $P(A)$ belongs to S_{2} if and only if one among the P_{i} belongs to $S_{2}\left(R_{i}\right)$ or at least two among the P_{i}, say P_{t} and P_{s}, belong to $S_{1}\left(R_{t}\right)$ and $S_{1}\left(R_{s}\right)$ respectively, the second alternative implies clearly that the polynomial P is divisible by $\left(X-\lambda_{t}\right)$ and by $\left(X-\lambda_{s}\right)$, the first alternative means that P is divisible by $\left(X-\lambda_{i}\right)^{2}$ if $\alpha_{i} \geq 2$ or $P_{i}=0$ if $\alpha_{i}=1$.

Remark 8: We understand now better the proposition 5 and the remark 3: to say that A belongs to S_{2} means that the polynomial X (which cannot vanish at two eigenvalues of $A!$) vanishes at an eigenvalue of order 1 in π_{A}; since 0 is its only root, this means that 0 is a simple root of π_{A}. The image in the product $\prod R_{i}$ has one of its components 0 so, belongs to S_{∞}.

Remark 9: A necessary and sufficient condition in order that an element $P(A)$ belongs to S_{3} could be stated: the polynomial must vanish at at least three roots, or must be divisible by $(X-\lambda)^{2}$ where λ is a root of order 2 of π_{A}, or vanish at a simple root of π_{A} The proof is left to the reader.

Our purpose until the end of this section will be the study of the orbits of $G L(A)$ on the S_{i}. We begin with the case $\pi(X)=(X-\lambda)^{\alpha}$ (i.e. $A=\lambda I+N$, N nilpotent). In this case $S_{\alpha}=\{0\} \subset S_{\alpha-1} \subset \cdots \subset S_{1}$ (strict inclusions). For $i=1, \ldots, \alpha-1$, an element of $R=K[X] /(X-\lambda)^{\alpha}$ belongs to $S_{i} \backslash S_{i+1}$ if and only if it can be written as $(X-\lambda)^{i} Q(X), Q$ and π being mutually prime, which means in view of remark 5 , that it belongs to the orbit of $(X-\lambda)^{i}$. This proves that the $S_{i} \backslash S_{i+1}$ along with S_{α} are the orbits of $G L(R)$ acting on S_{1}; in particular, there are α orbits.

The following lemma will permit us to compute the number of orbits in the general case:

Lemma 4. Let G_{i} denotes the group of invertible elements of the ring $E_{i}, i=1, \ldots, k$ and let E be the product ring. Then $G L(E)$ is isomorphic to the product $\Pi G L\left(E_{i}\right)$. Moreover, if α_{i} is the number of orbits of G_{i} acting on $S_{1}\left(E_{i}\right)$, then the number of orbits of $G L(E)$ on $S_{1}(E)$ is given by $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \cdots\left(\alpha_{r}+1\right)-1$.

Proof The assertion concerning $G L(E)$ is trivial. As for the second, we begin with the case $n=2$. Considering the action of $G_{1} \times G_{2}$ on the set of singular elements of $R_{1} \times R_{2}$, we can divide the orbits in three kinds: orbits of elements (x, y) where x and y are singular, orbits of elements (x, y) where x is singular and y is invertible and finally, orbits of those elements (x, y) where x is invertible and y singular. There are clearly $\alpha_{1} \alpha_{2}$ orbits of the first kind, α_{1} of the second type and α_{2} of the third, which gives $\alpha_{1} \alpha_{2}+\alpha_{1}+\alpha_{2}=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)-1$, first and last. An induction argument will do with the general case.

Proposition 9. The action of $G L(A)$ on the set of singular elements of $K[A]$ determines $\prod_{i}\left(\alpha_{i}+1\right)-1$ orbits, $i=1, \ldots, r$ if the minimal polynomial is given by $\prod_{i}\left(X-\lambda_{i}\right)^{\alpha_{i}}$.

Proof it is an immediate consequence of lemma 4 and the discussion
before.
Corollary 3. The non empty sets $S_{i} \backslash S_{i+1}$, along with S_{∞} are exactly the orbits of $G L(A)$ acting on $K[A]$ if and only if the matrix A can be written $A=\lambda I+N$, where $\lambda \in K$ and N nilpotent.

