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Efficient computation of addition chains

by F. BERGERON~, J. BERSTEL~ and S. BRLEK~

ABSTRACT - The aim of this paper is to present a unifying approach to the
computation of short addition chains. Our method is based upon continued
fraction expansions. Most of the popular methods for the generation of
addition chains, such as the binary method, the factor method, etc..., fit in
our framework. However, we present new and better algorithms.

We give a general upper bound for the complexity of continued fraction
methods, as a function of a chosen strategy, thus the total number of oper-
ations required for the generation of an addition chain for all integers up to
n is shown to be O(n log2 n03B3n), where 03B3n is the complexity of computing
the set of choices corresponding to the strategy. We also prove an analog
of the Scholz-Brauer conjecture.

1. Introduction

An addition chain for a positive integer n is a sequence of positive inte-
gers C = (no, nl, ... , ns) such that

(i) 
(ii) for each i, 1  i  s, there exist k, j  i such that ni = nj + nk.

The integer s is the length of the chain C and is denoted by The chain

length L( n) of n is the minimal length of all possible chains for n. Clearly,
this notion extends to sets of numbers as well, and we shall denote the
chain length of {mi,.... mt} by L(ml,... , mt ) .

Brauer (in [1]) introduced a special class of addition chains, namely star-
chains, characterized by the condition that

(ii’ ) for each i, 1  i  s, there exists k  i such that ni = ni-i + nk .

These chains play a major role in our study.

Manuscrit recu le 17 juin 1992.
tWith partial support from NSERC-Canada and FCAR-Quibec.
twith the support of PRC "Mathimatiques et Informatique" and ESPRIT, BRA work-
ing group 6317-ASMICS 2.
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Addition chains for n generate multiplication schemes for the compu-
tation of For instance, the chain (1,2,4,8,9,17,34,43) leads to the
following scheme for the computation of x43:

Clearly this establishes a correspondance between addition chains and such
schemes. Furthermore, the length of an addition chain for n is equal to
the corresponding number of multiplications required for the computation
of Thus, the smallest number of such multiplications is given by the
chain length of n.

This subject has a long history, a detailed account of which is given by
Knuth in his second volume [9]. Any explicit algorithm for the generation
of addition chains clearly sets an upper bound on the function ~(n). Thus
the usual binary expansion algorithm (see [9]) implies that l(n) :5 A(n) +
v(n) -1, where A(n) = and v(n) is the number of 1 in the binary
expansion of n. However, the problem of computing the exact value of l(n)
seems to be difficult. Indeed, a slightly more complex problem, namely the
problem of computing the chain length for a set of integers, has been shown
to be NP-complete (7~. Therefore, it is interesting to consider sub-optimal
addition chains, provided that they can be constructed in an efhcient way.

In a previous paper [3] (see also the work of Semba [11]), we have in-
troduced such a class of sub-optimal addition chains for positive integers
n. These were obtained through continued fraction expansions for n/k,
where k is some integer chosen between 2 and n - 1. We call chains of this
form continued fraction addition chains, or simply cf-chains. We proved
in this same paper that the Scholz-Brauer conjecture holds for cf-chains.
This result implies that for an infinite class of integers, cf-chains are much
closer to optimal addition chains than the chains obtained by the usual
binary method. A precise form of this assertion can be found in paragraph
5. Moreover we show (Theorem 2) that the length of cf-chains satisfies the
same asymptotic bound as 

Even though minimal-length cf-chains are not optimal, they have the nice
property of being easy to compute and significantly shorter on the aver-
age than chains obtained by the binary method. This is clearly important
when the cost of even one multiplication is high. Moreover, most of the
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popular effective strategies for computing addition chains are obtained as
special cases of the cf-chain method. Thus, minimal length cf-chains will
systematically be shorter than the chains obtained by these other meth-
ods. We further prove that the total number of operations required for the
generation of an addition chain for all integers up to n is O(n log2 nyn),
where in is the complexity of computing the set of choices corresponding
to the strategy. This takes into account the complexity of arithmetics with
multiple-precision integers. Thus in the case where in = O (log n), one gets
the upper bound This holds for the dyadic strategy.

