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Non archimedean Hopf surfaces.

par HARM VOSKUIL

0. Introduction

We study the non-archimedean Hopf surfaces. A Hopf surface is a surface
defined over a complete field 1(, which has {(0,0)} as its universal
covering. So it can be described as K 2 - ((0, 0)) /F, where F is a discrete
group acting discontinuously on K2 - f (0, 0)~. 

°

The complex Hopf surfaces are very well-known. They have been studied
in detail by Kodaira (See [Ko.I] and [Ko.2]).

The p-adic Hopf surfaces are less known, although they are treated as
examples in some articles (See [GG], [Mus.I] , [Mus.2] and [U]).A11 those ar-
ticles mention only the diagonal Hopf surfaces A~ 2013{(0,0)}/r with T gener-
ated by a single element 7 such that ~(~1,~2) = (azl,,8z2) with lal, 1,81  1.

The most detailed study is given by Mustafin (See [Mus.I] and [Mus.2]).
So there will be some overlap with his work.

This article is divided into three parts. In the first paragraph we will
describe the group f. We will prove that F = for some 1 E Z&#x3E;o.
So these results are the same as in the complex case.

In the second paragraph we will give some pure affinoid coverings of a
Hopf surface X, such that the reduction consists of non-singular compo-
nents. Here we will use the theory of toroidal embeddings (see [KKMS],
[0,1] and [0.2]).

In the third paragraph we will determine the cohomology of the line
bundles on a Hopf surface. We wil show that there is a Serre duality for
the line bundles. This is also stated in [U] when char(K) = 0.

This paper is part of the author’s doctoral dissertation at the university
of Groningen in 1990. The author would like to express his gratitude to his
thesis advisor Marius van der Put.

Manuscrit reçu le 7 mai 1991.
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1. The structure of the group r

We will first recall some basic definitions.

DEFINITIONS. Let K be a complete non-archimedean valued field.

An affinoid algebra A over Ii is a K-algebra which is a finite extension
of If  zl , ..., zn &#x3E; for some n.

An affinoid space Sp(A) is the set of all maximal ideals of the affinoid
algebra A.

On A we define a (semi-) norm . the spectral (semi-) norm

11/11 = sup The spectral semi-norm is a norm if there are no
xESp(A)

nilpotent elements -;4 0 in A.

Exampde : The set Y = {(zl, zz ) E 1(2 I 1, ~z2 ~  1} is an affinoid
space. The affinoid algebra belonging to Y is Ii  &#x3E;.

DEFINITIONS. A surface Y is called separated if Y has an admissible affinoid
covering E I} such that if Yi n 0 then Yi is affinoid and the

canonical homomorphism O(Yi)0 (~(Y~~ ~ n Yj) is surjective.
We write U C Sp(A) and say U is relatively compact in Sp(A) if there

exists an affinoid generating system of A over IC such that :

A surface Y is called proper over li if Y is separated and has two fi-

nite affinoid coverings = l..n} and = l..nl such that
X~1) C X~2~ for all i = l..n.

A Hopf surface is a proper rigid analytic surface that has li 2 - {(0?0)}
as its universal analytic covering.

Remark. In [U] a surface that we call proper is called compact.
In order to show that our definitions of a Hopf surface is meaningful we

have to show that K2 - {(0,0)} is simply connected. We will do this in the
following lemma.

DEFINITION. A connected analytic space X is called simply connected if
the only connected analytic covering of X is equal to id : X - X.

LEMMA 1.1. The analytic space li 2 - ~(0, 0)} is simply connected.
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Proof. Let us write U = K2 - {(0, 0)} = Ul U U2, where U, = K* x K and
U2 = K x K*. Since K and K* are simply connected, the same is true of
K x K* and K* x K* (This is theorem 1 in [vdP]). Now U1 U U2 is also
simply connected, since Ui., U2 andul fl U2 are simply connected. Indeed
let S be a locally constant sheaf on Ui, then Slu¡ is constant since U; is

simply connected (See [vdP]). This shows that S is constant on U, since

DEFINITION. A group r acts discontinuously on an analytic space X if
for every affinoid subspace A C X the set E n ~(~4.) ~ 0) is finite.

LEMMA 1.2. A Hopf surface is a proper rigid analytic surface of the form
K 2- {(0, Here r is a group of automorphisms of li 2 - f (0, 0)} that
acts discontinuously and without fixed points.

Proof. The universal covering space of a Hopf surface X is
U = K2 - {(0,0)}. Let x be the analytic map ~r : U -&#x3E; X. Let r be
the group of covering transformations 

We have to show that X . Clearly F is discrete and X is a

covering of X. So we only have to prove that bijective. Let us
u2 )~~r(ul ) _ ~r(u2 )}. Now the projection on the first

factor PI : U x ~!7 2013~ U is again an analytical covering. Since U is simply
connected, we must have PI : Z -2+ U for every connected component Z of
U x XU. The same is true for P2 : U x XU -~ U, the projection on the
second factor.

Let (a, b) E U x x U and let Z be the connected component of U x X U
containing (a, b). Now we have the following commutative diagram :
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Here y E F and q(a) = b. This shows that X.

Since X is proper, there exists a finite covering E I} of X. We may
assume that 1r-1(Xi) is a disjoint union of copies of X;. Now the covering
C = f Y {(0,0)} ! Y E 1r-t(Xi) for some i E I} of Ii 2 - f(o, 0)}
shows that r acts discontinuously and without fixed points.

LEMMA 1.3. An analytic automorphism g of Ii 2 - {(0, 0)} can be extended
uniquely to an analytic automorphism 

Proof. Let g be defined by Let

We can expand gl and 92 into a convergent power series on Ul and U2 :

These two power series have to be equal on x, n X2 so we have

This power series of g, is also holomorphic in (0,0). So gl is an ana-

lytic function on K2. The same is true of g2. Therefore we have an

unique extension of g to an analytic automorphism of Ii 2. It is clear that

g(0, 0) _ (0, 0~.

DEFINITIONS. Let := E Ii *} be the norm group of K.
Let R E and R &#x3E; 1. We now define :

A contraction 7 E I’ is an automorphism of 1(2 such that :
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LEMMA 1.4. Let F C be a connected affinoid subspace. Then
either F C K2 - BR or F C BR -,9BR-

Proof. Let R’ E (1 * , R’ &#x3E; R. We consider the following affinoid
subspaces of K2 :

For R’ &#x3E; R sufficient large we have :

Because (I, U 12) n (I3 U I4) g we have (Fl = 0.

Since F is connected, either This proves the
lemma.

LEMMA 1.5. The group r contains a contraction y.

Proof. The subspace C 1(2 is the union of the two affinoid subspaces
E I = R, IZ21 ~ R} and E = R~ Izi I  RI.

The intersection of these two subspaces is connected and non-empty, so 9J?R
is connected. 

’

Furthermore since the Hopf surface X = li 2 - {(0, 0)}/r is proper, we
know that r is not finite. Indeed, suppose F is finite. Now

(9(X) = {(0, 0)})r is not finite dimensional over K. Since

O(K 2 {(0, 0)} is not finite dimensional. This shows that X cannot be

proper (See [BGR] or [Ki.1].).
Since r is not finite, there exists a q E r such that fl = 0.

Now applying the previous lemma, we have one of the following :

In the first case 7 is already a contraction, so then the lemma is true. In

the second case we have : 7(aBR) = 0. We now apply lemma
1.4 with F = y-1 (BR). So we have : -y-’(BR) C BR - âBR, since
,-1((0,0)) = (0, 0). This proves that ,-1 E r is a contraction.
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PROPOSITION 1.1. The group F contains a contraction ~y such that

is in the centre of r and JT : Fo]  oo.

Proof. Let 7 E 1-’ be a contraction defined by

Since ï(åBR) C BR - 9BR we have :

A similar result is true for b(zl, z2), so we may conclude :

The linear part of y has a matrix ° ao1 . All coefficients have an
bo1

absolute value  1. In particular the order of I is not finite. It is clear that
if l~’  R then -~~ because : 1

If R’ &#x3E; .1~ we look at the subspace

The space Y is the union of two affinoid subspa,ces Y1 and Y2, where
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Since 7 is not of finite order and F acts discontinuously on 1(2 - {(0, 0)},
we have :

In particular we have : yn(Y) NOBR = 0.

Now Y is connected and we may apply lemma 1.4, therefore we have :

Since C BR and BR U Y is also connected, we must have :
,n(BR’) C BR.