Proof We have already established the sufficient condition. Conversely, our hypothesis implies that, in view of proposition 7 and 8 ,

$$
\sum_{i}\left(\alpha_{i}-1\right)+1=\prod_{i}\left(\alpha_{i}+1\right)-1
$$

which is possible only if $r=1$, that is $A=\lambda I+N$.
Corollary 4. Let A have r distinct eigenvalues, then A is diagonalisable if and only if the number of orbits on the set of singular elements is $2^{r}-1$.

Proof This is clear since the condition is equivalent to $\alpha_{i}=1, \forall i$.
Proposition 10. Let $S_{\infty}=S_{\rho}$ in the ring $R=K[A]$ and suppose that $K[A]$ is not an S-ring (i.e. $\rho \geq 2$), then the number of orbits of $G L(A)$ acting on the non-empty set $S_{1} \backslash S_{2}$ is exactly the number of multiple roots of the minimal polynomial π_{A}. Moreover, the non-empty set $S_{\rho-1} \backslash S_{\rho}$ is exactly an orbit in the singular set.

Proof We keep use of the isomorphism $R \cong \prod_{i} R_{i}$ with its $G L(A) \cong$ $\prod_{i} G L\left(R_{i}\right)$ action; an element $\left(x_{1}, \ldots, x_{r}\right)$ belongs to $S_{1} \backslash S_{2}$ if and only if all the x_{i} but one, say x_{k} are invertible and x_{k} belongs to $S_{1}\left(R_{k}\right) \backslash S_{2}\left(R_{k}\right)$; this set is hence non empty and a $G L\left(R_{k}\right)$-orbit. We get so a correspondence between the orbit of the element $\left(x_{1}, \ldots, x_{r}\right)$ and the necessary multiple eigenvalue α. As for the second assertion, we first make use of lemma 3: the element $\left(x_{1}, \ldots, x_{r}\right)$ belongs to $S_{\rho-1} \backslash S_{\rho}$ if $x_{i} \in S_{\beta i}\left(R_{\beta i}\right)$ and $\sum_{i} \beta_{i} \geq \rho-1$ and no x_{i} is zero (cf. proof of proposition 7), that is $\beta_{i} \leq \alpha_{i}-1$; since $\rho-1=$ $\sum_{i}\left(\alpha_{i}-1\right)$, we get $\beta_{i}=\alpha_{i}-1$, for every i. But each $S_{\alpha_{i}-1}\left(R_{i}\right) \backslash S_{\alpha_{i}}\left(R_{i}\right)$ is an orbit (even if $\alpha_{i}=1$; see our convention of notation preceding lemma 3), the conclusion follows.

Remark 10: More generally, it is not difficult to establish that there is a one-to-one correspondence between the orbits in $S_{k} \backslash S_{k-1}$ and the r-uples $\left(a_{1}, \ldots, a_{r}\right)$ for which $a_{1}+\cdots+a_{r}=k$ and $0 \leq a_{i} \leq \alpha_{i}-1$ for every i. This gives for example in the case of a matrix A with minimal polynomial $\pi_{A}(X)=X^{3}(X+1)^{4}(X-1)^{3}$ (here $\rho=(2+3+2)+1=8$ and the number of orbits is 79) exactly 3 orbits in $S_{1} \backslash S_{2}, 6$ orbits in $S_{2} \backslash S_{3}, 8$ orbits in
$S_{3} \backslash S_{4}, 8$ orbits in $S_{4} \backslash S_{5}, 6$ orbits in $S_{5} \backslash S_{6}, 3$ orbits in $S_{6} \backslash S_{7}$, one orbit in $S_{7} \backslash S_{8}$ and 44 orbits in S_{8}.

Computing all the orbits in $S_{1} \backslash S_{\rho}$, we need to know all the (a_{1}, \ldots, a_{r}) such that $\forall i 0 \leq a_{i} \leq \alpha_{i}-1$ and $1 \leq a_{1}+\cdots+a_{r} \leq \rho-1$. This last inequality is a consequence of the first r inequalities, so there are ($\alpha_{1} \cdots \alpha_{r}-1$) orbits in $S_{1} \backslash S_{\infty}$ and by substraction $\Pi\left(\alpha_{i}+1\right)-\left(\alpha_{1} \cdots \alpha_{r}\right)$ orbits in S_{∞} (result which is valid even if $\rho=1$). It is now easy to solve the following:

Exercise 1: Prove that if A has exactly k distinct roots with $k \geq 2$, then A is diagonalisable if and only if there are $2^{k}-1$ orbits of $G L(A)$ on S_{∞}. (Compare with corollary 4).

