Volker Kessler

On the minimum of the unit lattice

Journal de Théorie des Nombres de Bordeaux, tome 3, nº 2 (1991), p. 377-380

http://www.numdam.org/item?id=JTNB_1991_3_2_377_0
© Université Bordeaux 1, 1991, tous droits réservés.
L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Séminaire de Théorie des Nombres, Bordeaux 3 (1991), 377-380

On the minimum of the unit lattice.

par Volker KESSLER

1. Introduction.

Computations in lattices often require a lower bound for the minimum of the lattice, both for practical purposes and for a theoretical analysis of the algorithms, e.g. [1] and [2].

In this paper we recall two results of Dobrowolski [3] and Smyth [5] in order to get such a bound for the unit lattice.

2. Lower bound.

Let K be a finite extension of \mathbb{Q} of degree n with maximal order R. For $1 \leq i \leq n$ we denote by

$$
K \rightarrow K^{(i)} \subset \mathbb{C}, \quad \alpha \rightarrow \alpha^{(i)}
$$

the n different embeddings of K into the field \mathbb{C} of complex numbers. The first r_{1} of those embeddings are real, the last $2 r_{2}$ embeddings are non-real and numbered such that the $\left(r_{1}+r_{2}+i\right)$ th embedding is the complexconjugation of the $\left(r_{1}+i\right)$ th embedding. Then the logarithmic map is given by

$$
\log : K^{*} \rightarrow \mathbb{R}^{r}, \quad \log (\alpha):=\left(c_{1} \log \left|\alpha^{(1)}\right|, \cdots, c_{r} \log \left|\alpha^{(r)}\right|\right)
$$

with the unit rank $r=r_{1}+r_{2}-1$ and

$$
c_{i}= \begin{cases}1 & \text { for } 1 \leq i \leq r_{1} \\ 2 & \text { for } r_{1}+1 \leq i \leq r+1\end{cases}
$$

The kernel of Log consists exactly of the roots of the unity lying in K. We define the minimum $\lambda(L)$ of the unit lattice $L:=\log \left(R^{*}\right)$ by

$$
\lambda(L)=\min \{\|v\| \mid v \in L \backslash\{0\}\}
$$

[^0]where || || denotes the Euclidean norm.
Theorem : A lower bound for the minimum $\lambda(L)$ is given by (1)
$$
\lambda(L)>\mu(K):=\sqrt{\frac{2}{r+1}}\left(\frac{1}{1200}\left(\frac{\log \log n}{\log n}\right)^{3}-\frac{1}{2880000}\left(\frac{\log \log n}{\log n}\right)^{6}\right)
$$
which is "a bit" larger than
$$
\frac{1}{\sqrt{r+1}} \frac{1}{1000}\left(\frac{\log \log n}{\log n}\right)^{3}
$$

Thus the inverse $1 / \lambda(L)$ is of the magnitude $0\left(n^{1 / 2+¢}\right)$ for every $\epsilon>0$.
Proof. Let $\epsilon \in R^{*}$ be a unit of degree m over \mathbb{Q}, which is no root of unity. Without loss of generality we can assume that $m=n$, because if $\|\log \epsilon\|$ is larger than $\mu\left(K^{\prime}\right)$ for a subfield K^{\prime} of K it is also larger than $\mu(K)$.

We are interested in two subsets of the conjugates $\epsilon^{(1)}, \cdots, \epsilon^{(n)}$

$$
\begin{aligned}
& S:=\left\{1 \leq i \leq r+1| | \epsilon^{(i)} \mid>1\right\} \\
& T:=\left\{1 \leq i \leq r+1| | \epsilon^{(i)} \mid<1\right\}
\end{aligned}
$$

Since ϵ is no root of unity S is non-empty and therefore T cannot be empty because of $N(\epsilon)=1$.

We call ϵ reciprocal if ϵ is conjugate to ϵ^{-1}, i.e. its minimal polynomial $f(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}$ satisfies

$$
f(X)=X^{n} f\left(\frac{1}{X}\right)=a_{0} X^{n}+a_{1} X^{n-1}+\cdots+a_{n-1} X+1
$$

If ϵ is non-reciprocal we know from the theorem of [5] that

$$
\prod_{i \in S}\left|\epsilon^{(i)}\right|^{c_{i}} \geq \theta
$$

where θ is the real root of $X^{3}-X-1$, i.e. $\theta \approx 1.3247$. Thus

$$
\begin{equation*}
\sum_{i \in S} c_{i} \log \left|\epsilon^{(i)}\right| \geq \log \theta \approx 0.281 \tag{2}
\end{equation*}
$$