2. Continued fraction chains

Let us introduce two simple operations on addition chains. Given two
addition chains C = (no, ni, ? ns) for n and C’ = (mo, 7~1,... ~ Mt) for
m, define the product C Q9 C’ to be

It is clear that this chain for nm is of length = + IC’I. Now, if
C = (no, nl, ... , ns) is a chain for n, and j is one of the integers appearing
in C, then define C e j to be

Obviously the length of this chain is ICI + 1.
On the other hand, recall that for an integer n and any k belonging to

{2, 3, ... , n - 1~, the continued fraction expansion of n/k is

We shall denote this continued fraction by ji,’"3r]- The semi-
continuants Qi of this continued fraction are:
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Observe that by construction Qr = n.

A similar recursion, also derived from the continued fraction expansion
of n/k, yields a continued f raction addition chain, cf-chain for short. Let
C (d ) be some cf-chain for d = gcd(n, k); and for each i, 1  i  r, let

Ci = C(ui) be some cf-chain for ui . We define the sequence of cf-chains Xt
by:

Hence Xi is a chain for Qi, thus X,. is also a chain for n and we shall denote
it C(n). All chains obtained in this manner will be called c, f-chains. Since
for each we have

Clearly, the construction of a chain C(n) for some integer n depends on
the choice of k as well as on the choice of the cf-chains C(d), C1, C2, ..., Cr.
The resulting chain will vary according to the choices made. In any case,
the chain for 2a should always be (l, 2, 4, ... , 2a), because it is clearly of
minimal length.

Observe that every cf-chain is also a star-chain in Brauer’s terminology.
This implies that cf-chains are not always optimal since there exist integers
for which no optimal chain is a star-chain (12509 is the first integer of
this kind [9]). Conversely, there are star-chains which are not cf-chains.
For n = 367, a computer program showed [3] that the shortest cf-chain
has length 12 whereas a shortest star-chain has length 11. However, the
advantage of cf-chains over arbitrary star-chains is that they are easier to
compute. This is precisely formulated in Theorem 1 below.

Example 1. For n = 86, let us choose k = 10. The corresponding contin-
ued fraction is [2,1,1,8], d = gcd(86,10) = 2, and 
(2, 4, 6,10, 86). Hence the cf-chain produced by our method (provided we
choose the chain (1, 2, 4, ..., 2a) for 2a) is
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Observe that this chain has minimal length 8, whereas the binary method
produces the chain ( 1, 2, 4, 5,10, 20, 21, 42, 43, 8fi) which has length 9.

3. Strategies

As we have already mentioned, we need to specify how to choose the
auxiliary integer k E ~2, 3, ... , n - 1 ~ that will be used for the continued
fraction expansion. Thus we shall define a strategy to be a function y that
determines for each integer n (which is not a power of 2) some non-empty
subset of {2,3,....~ - 1 ~ . For 2~, we simply set the minimal length
cf-chain to (1, 2, 4, ..., 2°‘). We can now give a precise form to the method
as an algorithm parametrized by a strategy y.

Algorithm 
( pro d u ces a sh ort es t cflchaJn for n according to I)

if n = 2C1 then return (1, 2, 4, ... , 2a)
elif n = 3 then return (1, 2, 3)
else choose some k E -y(n) such that Chain(f n, k}, -y)

has minimal length and return the chain

endif

end Minchain.

where

Algorithm 
(produces a cf-chain for {~i, ~2? - "9 nk})

if n2  1 then return Minchain(nl, y)
else let q = (n, div n2 ); r = (nl rem n2 )

if r = 0 then return Chain(f n2, n3, ... , nk}, y ) ø Minchain( q, I)
else return (Chain(f n2, n3, ... , nk, r}, I) 0 Minchain(q, y ) ) EÐ r
endif

endif

end Chain.
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The length of the chain for {~1~2?-" nk), (ni &#x3E; produced
by this algorithm will be denoted by L(~nl, n2, ... , nk}, -y). Now if we
further denote by l( n, ï) the length of the chain for n produced by algorithm
Minchain, then one has the following identities (see [3, 4])

and

where nl = q n2 + r, with 0  r  n2. In the sequel of this paper, these
functions will play an important role in the description of the properties of
the above algorithm. 