4. Permutable decompositions of singular matrices

If A is a singular matrix, we define $n(A)$ as the upper bound of the numbers m of singular permutative matrices A_{i} such that $A=A_{1} \cdots A_{m}$. In order to compute the number $n(A)$ for a given matrix A, we need to introduce a special class of operators characterized by the following:

Proposition 11. For a given matrix acting on the finite dimensional vector space $E=K^{n}$, it is equivalent to say:
a) $\operatorname{dim} \operatorname{ker}\left(A^{2}\right)=2 \operatorname{dim} \operatorname{ker}(A)$
b) the Jordan cells of A associated with the eigenvalue 0 are of order ≥ 2
c) $\operatorname{ker}(A) \subset \operatorname{im}(A)$
d) the matrix A is similar to a matrix $\left[\begin{array}{cc}0 & X \\ 0 & Y\end{array}\right]$ written with respect to a direct decomposition of $E=\operatorname{ker}(A) \oplus G$ where the linear operators

$$
X: G \xrightarrow{A} E \xrightarrow{p r_{1}} \operatorname{ker}(A) \quad Y: G \xrightarrow{A} E \xrightarrow{p r_{2}} G
$$

satisfy $(\alpha) \operatorname{ker}(X) \oplus \operatorname{ker}(Y)=G$ and $(\beta) X$ is onto.
Proof The equivalence between a) and b) results from the classical Jordan decomposition; the one between a) and c) is a direct consequence of the Frobenius injection $\varphi: \operatorname{ker}\left(A^{2}\right) / \operatorname{ker}(A) \rightarrow \operatorname{ker}(A)$ given by $\bar{x} \mapsto A(x)$; thus a) is equivalent to say that φ is surjective, which is exactly c). We prove now $a) \Rightarrow d$): let C_{1} be a complementary subspace of $\operatorname{ker}(A)$ in $\operatorname{ker}\left(A^{2}\right)$ and C_{2} be a complementary subspace of $\operatorname{ker}\left(A^{2}\right)$ in E and write $G=C_{1} \oplus C_{2}$ -we have already noticed that the restriction of A to C_{1} is an isomorphism between C_{1} and $\operatorname{ker}(A)$; the same is true for the restriction of X to C_{1},
since these restrictions are equal. It follows that X is onto and that C_{1} and $\operatorname{ker}(X)$ are complementary in G. We need only to prove that $C_{1}=\operatorname{ker}(Y)$; it is clear that $C_{1} \subset \operatorname{ker}(Y)$, moreover, if A^{+}denotes the restriction of A to G, A^{+}is one-to-one so $\operatorname{dim}\left(C_{1}\right)+\operatorname{dim}\left(C_{2}\right)=r k\left(A^{+}\right)=r k\left[\begin{array}{l}X \\ Y\end{array}\right]=$ $r k\left(\left[\begin{array}{ll}X & Y\end{array}\right]\right)=r k(X)+r k(Y)=\operatorname{dim}\left(C_{1}\right)+r k(Y)$ and we are done.

Finally let us prove $d) \Rightarrow a$): the matrix A^{2} is similar to $\left[\begin{array}{cc}0 & X Y \\ 0 & Y^{2}\end{array}\right]$ and with respect to the direct decomposition $E=\operatorname{ker}(A) \oplus G$, to say that the vector column $\left[\begin{array}{l}u \\ v\end{array}\right]$ is in $\operatorname{ker}\left(A^{2}\right)$ means that $v \in \operatorname{ker}\left(Y^{2}\right) \cap \operatorname{ker}(X Y)$ and u is arbitrary in $\operatorname{ker}(A)$; but $\operatorname{ker}(Y)=\operatorname{ker}\left(Y^{2}\right) \cap \operatorname{ker}(X Y)$ if $\operatorname{ker}(X) \cap \operatorname{ker}(Y)=$ $\{0\}$ (easy) so that $v \in \operatorname{ker}(Y)$. We end the proof by noting that since X is onto and $G=\operatorname{ker}(X) \oplus \operatorname{ker}(Y)$, we have in fact $\operatorname{dim} \operatorname{ker}(Y)=\operatorname{dim} \operatorname{ker}(A)$.