But from $N(\epsilon)=1$ it follows

$$
\begin{equation*}
\sum_{i \in S} c_{i} \log \left|\epsilon^{(i)}\right|=-\sum_{i \in T} c_{i} \log \left|\epsilon^{(i)}\right| \tag{3}
\end{equation*}
$$

The value $c_{r+1} \log \left|\epsilon^{(r+1)}\right|$ does not occur in the norm of $\log (\epsilon)$. But as a consequence of (3) it does not matter if $r+1$ lies in S or in T and so we can assume without restriction that $r+1 \notin S$. Thus

$$
\begin{aligned}
\|\log (\epsilon)\| & \geq \sqrt{\sum_{i \in S}\left(c_{i} \log \left|\epsilon^{(i)}\right|\right)^{2}} \\
& \geq r^{-1 / 2} \sum_{i \in S}\left(c_{i} \log \left|\epsilon^{(i)}\right|\right) \geq r^{-1 / 2} \log \theta>\mu(K)
\end{aligned}
$$

(The second inequality follows from the well known norm equivalence between 1-norm and Euclidean norm.)

For reciprocal ϵ we know by Theorem 1 of [3]:

$$
\begin{equation*}
\prod_{i \in S}\left|\epsilon^{(i)}\right|^{c_{i}}>1+\frac{1}{1200}\left(\frac{\log \log n}{\log n}\right)^{3} \tag{4}
\end{equation*}
$$

We now use the Taylor series of the logarithm $(|y|<1)$:

$$
\begin{equation*}
\log (1+y)=y-\frac{y^{2}}{2}+\frac{y^{3}}{3} \mp \cdots>y-\frac{y^{2}}{2} \tag{5}
\end{equation*}
$$

The inequality follows directly from Lagrange's representation of the residue. Applying (5) to (4) yields

$$
\sum_{i \in S} c_{i} \log \left|\epsilon^{(i)}\right|>\frac{1}{1200}\left(\frac{\log \log n}{\log n}\right)^{3}-\frac{1}{2880000}\left(\frac{\log \log n}{\log n}\right)^{6}
$$

Since ϵ is reciprocal the inverses of the conjugates of ϵ are also conjugate to ϵ. This implies that the numbers of conjugates outside the unit circle equals the number of conjugates inside the unit circle, i.e

$$
\# S=\# T \leq \frac{r+1}{2} \leq \frac{n}{2}
$$

Again by (3) we can assume that $r+1 \notin S$

$$
\begin{aligned}
& \|\log (\epsilon)\| \geq \sqrt{\sum_{i \in S}\left(c_{i} \log \left|\epsilon^{(i)}\right|\right)^{2}} \geq \sqrt{\frac{2}{r+1}} \sum_{i \in S} c_{i} \log \left|\epsilon^{(i)}\right| \\
& >\sqrt{\frac{2}{r+1}}\left(\frac{1}{1200}\left(\frac{\log \log n}{\log n}\right)^{3}-\frac{1}{2880000}\left(\frac{\log \log n}{\log n}\right)^{6}\right)=\mu(K)
\end{aligned}
$$

which is larger than

$$
\sqrt{\frac{2}{r+1}}\left(\frac{1}{1200}-\frac{1}{2880000}\right)\left(\frac{\log \log n}{\log n}\right)^{3} .
$$

Because of $\sqrt{2}\left(\frac{1}{1200}-\frac{1}{2880000}\right) \approx 0.001178$ we thus proved the lower bound.
Remark. If the conjecture of Schinzel and Zassenhaus [5] is correct the term $\left(\frac{\log \log n}{\log n}\right)^{3}$ can be substituted by a constant independent of n. This bound would be provable the best one (up to constants).

References

[1] Buchmann, Zur Komplexität der Berechnung von Einheiten und Klassenzahlen algebraicher Zahlkörper, Habilitationsschrift Düsseldorf (1987).
[2] Buchmann, Kessler, Computing a reduced lattice basis from a generating system, to appear.
[3] Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta arithmetica 34 (1979), 391-401.
[4] Schinzel, Zassenhaus, A refinement of two theorems of Kronecker, Mich. Math. J. 12 (1965), 81-84.
[5] Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc. 3 (1971), 169-175.

Volker Kessler
Siemens AG
ZFE ST SN 5
Otto-Hahn-Ring 6
D-8000 München 83 .

[^0]: Manuscrit reçu le 8 février 1991.