Now we have proved that every point p E 1~ 2 - a To - image
in the subspace

where p  R is taken such that BP C ¡(BR). This subspace Z is the union
of two affinoid subspace Zl and Z2, where

If [T : To] were not finite there would be an infinite number of elements
a E T such that :

Since 1’ acts discontinously on 1(2 - {(O, 0)}, we must have [T : To] is finite.

Now we may suppose that 1o C 1’ is a noFmal subgroup, since we can
replace To by the intersection of all subgroups conjugated with To. So for
an elements a E 1’ we have aya-1 = ¡n for some n E Z. The linear part of
y has eigenvalues with absolute value  1. This shows that only = ly
can occur. This proves that To is in the centre of T.

THEOREM 1. ~ . There exist global parameters tl, t2 that a con-

traction y has the following form :

Here 0  1011 ~ [  1 and A = 0 if 01 f; a2 otherwise A E 1(.

Proof. This will be proved in the following three lemmas.
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LEMMA 1.6. There exist formal parameters tl, t2 E Z2] such that
has the form described in theorem I.I above.

Proof. It is dear that 7 also acts on the formal local ring Z2]. We
denote this action with ~. Let m, m2, m3, ... be the powers of the maximal
ideal m of ~2J’

Now, after possibly an extension of degree two of has two eigen-
values al,a2 on m/m2. Let us take jail [  (a2 (. We can make a linear
transformation of the variables z, and z2 such tha.t the linear part of ï,

which is the matrix of %y on m/m2, has the form (1 * ) and * # 0 onlyo "2 
if al - a2 .

With respect to this basis zl , z2, zl z2, z2 , ..., z2 1

we find y has a triangular matrix :

If a2 then the eigenvalue a2 only occurs once. So modulo 
there is an unique one-dimensional eigenspace belonging to a2. Taking the
limit n - oo we get an unique formal power series t2 = Z2 + ... such that
y(t2 ) = a2t2.

If a2 then the value eigenvalue a2 occurs twice. So modulo 
there is an unique two-dimensional eigenspace belonging to a2. Taking the
limit n -~ oo we can find in this eigenspace a formal power series t2 = Z2 -f-...
such that y(t2 ) = a2t2 . ·

If am V m &#x3E; 1 then also the eigenvalue a1 occurs only once. Again
we find an unique one-dimensional eigenspa.ce belonging to al and a power
series zi + ... E such that = altl.

If c~1 = a2 for a certain m &#x3E; 1 then the eigenvalue a1 always occurs
twice for n &#x3E; m &#x3E; 1. It has also an eigenvector Now we can find a

power series ti E such that = alt, + This t, is not

unique, we could also have taken ti + J.1 E I(. This proves the lemma
for some formal parameters t1, t2 in (o, 0).
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LEMMA 1.7. The parameters tt a,nd t2 constructed in lemma 1.6 are holo-

morphic functions on 

Proof. Let us choose an R E ~ ~i * ~, .R » 0. Let

be the Banach space of functions that are holomorphic on BR. On V we
have the sup-norm.

The contraction I induces an action y : V 2013~ V on V. In the proof of
proposition 1.1 we have shown that 3r E r  R 7(BR) C Br. Since
y(BR) C Br C BR, the operator y acting on V is compact. The p-adic
theory of compact operators (See [G]) tells us that for every A e K* we
have :

1) = À)n : V -~ V) is finite dimensional

2) has a i-invariant closed complement Wa in V and

So we can suppose V = for somme A E ~1 * . Furthemore we have
where m is the maximal ideal of Z2]. As in

the previous lemma this shows that the eigenspace for A = a1 or A = a2
has dimension 1 or 2. Specially the parameters t, and t2 of lemma 1.6
are in fact holomorphic functions, since they are holomorphic on any BR,
l~ » 0, .R E ( .~~ * ~ .

LEMMA 1.8. The map t : K 2 - K2 defined by t(Zl, Z2) = (tl, t2 ) is in-

vertible, so t1, t2 are global parameters of K 2 and t : K 2 -~ ~~Z is an

isomorphism.

Proof. Let p E ~ [ be sufficiently small. Then the map

is an isomorphism. This can be seen by considering the linear part of t.
Let so be the inverse of t. be the transformation on the second Bp
defined by ~(~1,~2) = (alaI + It is clear that = 

For every .R E &#x3E; p there exists an n &#x3E; 1 such that C Bp.
K2, 
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Now we have :

So the maps s do not depend on the choice of n. We can glue them
together into a map s : - ](2. Of course s o t = t o s = id, since the
germ of s o t and t o s in (0, 0) is the identity map.

Remark. Another way to prove the previous lemma would be the following.
The map t : {CO, O)} ~ Ii 2 - f (0, 0)} is already invertable on a small
polydisc Bp - f (0, O)l around (0, 0). Tliis gives an isomorphism ~ :

L

Since Ii ~ - {(0, 0)} is simply connected (lemma 1.1), there exists a lifting
L of cp-1. We can choose the lifting L such that 

THEOREM 1.2. The group r is abelian and x 

Proof. Let / E r be a contraction lying in the centre of r.

First we look at the case where ~(~1,~2) = (azi,az2), 0  lal  1.

Now we have :

So 6 is linear, b(Zl, Z2) _ (,~1 z1 + ~z2, ~2 z2 ) for a suitable choice of coordi-
nates.

If 36 E r with 01 1 then b(z, 0) _ (z, 0). Since r acts without
fixed points, we have 6 = 1. Therefore the map w : r --i Il defined by
w(6) = (31-coordinate is injective. Now we can conclude that r is abelian.
Since r acts discontinuouly we must have r t3f Z X and Z C r is

generated by a contraction. The injectivity of p shows that 
for some 1 Now we look at the case where
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The eigenspace belonging to a1 is :

a) 1-dimensional if am, Vm &#x3E; 1 or

b) 2-dimensional if 3m E Z&#x3E;i , al = am

In case a we have :

This shows that r has to be abelian. Since r acts discontinuously, we must
have Z x rtorsion and Z C r is generated by a contraction. Now since
the element 6 : -~ (/?i~i?~2~2) is fixed point free
we must have Z/lZ. Clearly rtorsion is generated by
13 : (Zl , z2) - (wzzl,wz2), wi = 1 and g.c.d.(i, I) = 1.

In case b we have :

Again the map cp : r - K defined by c~(E) _ coordinate is injective.
Therefore r is abelian and we have r - 7~ x Z//Z.
Now we consider the case where ¡(Zl, z2) _ (01Z1 + "’z2, a2 Z2), a’ = al -
Let b E r, then we have :

Again r is abelian and therefore : Z x Z /lZ.

Remark. We can also describe the generator of the torsion subgroup ex-
plicitly when the group Z C r is generated by a contraction y of the form :

Let 13 be a generator of Then 13 has the following form :

Nowwehave:
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Since = 1 we must have :

Now w is a primitive I - th root of unity, so we have :

So there are no restrictions on w when mj fl 1 mod 1. When jm = 1

mod I then of course (l, m) = 1 and p = 0 because I - 0 cannot occur

(when clzar(K) = p &#x3E; 0 there are no p-th roots of unity :/ 1).
Since Co has to commute with 7, we have :

This gives us all the possibilities for 13 :

THEOREM 1.3. Let r be generated by a contraction y and let X be the
Hopf surface {(0, 0)}/r. Then the field .M (X ) of meromorphic func-
tions on X is :

3) K in all other cases.

Proof. We have the following identities :

M(X) = { f ~ f is meromorphic on li 2 - f (0, 0)} and 7 - invariant}
= {/ ! f is meromorphic on K 2 and 7 - invariant}.
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Since K 2 is a quasi-Stein space, we can now write : f = -1, t E 
(The proof of this fact is the same as the one given in [FP] theorem VI.3.5
for (K *)n ). We can choose t, s in such a way that they are minimal, i.e.
have only a finite number of zeroes in common. Let

Let us first consider the case where y has the form : 7(zl, Z2) = (alzl, a2z2),
0  la2l [  1. Then clearly we have : -y(t) = ct c = ai a2 for
some k,1 E Z&#x3E;o .

Now suppose that a2 and (a, b) 54 (0,0). Then it is clear
that :

So we have : .M(X) = K.