°

The following recursive expression for the length of the cf-chain produced
for n follows from these definitions. Denote by £( n, I) the length of a
shortest cf-chain for n according to the strategy -t, and by the

length of a shortest cf-chain for n containing k and obtained through the
continued fraction expansion of n/k. Then £(1,¡) = 0, and

Many interesting strategies can be chosen for the generation of cf-chains.
For each of these strategies, say i, we shall consider the complexity of
computing a i.e. a cf-chain obtained with strategy i.

Binary strategies, [9]. The most popular strategy is obtained by choosing
for all n, 

, . - ....
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This is exactly the binary method, in Knuth’s terminology. For instance,
the cf-chain for 87 obtained with this strategy is:

The length of a binary chain is known to be i(n, 0) = A(n) + v(n) - 1. In
fact, this value also follows from recurrence (2) with -y = i. One could also
consider the co-binary strategy a:

The cf-chain for 87 obtained with the co-binary strategy, is:

Factor strategy, [9]. The factor method (Knuth) corresponds to the
strategy:

if n is prime;

tl, otherwise, where q is the smallest prime dividing n.

In this case, even though the set of candidates is small, the computation
of l( n, 1r) is clearly equivalent to the factorization of n. Therefore, the
efiiciency of this method is rather bad. A factor chain for 87 is:

Total strategy, [2, 3, 11]. The total strategy 0 corresponds to the choice
of all acceptable candidates, i.e.:

As we shall see below, the complexity of the corresponding algorithm is
O(n2 Iog2 n). One minimal total chain for 87 is obtained with k = 17 :

This is an optimal chain for 87. However, it is not always true that a
minimal cf-chain is a shortest star-chain. For example, a shortest star-
chain for 367 has length 11, whereas the total strategy yields 1(367, 0) = 12
(see [3]).
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Dyadic strategy, [2, 3]. Because of this relatively high complexity, it

is interesting to introduce faster near-optimal methods. One such is the
dyadic strategy:

The complexity of this strategy is significantly smaller, namely O(nlog3 n).
Observe that C b(n). Therefore minimal dyadic chains are always
shorter than binary chains, that is 2(n, b)  ~(~, /3) for all ~c. For our

running example, a minimal dyadic chain is:

This chain is also an optimal chain for 87.

Fermat’s strategy. A strategy which is much faster to compute is Fer-
strategy:

It yields the following (optimal) addition chain:

The interest of Fermat’s strategy lies in the gain of computation time since
is a set of size 0(loglogn). Computer calculations have shown that

+ 1 for all n up to 1000.

Dichotomic strategy. This strategy is defined by

Since the set of choices here is a singleton, the dichotomic strategy is de-
terministic (like the binary strategy). Consequently, both the chain and
the chain length are computed without any backtrack. The length of the
chains produced are logarithmic in the argument, but the chains are not
always optimal with these fast strategies. As shown in Theorem 3 below,
the dichotomic strategy provides much shorter chains than the binary one
for a large family of integers.
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The data reported in Table 1 has been obtained with MAPLE© and a
program written in C++ running on a MIPS2000. For each strategy i, the
table lists the values 

.11JI. T

The values for i(n) were taken from Knuth [9]. The time shown is the time
required for computing a table of all chains for integers up to 1000.

Table 1. Comparison of the strategies.

Remarks. The table shows that on the average, the binary (schoolbook)
method is by far the worst with respect to the length. The computation
for the factor method does not really take into account the complexity of
computing the prime factorizations involved. Indeed, MAPLE factorization
procedure has a built-in table of small primes (up to 1000). We have not
produced a similar table to be used with our C++ program in order to
compare it but the time obtained with the MAPLE program gives a clear
indication of the projected time. Also, the reason for the missing data
about the Optimal strategy is clear.

4. Results

Each strategy defines an instantiation of the general algorithms for the
generation of cf-chains. Although the complexity of these algorithms clearly
depends on the complexity of computing the strategy y, we are mainly
interested in evaluating the functions i and L. Indeed, the effective con-
struction of an optimal cf-chain with respect to a strategy -1, is similar to
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the computation of its length. More precisely, addition chains are rep-
resented by linked lists. Each node represents one term of the chain,
and two pointers link this node to the terms whose sum give this term.
We show in Fig. 1 an example of such a representation for the chain
(1, 2, 4, 5,10, 20, 40, 80, 85, 87).