We are able to state the main result of this section:

Proposition 12. The number $n(A)$ is finite if and only if A satisfies the equivalent properties given in proposition 11. In which case $n(A)=$ $\operatorname{dim} \operatorname{ker}(A)$.

Proof The matrix A is similar to a matrix B of the form:
$B=\left[\begin{array}{cccc}B_{0} & & & \\ & B_{1} & 0 & \\ & 0 & \ddots & \\ & & & B_{k}\end{array}\right]$, the matrix B_{0} being invertible and each of the matrices B_{i} being a Jordan cell associated to the eigenvalue 0 (obviously, $k=\operatorname{dim} \operatorname{ker}(A)$ and moreover B_{0} is absent if A is nilpotent). If one of the B_{i} is of order 0 , the matrix A is similar to $B=\left[\begin{array}{cc}B^{\prime} & 0 \\ 0 & 0\end{array}\right]$ and $B=$ $B_{1} \times B_{2} \times \cdots \times B_{p}$, with $B_{1}=B, B_{2}=\cdots=B_{p}=\left[\begin{array}{cc}I_{n-1} & 0 \\ 0 & 0\end{array}\right]$ (with evident notation), all these matrices are singular and permutative, and we can choose p as large as we want: $n(A)=\infty$. When $\operatorname{dim} \operatorname{ker}\left(A^{2}\right)=$ $2 \operatorname{dim} \operatorname{ker}(A)$, we have $B=B_{1}^{\prime} \times \cdots \times B_{k}^{\prime}$ where $B_{1}^{\prime}=\left[\begin{array}{lllll}B_{0} & & & & \\ & B_{1} & & 0 & \\ & & I d & & \\ & 0 & & \ddots & \\ & & & & I d\end{array}\right]$ (the blocks B_{0} and B_{1} kept unchanged and the others replaced by $I d$) and
for $i=2, \ldots, k, B_{i}^{\prime}=\left[\begin{array}{ccccc}I d & & & & \\ & \ddots & & 0 & \\ & & B_{i} & & \\ & 0 & & \ddots & \\ & & & & I d\end{array}\right]$ (we replace all the blocks B_{j} by $I d$, except B_{i} which remains unchanged); again these matrices are singular and permutative so $n(A) \geq k=\operatorname{dim} \operatorname{ker}(A)$.

We proceed to prove the opposite inequality (in due course we shall need two lemmas). Suppose that $M=\left[\begin{array}{ll}0 & X \\ 0 & Y\end{array}\right]$ given by proposition 11 can be written as a product $N_{1} \cdots N_{k+1}$, where the N_{i} are permutable matrices; we shall show that one of the N_{i} must be invertible.

Let us write $N_{i}=\left[\begin{array}{ll}S_{i} & D_{i} \\ R_{i} & C_{i}\end{array}\right]$ according to the decomposition of M. The first remark is $R_{i}=0$. Indeed, since N_{i} and M commute, $N_{i}(\operatorname{ker}(M)) \subset$ $\operatorname{ker}(M)$, that is $R_{i}=0$. It follows that the S_{i} are permutative and that $S_{1} \times S_{2} \cdots \times S_{k+1}=0$.

Lemma 5. Let S_{1}, \ldots, S_{k+1} be permutative matrices of order k satisfying $S_{1} \times S_{2} \times \cdots \times S_{k+1}=0$, then after reindexation $S_{1} \times S_{2} \times \cdots \times S_{k}=0$.

Proof By induction. The result is trivial for $k=1$; if S_{k+1} is invertible, the conclusion is clear since we may multiply on the right by its inverse. We may then suppose that the dimension d of the image subspace im $\left(S_{k+1}\right)$ is strictly smaller than n. If $S_{i}^{\prime}, i=1, \ldots, n$, denotes the restriction (everything commute with S_{k+1}) of S_{i} to the subspace $\operatorname{im}\left(S_{k+1}\right)$, we have $S_{1}^{\prime} \times S_{2}^{\prime} \times \cdots \times S_{k}^{\prime}=0$. This last expression can be thought (by grouping if necessary some operators toghether) as the null product of $d+1$ commuting operators in a d-dimensional space. By induction hypothesis, we get (after possible reindexation, and reinserting of some possible operators) $S_{1}^{\prime} \times S_{2}^{\prime} \times \cdots \times S_{k-1}^{\prime}=0$, and conclude that at the level of the hole space $S_{1} \times S_{2} \times \cdots \times S_{k-1} \times S_{k+1}=0$.