Next we suppose that aï = a2 for some a, b E (0,0).
We can choose a, b minimal, such that g.d.c.(a, b) = 1. Then we have

ad = a2 F (d, c) = n(a, b) for some n E Z. Now a monomial 

with = for a fixed c = ai°a2 is of the form with

(k, l) + n(a, -b) for some n E Z. This shows that :

Let us now consider the case where 7 has the form :

We can replace zi by then y has the form :

Every monomial can be written as () Let us take x := 
2 2

and z2 as new variables. Then we have :
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Let g be polynomial in the variables x and Z2 with q(g) = c ~ g. Then we
clearly have c = cx2 for some Il E This shows that g = where h2 

- 
2

3 

is a polynomial in x with 7(h) = h. Let us take h = L aix2 and let s be
i=O

the highest power of x such that as =1= 0. Then we have:

Since O,we must have s = 0. When = 0 then s = 0 and
h E K. So in this case M(X) = AB

But when char(K) = p &#x3E; 0, then we see p~s. Now we look at the
polynomial xP - x. We have : 7(xP - x) _ (x + 1)p - (x + 1) = x.

So any polynomial of the form E x)’ is -y- invariant. The proof
given above also shows that polynomials (P - x)i form a basis of the y-
invariant polynomials. This shows that :

. /

2. Affinoid coverings and reductions

We first contruct a fundamental domain for the action of the group r,
where r is generated by a contraction. Then we will study some special
affinoid subspaces of K2 and their reduction. We will use this to contruct
a pure covering of 1(2 - {(O, 0)}, which is r- invariant. This will give us a
pure affinoid covering of the Hopf surface X = K 2 - {(0,0)}/T.

DEFINITION. We call a subspace F C Ii 2 - {(0, 0)} a fundamental
domain for the action of the group r, if F has the following properties :

1) Ii 2 - f(o, 0)} = UyEr -I (F).
2) There exists a finite affinoid covering of F.

3) The only action of r on F itself is the identification of a finite num-
ber of affinoid subspaces Bk C F, where Bk C Sp(Ay) is defined
by a finite number s of equations :
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I

So the subspaces Bk are of the form

PROPOSITION 2 .1. Let r be generated by a contraction

where 0  la21 [  1 and A = 0 if ai fl otherwise A E K. If we
choose IÀI  1 then F has a fundamental domain F defined by :

Proof. Let us first show that we may choose IÀI  1. We can replace the
coordinate z, by ezl, e E K*. Then -i is defined by :

Now take E = pÀ -1, lpl  1. This gives us the desired form 

A straightforward calculation now shows that :



420

This shows that the subspace F satisfies the first property of our defini-
tion of a fundamental domain.

The only action of r on F is the indentification of fl F and
F fl y(F). This gives the following indentifications of afRnoid subspaces of
F:

Here Ci, i = 1...4 are defined by :

We will now show that F can be covered by a finite number of affinoid
subspaces, such that Ci, i = 1..4 satisfy property 3 of our definition.

If laIlk = ~2!~ ~ = 0, k,l E then F also preserves the area given

by E K 0 0 I = 1) . This gives a -invariant partition
of the domain F into two affinoid subspaces Fi and Fz.

We ha,ve :

The affinoid subspaces Ci,C2 C F1 are defined by lzll = 1 and IZll =

respectively. The subspaces C3,C4 C F2 are defined by = 1 and

IZ21 = [ respecti rely. This shows that F is a fundamental domain.
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If y has the form ~(~1,~2) = + a2z2), IÀI  1, then

again F = Fl U F2 as above with k = 1, 1 = m. Since IÀI  1 the area

K2 - {(0,0)} [ I = 1} is r- invariant. Again F is a’ 

z
fundamental domain.

If dk, l E then we can find an s E such that

la~1  la11 since 0  la11 [  la21  1. Now the areas defined by I~I I = 1
and by I;; I = ) I « I have a non-empty intersection P in F. Here P is defined
by Iz2-l ( = , Iz:-11 [ = I a I. This gives us a finite affinoid covering of
F by and F4 (See figure below). The subspaces Ci C Fi, i = 1..4
have property 2 of our definition. So F is a fundamental domain.

DEFINITIONS. Let A be an affinoid algebra and Sp(A) its affinoid space.
A subspace X C Sp(A) is called a national domain if there exists a set
Ifo, generating the unit ideal of A such that X is defined by :

The rational domain X is an affinoid subspace of Sp(A) and has as its
affinoid algebra A  = l..n &#x3E;^-_’ A  &#x3E; /  = l..n &#x3E;

(See [BGR] or ~FP~.).
We will only use rational subspaces of
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In particular we will restrict ourselves to those rational subspaces X C Y
where the fi, i = O..n, are monomials E c E 1(*. Such a

subspace X C Y will be called a monomial rational subspace (of Y with
respect to the affinoid generating set f Zl, z2}).

Example. The affinoid covering of the fundamental domain F constructed
in the proof of proposition 2.1 consists of a finite number of monomial
rational sbuspaces of Y.

We will only show this for the affinoid space, F, when lakl = I for
some k, l E All the other cases are similar. Let F1 be as in proposition
2.1, so we have:

_ 

I 
_ 

1

It is clear that the set generates the unit ideal of
K  ZI, Z2 &#x3E;, so Fi is a monomial rational subspace of Y.

Remark. Let v : ~~2 -~ be the map defined by :

The image v(Y) of Y is given by :

The image of a monomial rational subspace of Y is a convex domain in
v(Y) defined by a finite number s of rational inequalities

coming from the monomial inequalities
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PROPOSITION 2.2. A convex domain C C v(Y),is the image v(X) of a
monomial rational subspace X C Y if and only if C satisfies the following
two conditions a and b : .

a) C is defined by a finite number s of rational inequalities :

(When K is contained in the algebraic closure of a local field then
we can normalize the valuation on Ii such that log C Q. Then
all the coefficients of these inequalities a.re really rational.)

b) C has one of the following properties :

Proof. Let X = fz E Y l  1, i = l..s} C Y be a monomial rational
subspace. In the last remark above we have already shown that the image
C = v(X) C v(Y) is given by a finite number of rational inequalities. So
we only have to prove that C = v(X) satisfies condition b.

Now fo(z) is one of the following monomials :

In case 1 we have fo = c E so all the monomials fo (z) are monomialsfo z
with E Z&#x3E;o, ci E K*. This shows that C - v(X ) has

property bl.
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In the other cases we see that some fs - a E ~~*, since fo, ... fs generate
the unit ideal in K  z1, z2 &#x3E;. This shows that in the cases 2,3 and 4 the
convex domain C = v(X) satisfies conditions b2, b3 and b4 respectively.
We will only prove this explicitly in case 4. Now z E X satisfies

1 for some k, 1 E E 7. Therefore v(X) satisfies theZl Z2
inequality : Since 0 we have :

==&#x3E; min for some c E log U Ro .

This shows that C = v(X) satisfies condition b4.

Now we will show that a convex domain C that satisfies conditions a
and b is the image v(X) of a monomial rational subspace X C Y. Let C
be defined by the rational inequalities :

Now z satisfies the inequalities :

Let n, m be defined by
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Now we take f o - z1 z2 and define f i E Il  Zl, Z2 &#x3E; by

So we have

If fo(z) = 1 then X = ~z E 1, i = l..s~ is a monomial

rational subspace of Y and v-1 (C) = X and C satisfies condition a and b1.
If some fi(z) E K* for s &#x3E; i &#x3E; 1 then is again a monomial rational
subspace of Y, since the fi generate the unit ideal in Ii  ZI, Z2 &#x3E; .

Now suppose fo and 

If C satisfies condition b4 we can find an element c E I(* such that

1 for all z E So taking c we find a monomial
IC2 1 -

rational subspace X = of Y defined by I 1, i = l...s -f- 1.

If C satisfies condition b2 we can find a c E K* such that zl I  1 for all

z E v-’(C). Furthermore by the definition of rra there exists an fi(z) such

From this we see :

So C satisfies condition b4, therefore we C Y is a monomial
rational subspace. If C satisfies condition b3 we again find that C must
satisfy condition b4 if fo = zr z2, If fo = zr z2, n, m &#x3E; 0 then
C cannot satisfy condition b1.

The situations with or fo - z2 are similar.
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Remark. Using proposition 2.2 above we can now describe explicitly the
convex doamins C C v(Y) such that = X is a monomial rational

subspace X C Y.

In the next table we give description of C and X in the case int (C) = 0.

If 0 then C can have one of the following forms. The numbering
corresponds with the one of property b in proposition 2.2.

