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The integer transfinite diameter of

intervals and totally real algebraic integers

par V. FLAMMANG, G. RHIN et C.J. SMYTH

RESUME. Dans cet article, nous inspirant de travaux récents d’Amoroso
d’une part, de Borwein et Erdélyi d’autre part, nous donnons une ma-
joration et une minoration du diamètre transfini entier de petits inter-
valles + 03B4] est un rationnel fixé et 03B4 tend vers 0. Nous

étudions également des fonctions g-, g, g+ associées au diamètre trans-
fini d’intervalles de Farey.

Nous introduisons ensuite la notion de polynômes critiques pour un in-
tervalle I. Nous montrons que ces polynômes ont la propriété de diviser
tout polynôme à coefficients entiers ayant un maximum suffisamment petit
sur I. Aparicio, puis Borwein et Erdélyi ont obtenu des résultats pour le
polynôme critique x sur l’intervalle [0,1] ; résultats que nous prolongeons à
tout polynôme critique sur un intervalle arbitraire.

Par ailleurs, comme conséquence facile de nos résultats, nous montrons :
si 03B1 est une entier algébrique totalement réel, de plus petit conjugué 03B11

alors, sauf pour un petit nombre d’exceptions explicites, la valeur moyenne
de 03B1 et de ses conjugués est supérieure à 03B11 + 1.6.

ABSTRACT. In this paper we build on some recent work of Amoroso, and
Borwein and Erdélyi to derive upper and lower estimates for the integer
transfinite diameter of small intervals + 03B4], is a fixed rational

and 03B4 ~ 0. We also study functions g-, g, g+ associated with transfinite
diameters of Farey intervals. Then we consider certain polynomials, which
we call critical polynomials, associated to a given interval I. We show how
to estimate from below the proportion of roots of an integer polynomial
which is sufficiently small on I which must also be roots of the critical
polynomial. This generalises now classical work of Aparicio, and extends
the techniques of Borwein and Erdélyi from the critical polynomial x for
[0,1] to any critical polynomial for an arbitrary interval.

As an easy consequence of our results, we obtain an inequality about
algebraic integers of independent interest: if 03B1 is totally real, with minimum
conjugate 03B11, then, with a small number of explicit exceptions, the mean
value of 03B1 and its conjugates is at least 03B11 + 1.6.

Manuscrit reçu le 6 septembre 1996
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1. Introduction. For a set I in the complex plane, its transfinite
diameter t(I) is given by

i.e. the limit, as n tends to infinity, of the supremum of geometric means
of the distances between n points in I. This has been computed for many
sets I. For a real interval I of length III it is 111/4. Fekete [Fek] (see also
[Gol]) showed that an equivalent definition of t(I) is

where the infimum is taken over all non-constant monic polynomials P
Further, if I is a real set, then this infimum can be restricted

to polynomials in Clearly "monic" could be replaced by "leading
coefficient at least 1" in (1.2).

If I is a real set, and the coefficients of P are restricted to be integers,we
can define

the integer transfinite diameter of I. It is known that

the first inequality being immediate, the second a classical result of Fekete,
readily deduced from the discussion on pp.246-248 of [Fek]. While the
classical transfinite diameter t(I ) is translation-invariant, scales linearly
and is therefore additive for abutting intervals, none of these properties
holds in general for (see Corollary (4.3)).

For intervals I of length at least 4, it is known that _ ~ I ~ /4,
([Gol],p.298), so we restrict our attention to studying tz(I) for smaller
intervals. From (1.4),  1 for all such intervals. Recently Borwein
and Erd6lyi [BoEr] pointed out a connection between finding polynomials
in whose maximum is small on [o,1], and finding degree d real algebraic
integers of norm N, all of whose conjugates lie in [l, oo), for which 
is small. Their fruitful idea provided the stimulus for this paper. It has
also been applied in [F12], where it is used to obtain good upper and lower
bounds for for many sub-intervals
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Essentially, the idea is to use a fractional linear transformation to map
certain families of totally positive algebraic integers to families of algebraic
numbers with all conjugates in I. For I = [o,1] itself, the result given
there is the same lower bound as one due to Aparicio[Apl], and is indeed
equivalent to it ([F12]). It was long suspected (see e.g. Chudnovsky[Chu])
that this classical lower bound in fact was the true value of tz (I) . However,
Borwein and Erd6lyi [BoEr] show, very surprisingly, that this is not the
case. Thus to date no-one has been able to compute tz (I) exactly for any
interval of length less than 4, and there is now not even a conjectured value
for it, for any such interval I!

