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On the greatest prime divisor of quadratic sequences

par J. POMYKALA

1. Introduction. Let PT be the greatest prime divisor 
where a is not a perfect square. In 1967 C. Hooley (see[4]) showed that
Px &#x3E; where 1 = i and 6’ is any positive number. In 1982 J.-M.
Deshouillers and H. Iwaniec applied the new estimates of exponential sums
of Kloosterman type (see[2]) to obtain the improvement in the exponent
(see[I]) 1 = 10 = 1.2024... (in fact they considered the case a = -1).
Assuming Selberg’s eigenvalue conjecture their method implies the value

q = 2 - 1.2247... One can avoid Selberg’s conjecture dealing with ad-
ditional averaging of Kloosterman sums over the levels of the Hecke con-
gruence subgroups involved here. This motivates the investigation of the
greatest prime divisor of

where IS is a rather thin set of primes and very general. Assuming the
density condition

we denote by the greatest prime divisor of (1). In such circum-
stances the progress in the exponent y is obtained for the values

Moreover the limit of the method is attained for e = 2 - 1 as {3 - 1. In
the above range of variables ,Q, O we define the function

Manuscrit reçu le 1 juin 1991.
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We shall prove the following

THEOREM. (3  1, and a = be a (unique) solution of
FfJ,e = 2 . Then for y = 0) satisfying the equality
q = sup and any 6’ &#x3E; 0 we have

Remark.

The uniqueness of 0) is implied by the integral representation (20)
of Moreover comparing the values of D(x, P, (3, 8) with the values
D = and D = xt-E (see[l]) we obtain

2. Notation. Throughout the paper - will be arbitrary sufficiently
small positive constant not necessarily the same in each occurrence. More-
over we take the following notation:

e(z) - the additive character e2riz

f - the Fourier transform of f , i.e.,

1] - a(m) - means q - a (mod m)
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11/11- means the sup norm of f

~2013 means ~ (mod 1) where ad - l(c).
S(a, b; c) - means the Kloosterman sum i.e.

means the summation over residue classes a (mod s) with

1 X [ - means the cardinality of the set X

J := t9 (mod m)- stands for a solution of the congruence t9’ + 1 - 0(m)
e(m) := ft9 (mod m) : ~92 ~.1- 0(m)} I

p, q - denote always the prime numbers and q E B.

3. Tchebyshev’s method.

Given O E (0, 1) we consider the sequence

the elements of which are counted which the smooth functions g(n), B(q)
(drawn below) with derivatives

where the constant implied in the symbol « depends on v only.

We start from the evaluation
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where A(d) is von Mangoldt function. Since 2  1  log(2X2)/ logp in the
above and

where

we obtain that the error term 0( . ) contributes to T(x) at most

Hence

By the Poisson summation formula and the inequality q it is equal to

To estimate the partial sum T*(x) = we write (using the
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M6bius function)

Letting m = p we obtain that for e = 1 the corresponding contribution to

T*(x) is bounded by

In case e = 0 applying the Poisson summation formula for the inner sum

in (3) we get 
-

when integrating f (twice) by parts. Hence the main con-
p

tribution to T*(x) is equal to

by the prime ideal theorem.
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Gathering (2), (4), (5) together we obtain

Now the main goal is to find the largest possible value of Px such that
the upper bound for S(x) be less than 

4. Application of the sieve method.

Like Iwaniec and Deshouillers in [1] we use the smooth partition of unity
to split the sum S(x) into J  2log x sums of the type

where

and such that

We estimate the typical sum

using an upper bound sieve of level A (1 ~ A  x). By (3) and
the Poisson formula we obtain
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The value h = 0 contributes to the main term, namely

Denoting

the above sum is equal to

provided D  x which we henceforth assume.

Therefore we obtain

The remainder term (corresponding to the values h # 0) will be considered
in the next sections. 