DEFINITION. We define JiK*1 as being the set

Let C C v(Y) be a convex doamin. A point PEe =F 0 is called an extremal
point of C if there exists no line segment [Pi, P2] g C with P fl Pl, P2 such
that P E [Pi,P2].
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LEMMA 2.1. Let and let X C Y be a monomial rational
domain such that v(X) = C ~ 0 is a convex domain in v(Y). Let A be

the affinoid algebra of X. For a polynomial f E Z2, Zi 1, Z2 1] fl A we
have 11 f 11=11 ll= ZnZm 11 where 1111 denotes the
spectral norm on the affinoid algebra A.

Let Pi..Pk be the extremal points of the convex domain C. Then we
have :

A monomial Zn z’ has norm lel on the line nx, + mx2 = log lel in v(Y).
The maximal value Icl E such that the line nx, + ma;2 = log icl has at
least one point in common with the convex domain C is equal to 11 li.
It is clear that this ’rational line can contain at most two points Pi . This
only occurs when the monomial belongs to a rational line on the boundary
of C. This shows that we have indeed :
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So for a polynomial we h ave :

Here (ai, bi) E are chosen in 

DEFINITIONS. Let A be an affinoid algebra, with spectra,lnorm ~~ ~~ and let
X = Sp(A). Let 1(0 be the ring of integers of I(, i.e.

We define the Ko-module Ao by A° := {f E f 1}. Now we define
the 11°-submodule A°° C A° by AOO := Al 11 f ~~C 1}. We call
A = A° /A°° the reduction of A and X = spec (A) the reduction of X.

We have a map R : X -~ X. The image R(m) of a maximal ideal m of
A is a maximal ideal of A defined by :

The map R is surjective onto the set of closed points of X (see [BGR]
p.270).

Rerrzark. Let us take a monomial rational domain X C Y, X fl o such
that C = v(X) is a convex domain fl 0 in v(Y). We can now associate
to an extremal point Pi of C the monomials zï z’2, n, m e Z that are in
the affinoid algebra A of X and attain their mauximal value [[ in

v-I(Pi). This gives a partition of the monomials in A.
Let f map the monomials into Z2 and be defined by :

Let Mi be the set Mi := is a monomial in A and attains
its maximal value II in 
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In the pictures above we have drawn the partitions. The figures 1,2,3
and 4 correspond to monomial rational domains X C Y that have property
bl, b2, b3 and b4 respectively (see proposition 2.2).

The line between the areas Mi and Mi+l belongs to both, since it corre-
sponds to the monomials that have their maximum value in both 
and 

LEMMA 2.2. Let X C Y be a monomial rational domain with aflinoid

algebra A. Let IK*I = Q. Then there is a ~ - 1 correspondance between
the minimal prime ideals pi of A and the extremal points Ps of C = v(X).
In fac t we h ave :

Proof. Since IK*l we can choose for every monomial E

A, a E K* such that 11 znzm 1 2 ll= Now the leo-module AO is

generated by the elements zn,m := . So the K-module A is generated, n,m

by the images of xn,,n in A. A straightforward calculation shows that

Furthemore ð E I( if and only ifxn,m and xk,l are the images of monomials
belonging to the same area Mi,

This shows that we have indeed for every extremal point Pi of C = veX)
a minimal prime ideal Pi = {! E  1, E 

The ideal Pi is generated by the elements xn,m with (n, m) ~ Mi, so 

does not reach its maximum [[ in 
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Remark. Let us look at Bi - A/pi. We see that this ring is generated
over K by the elements (n, m) E M¡n;;z2. We can choose the constants
cn,m such that the multiplication in Bi is given by :

xn,m xk,l = (n~ m)~ (~~ 1 ) E Mi n ;;Z2.

Since the areas Mi C z2 are rational, the semigroup of points in Mi is

generated by a finite number of elements. This shows that Bi is a finitely
generated K-algebra.

It is clear that the quotient field of Bi is z2 ).

Examples. We identify the monomials xn,m E Bi = A/Pi with the points
(n, m) E Mi n Z~. For convenience we choose B such that one of the bor-
derlines goes through the point (1,0). This can always be done by using a
transformation by an element of GL(2,Z).

Now the generators of B over. K are and 

There are no relations between the generators,
so we have :

The generators of B are and xl,o. We

have the relations : x21 , I = Xl " 2.XI 0. So we have :

The generators of B are xi,o, xl,l and x2,3. We
have the relations : ~2,3-~1,0 = ~ i’ So we
h ave :

Remark. Our description of the algebra B is in complete accordance with
the theory of toroidal embeddings as described in [KKMS], [0.1] and [0.2].
We will now state and use some results and definitions from it.

DEFINITIONS. Let M be the set of monomials zi z2 , n, m E Z.
Now M - Z~ where the isomorphism is given by the map
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We call a semi-group S C M saturated if S satisfies :

We call a convex domain in Mm bounded by two rational halflines starting
in the origin a (convex rational polyhedral) cone. We will always assume
that the cone does not contain a linear subspace. For a semi-group S C M
we define the space Xs := spec For a cone Q C Mm, the set
(1 n M is a saturated finitely generated semi-group. Moreover any finitely
generated semi-group S, not containing a line, has the form a n M for some
cone (1.

THEOREM 2.1. Let S C M be a semi-group that generates M as a group.
Let a C Mn be a cone such that int( (1) =1= so

for some Z-basis of M and a, b, c, d with g.c.d.(a, b) =

g.c.d.(c, d) = 1 and n = Idet (: dJ I y-I 0. Now we have :) c c d
a) The space Xs is normal if and only if S is saturated.

b) The space Xa is non-singular if and only if the semi-group (1 fl M
. is generated by a Z-basis of M. ..

c) If K contains the n - th roots of unity then A2 K /g, 
4 

is a cyclic group of order n acting diagonally on A2013.

Proof. All this is proved in [KKMS] Ch.I §1. We shall recall the proof of part
c of the theorem, because this will give us a nice and explicit description of
XIII, -

Let a be as in the theorem. We can choose a Z-basis {/i,/2} of M
such that (1 = (A fi + g(kfl + C where k, l E Z with
g.c.d.(k,d) = 1. We may assume I &#x3E; 0, since we always can replace f2 by
-f2. So we have n = Idet(k/I + lf2, fl)l = 1, since det(fl, f2) = fl.

If n = 1 = 1 k fl -~-l f2 } is a Z - basis of M. These two elements
also generate cr n lYl. This makes it clear that :
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Let 1 =f 1 and 1 &#x3E; 0. Now the semi-group 7 n M is not generated by /1 and
kfi + l f2. Let M* = 7 fl 7G f2. Now + f2 I is a Z-basis of
M* and the two elements also generate the semi-group 7 fl M*.

Let g map the monomials u, v E ~ into M* and be defined by

It is clear that fl M*)~ ^-_’ and 0" n M ç 0" n M*. Moreover

we have n M)] = n M)]. This can be seen by
using the map : zi 2013~ z2 ~ y.

If If contains a primitive l-th root of unity ( we can describe

n M)] as in the statement of the theorem. We can
define an action ( on A2013 ~ fl M*)] by :

The invariants of the group p := ~ &#x3E; are generated by the monomials
xrl ys, r, s that are in g-1 ((J" n M*). So we have :

This shows that : Xa = 

LEMMA 2.3. Let X C Y be a monomial rational domain such that
C = v(X) is a convex domain in v(Y) with int(C) ~ l~. Let P1,..,Ps
be the extremal points ofC. Let Mi be the cone associated to the extremal

point PE (See the remark just before lemma 2.2). Let ni = ,

c d
where ax + by = 0 and cx + dy = 0 are the bordelines of M2. Let li contain
all the ni - th roots of unity for i = l..s. Now the reduction X of the
monomial rational domain X is the following :

a) Every extremal point Pi corresponds to exactly one affine surface

b) If the line-segment [PiPj] is part of the boundary of C, then the
surfaces belonging to Pi and Pj have exactly one affine line in

common.

c) If the line-segment [PiPj] is not contained in the boundary of C,
then the surfaces belonging to Pi and Pj have exactly one point in
common.
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Proof. Let A be the affinoid algebra of X.

In lemma 2.2 we proved that there is a 1-1 correspondance between the
points Pi and the minimal prime ideals pi of A. Now theorem 2.1 shows
that spec(Bi ) := spec(A/pi ) is the surface defined by the cone Mi.