Accordingly, we may suppose that $S_{1} \times \cdots \times S_{k}=0$ and that, denoting the product $N=N_{1} \cdots N_{k}$ by $\left[\begin{array}{cc}0 & H \\ 0 & U\end{array}\right]$ and N_{k+1} by $\left[\begin{array}{cc}R & S \\ 0 & T\end{array}\right]=0$,

$$
\begin{array}{ll}
X=H T=R H+S U & \text { (i) } \tag{i}\\
Y=U T=T U & \text { (ii), since } M=N N_{k+1}=N_{k+1} N
\end{array}
$$

The last step of the proof will consist of proving that R and T are invertible.
(i) and (ii) imply that $\operatorname{ker}(T) \subset \operatorname{ker}(X)$ and $\operatorname{ker}(T) \subset \operatorname{ker}(Y)$ so that $\operatorname{ker}(T)=\{0\}: T$ is invertible. Now since T is invertible, again (ii) shows that $\operatorname{ker}(U)=\operatorname{ker}(Y)$ and (i) shows that $r k(H)=r k(X)$.

Keeping the notations of proposition 11, we assert that $G=\operatorname{ker}(X) \oplus$ $\operatorname{ker}(U)$ and $G=\operatorname{ker}(H) \oplus \operatorname{ker}(U)$; the first equality is now clear, the second will be established if $\operatorname{ker}(H) \cap \operatorname{ker}(U)=\{0\}$, but this is easy since $\operatorname{ker}(H) \cap$ $\operatorname{ker}(U) \subseteq \operatorname{ker}(U)=\operatorname{ker}(Y)$ and by (i) $\operatorname{ker}(H) \cap \operatorname{ker}(U) \subset \operatorname{ker}(X)$. We get now the invertibility of R from the following lemma:

Lemma 6. Consider the diagram:

and suppose that $x=r \circ h+s \circ u$ together with $\operatorname{ker}(h)$ and $\operatorname{ker}(x)$ in direct summand with $\operatorname{ker}(u)$ in G, then r induces an isomorphism between the images of h and x.

Proof This is immediate as soon as we consider the restrictions to $\operatorname{ker}(u)$ of the mappings given on G.

Corollary 5. If $n\left(A^{k}\right)$ is finite then $n\left(A^{k}\right)=k \cdot n(A)$.
Proof Write $\{0\} \subset \operatorname{ker}(A) \subset \operatorname{ker}\left(A^{2}\right) \subset \cdots \subset \operatorname{ker}\left(A^{k}\right) \subset \operatorname{ker}\left(A^{k+1}\right) \subset$ $\ldots \subset \operatorname{ker}\left(A^{2 k}\right)$. Since $\operatorname{dim} \operatorname{ker}\left(A^{2 k}\right)=2 \operatorname{dim} \operatorname{ker}\left(A^{k}\right)$, the Frobenius inequalities:
$\operatorname{dim} \operatorname{ker}\left(A^{k+1}\right)-\operatorname{dim} \operatorname{ker}\left(A^{k}\right) \leq \operatorname{dim} \operatorname{ker}\left(A^{k}\right)-\operatorname{dim} \operatorname{ker}\left(A^{k-1}\right)$ are in fact equalities so $\operatorname{dim} \operatorname{ker}\left(A^{k}\right)=k \cdot \operatorname{dim} \operatorname{ker}(A)$.

Remark 11: The preceding corollary shows in particular that if $n(A)$ is odd, the matrix A has no square root.

Proposition 13. Suppose $n(A)<\infty$, and let $A=X_{1} \cdots X_{m}$ a permutative singular maximal decomposition of $A(m=n(A))$, then $\forall i, n\left(X_{i}\right)<\infty$ and is $=1$.