°

5. Transformation of the remainder term.

With the aid of the M6bius function (cf.(3)) we translate the condition
(q, m) = 1 in the right-hand side of (7) to obtain the sum

I

where , B
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Applying the smooth partition of unity we may assume that the ranges of d
and h are controlled by the smooth functions with their supports contained
in ~D, 2D~ and [H, 2H] respectively (D, H &#x3E; 1). Since the partial integra-
tion allows us to truncate the series dq’, P) at lhl  we

shall assume that H  The oscillatory character of the inner
sum in is to be expressed by means of the following

LEMMA 1 congruence

is soluble then m is represented properly as a sum of two squares

There is a one to one correspondence between the incongruent solutions of
(10) and the solutions (r, s) of (11) given by

PROOF. - see [6] and [3], p.34, eq. (68).

We use Lemma 1 to express in terms of r and s. Apply-
ing the smooth partition of unity we conclude that the typical sum to be
considered is the following

where
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and w(h, d, r, s) is the suitable smooth function supported in

with R, VP. In fact we may require that S  R since otherwise by
the congruence

we would obtain

Therefore the change of the roles of r and s involves the additional factor

e - h-’- which contributes to the weighted function f (d, q, h, s, r). One.

can verify directly that for 0  v-  2, i = 1, 2, 3, 4, 5 it holds

provided

which is satisfied whenever P  ( ~ )2-E. We shall therefore assume it in the
sequel.
By the Poisson summation formula the inner sum over r in (12) is equal to
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where f, is the Fourier transform of/ (taken for 77 = T~r’) divided by 
Therefore

For k = 0 the Kloosterman sum ,S’(hdq", s) reduces to a Ramanu-
jan sum for which it holds

hence the corresponding contribution to R~P~(~, dq’, P) does not exceed

which by (9) is admissible since P  (.T, )2--,.
For the remaining range of 7~ we apply the smooth partition of unity.

Then integrating = by parts several times we
away assume that k - li with

The sum we deal with has the following form

where are arbitrary complex coefficients bounded by 1 in absolue

value, G is a function satisfying (13) and the above sums is taken over

7~, ~ S.

To estimate it we shall appeal to the method of Deshouillers and Iwaniec
(see[2]) which provides the estimates for multilinear forms in Kloosterman
sums.
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6. Linear forms in Kloosterman sums.

LEMMA 2 ~DESHOUILLERS, IWANIEC~. Let D, H, S &#x3E; 1 and ~~d, Iz, k, s)
be a smooth function supported in ~D, 2D~ x ~H, 2H~ x ~~f, 2I~~ x ~,S’, 2,5~
with partial derivates satisfying (~3~. Then for any complex numbers bd,k
it holds

where

and

PROOF - See Theorem 11 of [2].
To simplify the .C- term suppose that and dominate in the

corresponding expressions in brackets. Then

Otherwise

Therefore in any case

Hence including the .l~t - term we obtain
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Let

In order to estimate P) we distinct four cases :

I. e=0, v=0.

The corresponding Kloosterman sum is equal to 

= 5’(hid, kq; s). Hence by Lemma 2 and separation of variables (see [2] p.269)
we have

with the variable li replaced by KQ in the right-hand side of (15) thus
yielding 

-

where

Now we shall infer that in the remaining cases R~P°~(x, P) admits better
estimates than in the above case.

The Kloosterman sum in question is equal to S(hdq, kq; s) = S(hd, k; s)
hence it does not depend on q. Therefore by (16),(17),(18) we obtain
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The Kloosterman sum is equal to S(hdq, k; s). Hence by (16)-(18) we obtain

The Kloosterman sum is equal to S(hd,k,;s). Since it

follows that

Therefore it is sufficient to consider the case P).

we obtain by (16)
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Now we have

Hence for D = min D2, we obtain

7. Completion of the proof.

Collecting together the results of the previous section we obtain by (8)
that 5’(.c,P)  + O(x~+‘ + BX1-1!;) provided P  (~)2-1!;
and D = min Since P  E ~2 x~, x~~ with
e  2 - 1 and B &#x3E; VQ we obtain that the above conditions are satisfied
provided ,

Therefore the main contribution to S(x) (see[l],[5]) is to be evaluated on
the basis of equality

with

Hence (cf. 1 defining a = f we obtain that the total main termlog x ,
is equal to
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Therefore if  1/2. On the other hand by an
obvious inequality Px (~3, O) &#x3E; P~N- (,3, 8’) whenever 8 ~ 0’, we conclude
that Px(,Q, O) &#x3E; xt. The proof of the theorem is complete.
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