Suppose the line-segment is part of the boundary of C. The mono-
mials in A that have an image 0 0 in both Bi and Bj are the monomials
/ tt rn I

1 
I E which correspond to the rational line This shows

-

that the surfaces belonging to Pi and Pj have exactly one affine line AL in
common.

Now suppose the line-segment [PiPj] is not contained in the boundary of
C. In this case there are no monomials in A which have a non-zero image
in both BZ and Bj . So the surfaces belonging to Pi and Pj can have at most
one point in common. Of course they have the point defined by zf z;n = 0

n m - 

Cn m
ft tTt 

for all Qfy in A in common, since 0.
, B / 

Remark : We are looking for admissible affinoid coverings of K2 - ((0, 0))
that are invariant under the action of the group r = 7 &#x3E; . To find such

coverings we use the fundamental domain of r given in proposition 2.1.

First we need the notion of a pure covering, since we want the reductions
of the afhnoid space to glue together nicely.

DEFINITION . Let Z be a rigid analytic space.

A pure covering U = ( Ui ) of Z is an admissible covering by affinoid sub-
spaces Uz satisfying the following conditions : 

°

1) For each i, Ui intersects a finite number of Uj
2) If Ui n then there exists a Zariski-open affine set Vij C !7t i

such that UZ n Uj = Ri where Ri : Ui ~ U is the reduction,
and Ui n Uj is an affinoid space having reduction Rij : 

The word admissible in the definition means admissible with respect to
a certain Grothendieck topology on Z.

Remark : There is a 1-1 correspondence between pure coverings U of a rigid
analytic space Z and formal schemes X over such that the generic fibre
of the map 3l - Sp f Ko is the space Z. In this case the closed fibre of the
map 3l - Spf is the reduction of Z with respect to the pure covering
u.
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Indeed for an affinoid subspace Ui with affinoid algebra
~ = K  xl...x, &#x3E; II we have :

Here is m = ¡(00 if the valuation is discrete, otherwise we take m = (~r) for
some 0 # x E A"~.

Now Sp! Ai C spec is the subspace defined by the ideal
m. This shows that the map 5*p/ ¡(O has as its

generic fibre and Sp(Ai) = Ui as its closed fibre. Now the properties 1 and
2 of the definition of a pure covering show that all maps Sp f Ko
glue together nicely. So we get a formal scheme X -+ Sp f Ko with Z as its
generic fibre and the reduction of Z with respect to the pure covering U as
its closed fibre.

LEMMA 2.4. Let (Xi) be a covering of 1(2 - {(0,0)}, such that every Xi
is a monomial rational doma.ln and ø, where Ci = Now

(Ci) is a covering f (0, o)~) by convex rational domains.

The covering (Xi) of K 2 - pure if and only if :

1 ) For each i, Ci n 0 for at most a fini te n umber of (7~.

Proof. Let us first show that a covering as described in the statement of
then lemma is pure. If Ci fl Cj = 0 then also Xi n 0. Since Ci
intersects only a finite number of Cj, our covering satisfies condition 1 of
the definition.

Let us assume Ci n 0, so Ci n Cj is a point P or a rational line L
such that Ci n L = Now clearly is a affinoid subspace of

n m
Xi = since it is given by an equa,tion I = - I = 1 in Xi ifn,m

Ci fl Cj = L, where L is the rational line nxi + mx2 = log ICn,m . When
Ci fl Cj is a point P then fl Cj) is given by two such equations,
coming from the two rational lines on the boundary of Ci intersecting each
other in the extremal point P. The situation in Cj is identical.

In lemma 2.3 we proved that X is affine, so n Cj) is also affine
in X i. The set is defined in X by one or two equations of the
form 0, so f1 C Xi is open affine subset.
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Since v-1(Ci describes the same affinoid subset of K2 - {(0,0)}
in both Xi and Xj, we can identify v-’(Ci fl Cj) in both Xi and Xj. This
shows that our covering satisfies condition 2 of the definition, since it is
clear that fl = fl Cj)).

Let us now show that a covering (Xi) of 1(2 - {(0,0)} such that the
covering (Ci) of v(K 2 - {(0,0)}) does not satisfy condition 1 or 2 in the

statement of the lemma is not pure. There are now three possibilities :

1) There exists an i such that C~ fl 0 for an infinite
number of Cj

2) There exists i, j such that Ci fl Cj = Q fl Cj fl L, but
Ct fl Cj fl L, L is a rational line.

3) Int (Ci fl Cj) 0 0 for some i, j.

It is easy to see that in all three cases the covering is not pure, since it does
not satisfy some of the conditions in the definition above.

In case 1 it is clear that the covering (X;) does not satisfy condition
1 of the definition, since Xi has a non-empty intersection with an infinite
number of Cj.

In cases 2 and 3 the covering does not satisfy condition 2 of the definition
above. In case 2 we have : Xi fl Xj 0 or Xi fl Xj 0 In

case 3 v-1 (ci fl is not open in X i and Xj.

Example : Let the group r be generated by a contraction y. In proposition
2.1 we constructed a fundamental domain F for the action of r. The finite
affinoid covering (Ft) of F we gave, where Fi is a monomial rational domain,
can be used to give a pure covering of Ii 2 - {(0, 0)} that is r-invariant.
Indeed the covering is r-invariant and pure by the lemma above
if 7 has the form with A = 0. If A fl 0 then we can choose a small enough
value of I A I such that and n ,i(Fl)’ k,1 = l, 2 are
pure by the lemma above. Since -13(Fk) n if li - j~ &#x3E; 2 the
covering is again pure.

We will now study in som detail the case where -y is defined by :

and A = 0 if a2 and satisfies the extra condition : = I for
some E 
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In proposition 2.1. we showed that the fundamental domain F can be
covered by the following two afhnoid subspaces :

IW I -

In the next lemma we will study the special case laII I = a2 . Then we
will study the case laft = la’l.

LEMMA 2.5. Let r be generated by a contraction -1 such that

lail = la2l. Let E Z} be the pure r-invariant cov-
ering C of K2 - {(0, 0)} given above. The reduction {(0,0)} with
respect to this covering C has for every extremal point P of the convex
domains = 1, 2, i E Z, a surface W;(, i.e. a 1F;( blown up in one
point. The surface corresponding to the extremal points P and 7(P)
have one 1Fk in common, this line is exceptional in the belonging to P
and ordinary in the other.

Proof. Let = 1,2, i E 7G be the affinoid algebra belonging to

¡i(Fj). Let be the component of the reduction of that

correponds to the extremal point P of the convex domain

Since the covering C is r-invariant and r acts transitively on the sets of
extremal points, it is sufficient to look at one extremal point P. We choose
P = The point P is an extremal point of the following
four convex domains in v(K2 - {(O,O)}): v(F2 ), and

So we have to consider the following affinoid algebras and their
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reduction in P :

Here a E li is chosen such that jail [ = We will now glue the
reductions together.

The glueing of and along their intersection’defined by

# 0, z- 0 0 and identifying () with fi gives us a X Ak and
has coordinate ring

Now we have to glue these two surfaces,. T[Dl 7 X Ak along their intersection
.... , _1

relations :

So we have to identify xo with xl, or X3 with x2. We choose X2 = x3. Now

the glueing gives us a homogeneous coordinate ring

This is the coordinate ring of a surface IPL (see [H]). We have
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In the point y(P) we also find a surface íF¡( given by the homogeneous
coordinate ~2] X Il / ~) We will now
describe the intersection of these two surfaces íF¡c In the Ip2 belonging to
P this intersection is determined by 1 ~ I ’ 1-;; I  1. In the coordinate ring
this space is determined by 0. So we find the exceptional line

given by K~O, o,1~ x K[yo, yi] in the íF¡( belonging to P.

In the Pj, belonging to y P the intersection is defined by - ? z I  1.
So in the coordinate ring this space is given by

therefore X2 = 0. find the ordinary line given by

in the Pk belonging to ,(P).
So the reduction of h’2 - f(o, 0)} with respect to the covering C is given

by a string of surfaces PL glued together as in the figure by identifying an
exceptional line e in one with an ordinary line o in the text surface 
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Rerraark : Since the group r above acts transitively on the set of extremal
points, the reduction of the Hopf surface 1(2 - {(0, 0)}/T is given by a
surface where - is the relation that identifies the exceptional line e
with the ordinary line o, when we use the covering C of K~ - O)l given
above.