Proof We have $\operatorname{ker}\left(X_{i}\right) \subset \operatorname{ker}(A) \subset \operatorname{im}(A) \subset \operatorname{im}\left(X_{i}\right)$, since the X_{i} commute. So $n\left(X_{i}\right)$ is finite. We proceed, for proving $n\left(X_{i}\right)=1$, by induction on $m=\operatorname{dim} \operatorname{ker}(A)$; the case $m=1$ is trivial. Write $A=X_{1} \cdot B$ where $B=X_{2} \cdots X_{m}$; as for X_{i}, we prove that $n(B)$ is finite, but B is
already written as $m-1$ permutative singular matrices, hence $n(B) \geq m-1$. Remember now that $\operatorname{ker}(B) \subset \operatorname{ker}(A)$ so either $\operatorname{dim} \operatorname{ker}(B)=m-1$ or m; we prove that it is not m : otherwise, the inclusion $\operatorname{im}(A) \subset \operatorname{im}(B)$ would in fact be an equality. Write now: $\operatorname{im}(B)=\operatorname{im}(A)=X_{1}(\operatorname{im}(B))$. This means that X_{1} leaves $\operatorname{im}(B)$ invariant, and its restriction to $\operatorname{im}(B)$ is surjective, and hence $\operatorname{ker}\left(X_{1}\right) \cap \operatorname{im}(B)=\{0\}$. But $\operatorname{ker}\left(X_{1}\right) \subset \operatorname{ker}(A) \subset \operatorname{im}(A)=\operatorname{im}(B)$, so X_{1} is bijective which is false. We have in fact $\operatorname{dim} \operatorname{ker}(B)=m-1$, and $n\left(X_{j}\right)=1 \forall j \geq 2$ by induction hypothesis. Since we could have chosen $B=X_{1} \cdots X_{m-1}$, the fact $n\left(X_{i}\right)=1$ is clear.

The next result is a simple application of proposition 12 to permutative decomposition of singular bistochastic matrices: if A is such a matrix we define $n_{s}(A)$ as the upper bound of the number m of singular permutative bistochastic matrices A_{i} such that $A=A_{1} \cdots A_{m}$.

Proposition 14. For a bistochastic matrix, $n_{s}(A)=n(A)$.
Proof We make again use of the isomorphism between the ring of bistochastic matrices and the product ring $M_{n-1}(K) \times K$, and may suppose $A=\left[\begin{array}{cc}A_{1} & 0 \\ 0 & \lambda\end{array}\right]$ (see the proof of corollary 1); if $\lambda=0, n_{s}(A)=n(A)=\infty$; and if $n(A)<\infty$ the scalar λ is different from 0 (proposition 11 b)) and $n(A)=n\left(A_{1}\right)$ the conclusion follows easily.

We look in this final paragraph to the upper bound $m(A)$ of numbers k such that $A=A_{1} \cdots A_{k}$ where the A_{i} are singular and quasi-commutative (i.e. $A_{i} A_{j}-A_{j} A_{i}$ is nilpotent).

Proposition 15. $m(A)=\infty, \forall A$.
Proof The problem behaves well under base change, and a simple argument similar to the one given at the beginning of the proof of proposition 12 , shows that we only need to consider the case when A is a Jordan cell J_{n} associated to the zero eigenvalue. But if $B=\left[\begin{array}{llll}1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & 0\end{array}\right]$, we have for every $m, B^{m} J_{n}=B J_{n}=J_{n}$; we get the result by noting that two triangular matrices àre quasi-commutative.

Exercises: 2 - Given an arbitrary matrix A, prove that there exists an invertible matrix P , such that $n(P A)<\infty$.

3 - Prove that if $n(A \otimes B)<\infty$, where $A \otimes B$ is the tensor
product of A and B, then either A or B is invertible.
4 - Prove that if $p \geq 2$, then $n\left(\Lambda^{p} A\right)=\infty$. (We have denoted by $\Lambda^{P} A$ the $p^{\text {th }}$ exterior power of A).

5 - Prove that the ring of upper triangular matrices is an S-ring. Use this fact to give another proof of proposition 15.

References

[1] GLAZMAN-LIUBITCH, Analyse linéaire dans les espaces de dimension finie, Editions Mir, Moscou (1972).
[2] JACOBSON N, Lectures in abstract algebra II- Linear algebra, D. Van Nostrand New-York, (1953).

Université de Paris VII
Département de Mathématiques
Tour 45.55, 5 e étage
2, place Jussieu
75251 PARIS Cedex 05
and
Université de NICE
Parc Valrose
06034 NICE Cedex.

[^0]: Manuscrit reçu le 23 octobre 1990, version définitive reçue le 29 septembre 1991.