Fig. 1. List representation of (1,2,4,5,10,20,40,80,85,87).

Observe that the terms of the chain are not part of this representation.
This allows for a constant time implementation of the basic operations 0
and e. So the construction of optimal cf-chains reduces in linear time to
the computation of I and L as defined by (1) and (2’).

The complexity of computing l( n, ~) is a function of n, of the size of 
and of the complexity of computing 7(~). Let in denote the complexity of
computing 7(~), then we have the following result.

THEOREM 1. Assume that yn is an increasing function of n, then the com-
plexity of computing the function i for aU integers up to n is log2 n),
if one takes into account the complexity of doing arithmetic with multiple-
precision integers.

Proof. We assume that all the t(m, -1), for m  n, have already been com-
puted and stored in an array. Thus the computation of L(~n, k}, 7) using
(1) and (2) has the complexity of producing the continued fraction expan-
sion of n /k. For k in ¡en), the complexity of expanding n/k as a continued
fraction (with multiple-precision integers) has been shown by G. E. Collins
[6] to be O(log(k)(I+log(n/d))), where d = gcd(n, k). Hence, the complex-
ity of computing L(~n, k}, I) is 0(log2 n) and the complexity of computing
£( n, ~) out of these is log2 n). Thus the total complexity we are look-
ing for is 2:j=2 j, which is clearly in n). ..

In practice, we have the following expressions for the complexities
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It is straightforward to show that if -y(n) C -’(n) for two strategies y
and -y’, then ~( n, -y’)  i(n, -1). In particular, l( n, 8) :5 l( n, I) where 0 is
the total strategy. The diagram in Fig. 2 describes the relations between
the strategies above, where an arrow y ---~ ~y’ between two strategies 7 and
y indicates the relation y’(n) C 

lug
Fig. 2. The hierarchy of strategies.

5. Computing short chains

We briefly recall the major results about the length of addition chains.
Sch6nhage [10] established the lower bound

Brauer [1] determined the asymptotic behavior of L(n) by producing the
upper bound,

for 1. For a suitable p, (for instance p = we get

Thurber [14] improved Brauer’s result as follows: take first the binary
representation of n; set m = A(n) + 1; then, starting from the leading digit,
partition the binary word into equal parts of length p, producing the set

Then, each ni is in the initial set f 1, 2,3,...,2P - 1 ~,
and the number n is produced by applying the rules:
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Note that multiplication by 2P is achieved by shifting, and if ni is even,
then it can be replaced by an odd number nz such that ni = for some

j &#x3E; 1. This does not aSect the total number of shifts. Therefore, l(n) is
bounded by the total number of operations needed to produce n, namely

where 2(P-1) stands for the computation of all odd numbers less than 2P.
In that same paper, Thurber pointed out that this construction could be
improved for small values of n: he proposed to take a non-uniform partition
of the binary representation of n, based on an analysis of the binary pattern.
Recently, Bos and Coster [5] used this method to produce addition chain
heuristics in a more restricted context. They investigated applications to
cryptography, namely the computation of powers appearing in the well-
known algorithm of Rivest, Shamir and Adleman (RSA). Bos and Coster
consider numbers such that a(n)  512.

Here, we shall only consider a uniform partition and replace the initial
set of 2(P-1) odd numbers by a chain for the set 
the upper bound

Thus, the problem of computing l( n) is reduced to the computation of
an optimal chain for the This suggests the use of
Yao’s method [15]. Yao’s algorithm is asymptotically optimal, but there is
still place for improvements when the numbers ni are small.

Brauer’s bound is easily expressed within our context. To do so, we first
define the m-ary strategy. Let m = A(n) + 1, A = m - p(fm/pl - 1), and
= WPJ - 1-

m-ary strategy.

The next theorem characterizes the asymptotic behavior of U

r(n),u). Its proof follows that of Knuth [9] for = 1.
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THEOREM 2. The length of a cf-chain obtained with the m-ary strategy
satisfies the asymptotic bound

Proof. Let We first show that

r

r’, - .. r{} is an ordered set such 2P - 1.