THEOREM 2.2. Let r = ^y &#x3E; be generated by a contraction 7 with
( = I for some k, l E with g.c.d. (k, l) = 1 and suppose K

contains a primitive k ~ 1-th root of unity. Let F be the fundamental do-
main of r constructed in proposition 2.1. Let C be the pure r-invariant

covering i,j E Z} of K2 - {(0,0)}.
Every extremal point P of a convex domain v (-y’(Fj)), j = 1, 2, i E 7G

corresponds to a surface 2 lyk,l in the reduction. The group ILk,! is a

finite cyclic group of order kl acting diagonally on The surfaces 

belonging to the extremal points P and y(P) have a line in common., This
line is the image of the exceptional line in the belonging to P and
it is the image of an ordinary line in the surface belonging to the extremal
point y(P).

Proof. We only have to prove the theorem for one extremal point P,
since r acts transitively on the set of extremal points. We choose
P = (log I all, log I a2 1). So P is an extremal point of the following four
convex domains in {(0, 0)}) :

The associated affinoid algebras and their reductions in P are :
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Since fi we can use theorem 2.1.c to get a more conve-
nient description of [Ai]p,i = 1, 2 and = 1,2. Let us take new
variables u, v such that ul = and vl = .!.2... Now we have :

Q1 Ot2

Here C is defined by
where ( is a primitive 1~ ~ I - th root of unity.

Furthermore we have :

This shows that we have in fact :

The group p = gk,l works identical on the intersections of the affine spaces.
So we can interchange the group action and the glueing.
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In lemma 2.5 we already proved that the glueing gives us a surface 
The group p acts diagonally on this surface 

Let be the homogeneous coordi-
nate ring of etc. This shows that the

K X2’ ’ X2 ’ Yl v

action of JL is defined by :

Since the finite group p acts diagonally, the invariants of p are generated
by monomials. If we forget about degree the generators are :

The homogeneous algebra of invariants is generated by the monomials of
degree kl in the xi and/or yi that are ~-invariant. So the generators are :

Of course there are relations between these generators. One directly sees
that there are relations of the form SlS2 = S3S4, where the 8i are some

generators such that SlS2 is the same monomial as s3s4.

The relation xo yo - x1 yl - o gives rise to the following set of relations :

where t + j = r + s and = kl.

This shows that we can reduce the number of generators. We will not go
into this any further.

Since the surfaces belonging to the extremal points P and ’Y( P),
are the images of surfaces belonging to P and 7(P), which intersect
each other as in lemma 2.5, the last part of the theorem is clear.
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Remark : Let C = (Xi) be a pure a,ffinoid covering of A~ 2013{(0,0)} such that
all Xt are monomial rational domains. Every extremal point P of a convex
rational domain Ci = gives a surface in the reduction of K 2 - {(0, 0)~
with respect to C. The surface belonging to P is the surface given by a
conic decomposition of R 2. Every cone (T gives a surface Xv, where Q is

a

the dual cone of a. So 7 is given by the points (n, m) E R2 such that the
lines nx + my have only values &#x3E; 0 on u. The surface Xv is the component- 

a

of the reduction of X; in P and a is the cone given by the two half-lines

through P bounding Ci = v(Xi). We have Xv = spec fl 7L2),ol

where f is the map f : (n, m). In fact we have (T = f (By), where
Bi is the set of the monomials in the affinoid algebra A2 of Xi that obtain
their maximum value in P. The glueing of the surfaces Xv for the cones cr

a

defined by P gives us the surface in the reduction belonging to P.

We will now study coverings C such that to every extremal point P
belongs a non-singular surface.

DEFINITIONS. A conic decomposition is called regular if the surface Xv
a

is non-singular for every cone a in the decomposition. 
A regular conic decomposition is called minimal if there are no cones

Qt and 7y in the decomposition such that the decomposition obtained by
replacing at and 7y by their union ai U aj is again a regular conic decom-
position.

Rerraark : In theorem 2.1.b we showed that the surface X is non-singular
0

if and only if the semigroup Q fl Z2 is generated by a Z-basis of Z2.
This shows that if Q = -f- be2) + de2) ~ I A, p E where

is a basis of Z and a, b, c, d E Z with g.c.d.(a, b) = g.c.d.(c, d) = 1

the surface Xv is non-singular if and only if f 1.
a b d

DEFINITION. We denote the rational ruled surfaces C) by
E.",,. (See [H]). Sometimes these surfaces are called the Hirzebruch surfaces
in the literature.

THEOREM 2.3.

a) A minimal regular conic decomposition corresponds with one of
the following surfaces :
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b) Every non-minimal regular conic decomposition gives a non-singu-
lar surface which can be obtained from one of the surfaces above

by a finite succession of blow ups.

Proof. These facts are proved in [0.1] and [0.2]. We will not recall the
proof here. In the next remark we will describe the minimal regular conic
decompositions.

Remark : In the pictures below we give the minimal regular conic decom-
positions and the surfaces defined by them.

So a minimal regular conic decomposition consists of 3 or 4 cones as
above.

If a regular conic. decomposition R1 is not minimal then there are two
cones cri and aj in R1 such that replacing oi and oj by their union ai U O’j
gives another regular conic decomposition R2. The surface defined by R2
is a blowing down of the surface defined by Ri. By induction this proces
stops if we reach a minimal regular conic decomposition as above. Below
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we show an example.

For later use we give the following decomposition :
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Here lz is given by x-iy = 0, i = 1 ... s. The regular conic decomposition
is given by replacing Qs.f.l, Q~, · · · cr, by U 0"8 U ... U oi. Since

R8 defines a surface Ro defines a surface blown up s times.

THEOREM 2.4. Let r be generated by a contraction y. There exists a pure
r-jnvanant affinoid covering C = (Xi) of 1(2 - {(0,0)} where the Xi are
monomial rational domains such that every extremal point P of Ci = v(Xi)
gives a non-singular surface in the reduction.

Proof. If - we have proved this in lemma 2.5. All other cases are
proved in the next proposition.

PROPOSITION 2.3. Let r be generated by a contraction 7 with
0  la11   1. Now there exists for every 1 E such that

la11 a p ure affinoid covering as stated in theorem, 2.4 above. The
reduction is as shown in the figure below.

Proof. Let F be the fundamental domain of r constructed in proposition
2.1. Let v denote as before the map v : (zl, z2 ) - (loglzll, 
We now look at v(F). Let the point Q = (ql,q2) E v(F) be defined by :

This point (3 is in v(F) since 0  I  [  la21 [  1 and therefore we
have 

.. I I y.. I I
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We now cover the area v(F) by a finite number of convex domains as
shown in the figure.

The line-segments drawn in the figure above are the following :

The extremal points of the convex domains are Q, i = 0...1. The points
Pi are given by Po = (0, 0) and Pi = (q¡-iq2+i log la21, log la21), i = 1...1.

Now proposition 2.2 tells us that the covering of v(F) with convex do-
mains as above corresponds with a covering of F with monomial rational
domains. Furthermore lemma 2.4 shows us that the covering of /(2 - {(O, O)}
arising from this covering of the fundamental domain F by the action of r
is a pure affinoid covering of li 2 - f (0, 0) }.
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The extremal points Q, P;, i = 0.-1 give surfaces in the reduction of
{(0, 0)}. The remark before theorem 2.4 shows that the surfaces are

the following :

to Q belongs a Pk blown up 1 times.
to P, belongs a 24..
to = 2 ... 1 - 1 belongs a Ei.
to Po and Pi = y(Po) belongs a Ki, i.e. a El blown up one time.

The surfaces belonging to two different extremal points have at most
one line in common. They have exactly one line Pk in common if and only
if the extremal points are joined by a line segment that is a part of the
boundary of a convex domain. The line they have in common is defined by
the monomials that reach their maximum on this rational line. A direct
calculation shows that these lines are as in the statement of the proposition.

PROPOSITION 2.4. Let r be generated by a contraction -y such that
I = I for some 1 E Now there exists a pure affinoid covering as

stated in theorem 2.4 above. The reduction is shown in the figure below.

Proof. The construction of the covering is the same as in proposition
2.3. The only difference is that we have now Q = Po. Therefore Hl = Ho
and K = Mo.
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Looking at the figure below it is clear that we have a covering as in
theorem 2.4 and that the reduction is as stated above.

Remark. Using the coverings of f (0, 0)} given above, we can find
a reduction of the Hopf surface X = li 2 - f (0, 0)}/r. Since r covers

f(o, 0)} with the images of the fundamental domain F, it is clear that
the reduction of X is as shown in the statements of the propositions 2.3
and 2.4 above with an identification of some lines.

We will now construct another example with r = y, ~ &#x3E; where 7 is the
contraction y : (Zl,Z2) ~ (alzl,a2z2) and ( generates is defined

by ( : (Zl, z2) - ((Zl, where ( is a primitive m-th root of unity. In this
case the Hopf surface X = li 2 - ((0, 0))/F has a nice reduction E"z / N,
where - is an equivalence relation identifying two lines of E,",.

LEMMA 2.6. Let C be a primitive m-th root of unity. Let  C &#x3E; be a group

acting on h’2 - f (0, 0)} where ( is defined by C : (Zl, Z2) --&#x3E; ((Zl,(Z2).
Let £m be as above with a homogeneous coordinate ring

where I is the ideal

Now we have : .- K2 - {(0,0)}/  ~ &#x3E;= E,,BS.
Here S consists of the two lines ]Pl K defined by

Proof. The group  ( &#x3E; acts on the two open subspaces K* x K of
K2 - {(O, O)} defined by z, 34 0 and z2 fl 0. These two subspaces cover the
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whole of K2 - {(0, 0)}. Now it is sufficient to look at the invariants of the
group action on these two open subspaces. The invariants are generated
by : 

-

We will now glue the spaces defined by these coordinates together to find a
description of ](2 - 1(0,  ~ &#x3E; . First we take homogeneous coordinates
x1, x2 such that .111 = u and = . Let yi, i = O...m be the non-X2 Z2 Xl Zl

homogeneous coordinates yi = = O...m. The yi are global sections
of ](2 - {(0,0)}/  ~ &#x3E;. Together with x1 and X2 they give a complete
description of the coordinate ring of ~i 2 - ~(o, o)~ /  ~ &#x3E;.

The coordinate ring is given by :

Furthermore we have the condition that yo and y,n cannot be both zero,
coming from the fact that the point (0,0) is missing in f (0, 0)}.

Since the coordinate ring of £m is x and

R - x it is clear that 1(2 - f(o, 0)}/  ~ &#x3E; is

isomorphic to a subspace of E~.

In fact we have : K2 - {(0,0)}/  ~ &#x3E;~ EmBS.
Here S consists of the two lines defined by :

PROPOSITION 2.5. Let ( be as above. Let r be the group r = (,ï &#x3E;

acting on K2 - {(0, 0)}. Here 7 is a contraction defined by

Now there exists a pure r-mvanant affinoid covering of 1(2 - {(0,0)} such
that the Hopf surface K 2 - ~(0, 0)~/r has the reduction is

the equivalence relation identifying the two lines PL defined by z = 0 and
by yo = y1 - - - - = = 0, where z, yi, i = 0,... , m are as in lemma 2.6.
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Proof. Since r is abelian and  ( &#x3E; is finite, it is sufficient to find a

fundamental domain F for the action of  q &#x3E; on Ii 2 - {(0, 0)}/  ~ &#x3E;

such that the affinoid covering of F together with its  y &#x3E;-images is pure
and gives a reduction with the properties mentioned above.

Again we consider the two open subspaces Ii * x 1( of li 2 - {(0, 0)}
defined by 0 and by z2 fl 0. It is clear that the action of 7 on the
 ( &#x3E;-invariants is given by :

Now we have a fundamental domain F = F, U F2 where F1, F2 are given
by:

The subspaces Fi and F2 are affinoid spaces, they are in fact monomial
rational domains. It is easy to see that C = i, j, E 7~} is
a pure affinoid covering of /(2 - ~(0, 0)}/  ~ &#x3E; by monomial rational
domains.

We will now define maps v’ and v" such that v’(y’(Fl)) and 
are convex domains in (II8 U {:f: 00 } )2. The maps are defined by :

Since the maps v’ and v" are identical on the subspace defined by
0, z2 fl 0, we can glue them together and get a map
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Note that in this situation v(F2) does not satisfy condition b of propo-
sition 2.2. This is a consequence of the definition of v used here. But the
results of lemma 2.4 remain valid, mutatis mutandis.

Again we have a 1-1 correspondence between extremal points P of the
convex domains v(^y=(F~ )), i E 7l,j = l, 2 and the components of the reduc-
tion. Every extremal point P gives a surface in the reduction. Looking at
the figure above and using the remark following theorem 2.3 we see that
every extremal point P gives a surface Ey~.
In order to describe the intersections of the surfaces Em we need some
more information. We need to know the components in P of the reduction
of the four affinoid domains v(-yi(Fj)) with P E in P. This is a

straightforward calculation. The results are shown in the figure below.
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The components can be glued together to give a surface £m with homo-
geneous coordinate ring X2] x yo, ..., The identification is

given by :

Now it is clear from the figures above that the surfaces £m belonging to the
extremal points P and have a line in common. This line is defined by
JLm. = .1JJl = 0 in the £m belonging to P and by 2.... = fi = 0 in the other E",,.z z tY Y- yo

So these lines are 1F;( ’s defined by z = 0 and by yo = yl = ... = ym = 0.
Since  1 &#x3E; is transitive on the set of extremal points P it is clear

that the reduction of the Hopf surface li 2 - {(0, 0)}/r is where

identifies the two lines above.

3. Line bundles on a Hopf surface

Let r = 1 &#x3E; be generated by a contraction -y. We will now study the
line bundles on the Hopf surface X = K 2 - f (0, We will need some

properties of quasi-Stein spaces (see [Ki.2]).

DEFINITION. An analytic space Y is called a quasi-Stein space if there
exists an admissible covering of Y by open affinoid subspaces Ul, U2, U3, ...
such that :

1) 
2) the image of is dense in 

Remark : Let Y be a quasi-Stein space and .~ a coherent sheaf on Y. In
[Ki.2] the following two properties are proved :

1) H’(Y,.F) = 0 di &#x3E; 0

2) The coherent sheaf .~ is a sheaf associated with an O(Y)-module
F.
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LEMMA 3.1. The analytic space il* x K is a quasi-Stein space.

Proof. Let Ui be the open affinoid subspace of 1(* x Il defined by :

We choose Ri  and Ri - oo for i - oo .

Now the covering (Ui)iEN of 1(* x IC is admissible and satisfies the defi-
nition above. This proves the lemma.

LEMMA 3.2. Every line bundle ,~ on W = 1(2 - {(0,0)} is trivial.

Proof. We have W = WI U W2 where E W ~ I zi fl 0) and
is

a quasi-Stein space and every line bundle on K* X 1( is trivial.

It is clear that

This shows that el = ae2 for some a E O(IVL n W2)*. Furthermore we have
a = all.a2 with ai E 
Now we take f, = ai ei and f2 = a2e2. Clearly we have £IWl = 

and flw. = fi and £ = Ow, . f. This proves the lemma.

.Remark ; Let u be the map u : W. = K2 - {(0, 0)} - W/r and let R
be a line bundle on X = W/r. Now is a line bundle on W, so we
have u* £ = e. The action of the contraction -Y on has the form

7(e) = a . e for some a E Clearly we have : Ow(W)* = K*.

DEFINITION. For a E 1(* we denote by ~ the line bundle on X = W/F
defined by = with q(e) = a - e. Here 7 is the contraction
generating r..

PROPOSITION 3.1. Let r be generated by a contraction, and let
X = W/r. Now we have : 

’

a) Every line bundle Z on X is isomorphic to an unique ’ca.
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Proof. This is a direct consequence of lemma 3.2 and the remark following
that lemma. Another way to prove the proposition is the following. The
map u : W ~ X is a local isomorphism of the Grothendieck topology. We
have : 

’

Therefore we have : = HO(W, C7yy )) = .~~*). Since
r has trivial action on 1(* we see that H1 (h, .~i *) _ 1(*. This shows that :
Pic(X) = H1 (X, Ox) = K*.

Remark: In the next lemma we shall compute Hi(W, ~c*,~a) ~_^ H’(W, Ow ).
We will need this for the calculation of the dimension of the groups

LEMMA 3.3. Let W = 1(2 - ~(o, 0)~. The cohomology groups 
are given by :

Proof. Let Wi ~-^ 1(* x be the subspace of W given by Zi i- 0 for
i = 1, 2. We have W = WI U W2 . Since Wi is a quasi-Stein space, we have

0 for j &#x3E; 0 and every coherent sheaf £ on Wi . Therefore we
can use Leray’s theorem.