Set ro = kt. Following algorithm Chain, write div ko and Tl =
n rem ko . It follows that 91 = 2å and 2P - 1. By definition (2) of L
we have

Then, for i = 2, ... t + 1, define

Observe that r~ ~ 2P - 1, and that qi = 2P for all i excepted perhaps the
last one. Indeed, a(~t_1) - 2a(kt) - 2(p - 1), and kt = kt-l div 2P. Let
n2 = kt-i rem 2P. Then we have

It is easy now to check that i(2P + 1, a) = p + 1. We have thus

Substituting A and t, we obtain the result claimed.

Finally, since 2P - 1 for all i, we have,
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and

The limit follows clearly.

Remarks.

1. In the proof of Theorem 2, we made use of the dichotomic strategy
~ in the computation of t(qi, a) and ri, ... , r’+Il, cr). Clearly, even
the binary strategy is sufficient to get the asymptotic bound. However, we
could also apply recursively the strategy r if the numbers are large enough.

2. In order to get Thurber’s method, one needs to determine the parity
of the numbers ni, and find the corresponding non-uniform partition of the
binary representation of n. Since it can be achieved in A(n) time, it is
worth doing it in applications, such as RSA computing, where one needs to
compute the same power many times. Finally, one can also define a strategy
which produces a non-uniform partition of the binary representation of n.
Let P = (pi?p2?" - pt) be a partition of m = A(n) + 1 such that

Then we define the P-partition strategy by

6. The Scholz-Brauer inequalities

One of the most intriguing problems concerning addition chains is the
so called Scholz-Brauer conjecture (see [1, 3, 4, 8, 12]):

In [3], we have proved a similar inequality in the case of the dyadic strategy,
namely that
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This clearly shows that for the family of integers of the form 2n - 1, the
dyadic method is noticeably better than the binary method. Indeed, it is
well known [9] that i(n,,3) = A(n) + v(n) -1, whence £(2n -1,,8) = 2n - 2.
Since 0 is more general than ~3, it follows that 2(rc, B)  A(n) + v(n) - 1.
Thus, (4) implies that

THEOREM 3. The following equah’ty holds for the dichotomic strategy

Proof. Assume first that n = 2m. Then o’(2" - 1) = 2’n -1. Consequently,
in view of (1)

and, by (2)

It is easy to see that l(2m + 1, (7) = 1 + m. It follows from (5) that

Assume now that n = 2m + 1. Then u(2n - 1) = 2m+l - 1. Again,

whence, in view of (2),
Using again (2) one gets

Equations (6) and (7) show that

We conjecture that another inequality like that of Scholz-Brauer holds
for Fermat’s strategy, namely:
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This last inequality has been checked on a computer for n up to 256. More-
over, Scholz-Brauer like inequalities have been derived for vectorial addition
chains (see [4]).

7. Open problems

Many interesting questions arise from the work presented above. The
algorithms presented are based on continued fraction expansions from which
it is expected to find partial solutions to problems about optimal addition
chains.

Indeed, each strategy defines a sub-class of the class of star-chains for
which it would be interesting to investigate the problems described here-
after. Most of them are existing problems about optimal addition chains
but restricted to the class of cf-chains.

Complexity. So far we know very little about the chain length obtained
by the the different methods: the asymptotic complexity is known from the
work of Brauer [1] and improved by Thurber [14]; we also know quite well
the case of the binary method.

In particular, we can ask for the following questions.
- Is the total strategy asymptotically optimal?
- What is the worst case complexity for the dichotomic strategy? While
an upper bound can be found easily, it would be useful to characterize the
worst cases.

- What is the average case complexity for the dichotomic strategy? This
amounts to a study of the distribution of the partial quotients. Again an
upper bound can be easily computed using the distribution of the partial
quotients (see Knuth [9] for instance), but an exact value requires more
investigations. It is expected that some improvements could be achieved
by using ergodic theory.

Scholz-Brauer inequalities. As stated earlier, the Scholz-Brauer inequality
holds for star-chains, and also for the more general class of to-chains defined
by Hansen (see [9]). We derived two similar inequalities with the total and
dichotomic strategies, but the question remains open for other strategies.

Density. Given a strategy y the problem is to determine the density of the
solution set of the equation
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Misceflaneous. Let = and = 

It is not known whether these functions are monotonic increasing in the
case of optimal addition chains. What can be said about cf-chains?
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