Let d be the natural map d : P-(Wi) 0 £(W2) - n W2). Now
Leray’s theorem gives us : = ker d, H 1 (W, ,~) - coker d and



455

dim Hi(W,.c) = 0, i &#x3E; 2. Now the take Z = It is clear that we have :

N 
- 

- .1

Now the lemma is proved by applying Leray’s theorem.

Rernark : Let M be a r-module and let F be F == ~ Z. Let d : M - M

be the map given by d(m) = ¡em) - m, m E M. Then the groups M)
are given by :

PROPOSITION 3.2. Let X = W/r, F rz Z and £a a line bundle on the Hopf
surface X. In this situation we have :

Proof. It is dear that = = 

We will use spectral sequences to determine the other groups 

The left exact functor H* (X, - ) is the composition of the two left exact
functors H° ( r, - ) and H° (W, - ) and the exact functor £cx - u* £cx. We can
determine the right derived functors Hi (X, - ) of H° (X, - ) by using the
right derived functors and H’(W, -) of H° (F, - ) and H°(W, -).

Let T, U be covariant functors in one variable. Now [CE] p.376 gives us
for the composite functor V = T U a spectral sequence IIp’q 
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Here R" is the n-th right derived functor. In this spectral sequence we have
II2’q = RqT(RPU(-)). In our case we have V = H°(X, -), T = H°(r, -)
and U = H°(W,-).
This gives us :

Furthemore we have H q ( r, - ) = 0, 0,1 and HP(W, -) = 0, p # 0,1.
Therefore II2’q = 0, 0, 1. Now we have II2’q = Vr &#x3E; 2, since
dr : --~ is trivial for r &#x3E; 2, i.e 0, and the spectral
sequence is defined by H(IIr) = 

Since II2’q = 0, p, q ~ 0, 1 we have an exact sequence (See [CE] p.333) :

This is the exact sequence in part b of the proposition. Furthermore we
have : HZ(X,,~a) ^_-’ = This proves part c of the

proposition. 
’

LEMMA 3.4. Let ¡ be a contraction given by (alzl, 02Z2),

Let £{3 be a line bundle on X = w/r, where F = y &#x3E; . Then we have :

Proof. The element -1 multiplies an,mzïz’2e E by a constant :

Since Vk, 1 we have :
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From = we can directly conclude that :

Indeed all monomials in are of the form n, m 

In a similar way we can determine From the

action of y on H’(W, we can see that :

Now we can calculate

as before.

Now proposition 3.2b shows us that :

This gives us : dimh 1 (X, PO) = 1 o 3 = ai a2, a, b E 7-

LEMMA 3.5. Let y be a contraction given by 
0  jail [ :5 la2l [  1 and ak = a~ for some k, l E Z&#x3E;o with g.c.d.(k, l) = 1.

be a line bundle on the Hopf surface X = 11’ If, where F = 7 &#x3E; .

Now we have :
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Proof. As in the previous lemma we have for monomials

So an element f - e E is I-invariant if and only if f e is the
sum of monomials e that are 7-invariant.
Now we can calculate Since

we have dim H° (X, ,~~ ) ~ 0 if and only if (3 - alma2n,m,n E Z&#x3E;o. If

f3 = a-"2cx-n then we can write j3 uniquely in the form f3 == 

= a§ .
Now we have {3 = almQ2n , m, n E Z&#x3E;o for the following values of m and
n:

This proves that dim = b + 1.

In a similar way we can calculate dimHO(f, u*£p)). Since 7 acts
on the space H’(W, u*P-,3) by multiplying the monomials with a constant,
we have : dim HO(f, H’(W, u*,Ep)) = dim Hi(W, u*P,,3)).
Now using proposition 3.2. it is straightforward to calculate

dim H1(X,£,a) and dim 

Rerraark : Let y be a contraction of the form y(zl, Z2) = aZ2),
0  101  1, A f 0. In this case Wl. So the action of 7 on
H’ (k£ u*£p) as given in lemma 3.3 is not well-defined. Therefore we need
another description of This will be done in the next lemma.

LEMMA 3.6. Let Wi C W be the subspace

Then W1 is a quasi-Stein space an d W = W~ U W2. Let 7 be a contraction
of the form
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We have

The action of y on now well-defined.

Proof. We can see that W1 is a quasi-Stein space by using the following
admissible affinoid covering Wl. Here Ui is defined by :

Here we have I~i,2 -~ oo, Ri,l - 0 and Ri,3 ! 1 as i - oo.

Since W = W1 U W2 and Wi , W2 are quasi-Stein spaces, we can use
Leray’s theorem to calculate the Hi (W, We see that Ow), i ~ 1
is as in lemma 3.3, only H1 (W, Ow) is different. In fact we have :

I ,

So only the convergency condition of the powerseries has changed.
Now the action of / on Ow) is well-defined. We have :

This powerseries is convergent on 1112 since (z k~ E ~ and therefore
I (z k I  1. In fact we may forget about zZ-powers &#x3E; 0, since in H1 (W, Ow)
we are looking at powerseries E ak,lzf z4 modulo monomials having a

0. So the series y stops as soon as mi - 1 &#x3E; 0.
1 2

LEMMA 3.7. Let, be a contraction of the form
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Let ,~~ be a line bundle on the Hopf surface W/r, where IF = y &#x3E; . Now

we have :

Proof. We may replace the coordinate zi by so we can assume

that A = 1 and that y has the form : 7(~1,~2) = + 

We also replace the monomials by where x - , so2

y(x)=x-1.
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We will first calculate H°(X,.~p). We have :

So we must have : f = ~ ~ .7(f). We can write :

Since 0, we have s = 0. When = 0 we find s = 0 and f i E AB

Therefore we have : f = = c E K, = ai . (3. f e

If char(K) = p &#x3E; 0 then we find pls. It is easy to see that the polynomials
(xp - x)j are y-invariant. Now we have :
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This gives us :

Since there is for every 1 &#x3E; 0 only a finite number of polynomials xkz1
with k &#x3E; 0 and 1 - km &#x3E; 0 and = al(x + and since there
exist for at most one value of 1 invariant polynomials fz(x)z2 such that
7(fi(X)Zle) = we have again :

We will now study the action of ~y on We have :

We can forget the terms with -1 + (k + I)m &#x3E; 0, so we only have
to look at a finite sum. Now take an element I . e E such that

f=~~y(f). 
We can write f where f; is a polynomial such that
i -  0. Therefore

So we have : 7(.f~ _ ~ lf ~ f = f~(x 1)z2~ ~ = a =, 
and == modulo monomials xkz2 with i - km &#x3E; 0.

Let f be
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Now 7( f ) _ 0-’f implies that :

If = 0 then s = 0 cannot occur since we have s &#x3E; 0.

So we must have ms + m ~- i &#x3E; 0 and srra -f- i  0, since otherwise f m 0.

This gives us :

sm-E-i0.

It is easy to see that the powerseries (m) r is -i-inva,riant :

So we can use the polynomials :

w /

Here jo is taken such that i + m(pr + jo(p - 1)) ~ 0.

Furthermore we find an extra ,-invariant monomial x-’’z2 if

-(r + 1)  ~  -r  0 and r ~ p. s for some s E So we now

have :
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Again we have : dim = dim 

So we have : dim = dim 

Furthermore we have : dim = dim dim 

THEOREM 3.1. Let r = y &#x3E; be generated by a contraction 7.

Let £, be a line bundle on the Hopf surface X = Wlf. We now have :

a) X(£o) = 0
b) There exists an unique line bundle such that :

c) We have ,~a, . «z = 

Proof. The Euler characteristic is defined by :

t=U

In the lemmas 3.4, 3.5 and 3.7 we have used the following fact :

This proves statement a of the theorem. 
’

The Serre duality in part b can be found by direct verification. We shall
only determine the only possible line bundle ,~. We have :

Since dim = 1, we have Z =.ca with a = k, l 
Now take f3 = aí a2, r, s &#x3E; 0, then we have :

0 # dim = dim HO(X,Z,,-k =&#x3E; -r + k &#x3E; 0, -s -~- 1 &#x3E; 0.
1 2 

- -

So only k = I = 1 can satisfy b, therefore P- =P-1 02.
The canonical divisor Il on X is given by
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Clearly we have : ,~(.K~ _ £ala2. This proves part c of the theorem.

Rerriark : Theorem 3.1 gives us a Riemann-Roch theorem on the Hopf
surface X.
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