For an ’integer Chebyshev’ polynomial for [0, 1] , i.e. a polynomial with
integer coefficients whose maximum among polynomials of a fixed degree is
minimal, Borwein and Erd6lyi [BoEr], p. 679 asked whether it must have
all its zeroes in [0, 1]. Recently Habsieger and Salvy[HaSa] showed that it
need not, by finding that the degree 70 integer Chebyshev polynomial for
[0, 1] had a factor with four non-real zeroes.

There have been some applications of estimates for tz (I) for intervals.
For instance, Schnirelman and Gelfond (see Ferguson[Fer] p143) give a
beautiful and short elementary argument proving that

for the prime-counting function Also, an upper bound for
y’m)2]) (n, m positive integers) gives an irrationality measure

for log(n/m) ([Rh1]).
In Section 2 we introduce a (presumably transcendental) function g-(t)

associated to a family of totally real algebraic integers. This function en-
ables us to give a lower bound for for all intervals I of the type (1.5).

In Section 3 we study a function g(t),closely associated to show
that g_  g, and find other bounds for g.

In Section 4 we consider for very small intervals, i.e. for intervals I
where we let the length ~I~ tend to 0. Here we generalise and sometimes
improve results of Borwein and Erd6lyi [BoEr] and Amoroso[Am] on this
topic. (See also [La]). (Amoroso’s techniques are, however, quite different
from ours. He shows that, in (1.3), the norm max I I can be replaced by
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the 2- norm J fIr II 1P12, and works with this instead.) These results show
how very different in relative size tz(I) can be, for different intervals of the
same length 6 , as 6 -~ 0. We also show, using a nested sequence of Farey
intervals, that can be as big as 0.420726..B/)TJ~ so that the constant
~ in (1.4) cannot be reduced by much.

In Section 5, we introduce the notion of critical polynomials for an in-
terval I. These polynomials have the property that they must divide any
integer-co efficient polynomial P which has a sufficiently small maximum on
the interval. We prove (extending results of Aparicio[Ap3] and of Borwein
and Erd6lyi [BoEr]) that not only must critical polynomials Q divide the
polynomial P, but that there is a positive constant 1 independent of P
such that As an application, these constants y are computed in
Section 6 for all ten known critical polynomials of (0,1J.

Finally, in Section 7, we prove the following result of independent inter-
est, which follows easily from a result (Proposition 7.1) which we need for
the results of Section 4.

THEOREM 1.1. Let a be a totally real algebraic integer of degree 8a with
least conjugate al. Then

unless, for some rational integer k, a + k is a zero of one of the polynomials
given in Table l.

We also list (Table 6) all polynomials of degree up to 6 with Trace/degree
-al less than 1.7.

2. The function g-, and a lower bound for Firstly,
we define two families {Uk} and {Vk} of polynomials, all of whose zeroes
lie on the imaginary axis. These are the polynomials such that is the

kth iterate of the function G(z) := z + 1/z. They are closely related to
the Gor0161kov polynomialsGor. (See the Appendix for the precise connec-
tion, for a summary of properties of Gorskov polynomials, and for related
references.) The Uk and Vk are defined inductively by Uo = z, Vo = 1 and
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TABLE 1. List of all monic irreducible polynomials with all
roots real, least root in [o,1), and (Trace/Degree) - al at most
1.6.

for k &#x3E; 0. Note that aUk = 2k, = 2k -1. If we put x~ := then

Also, it is known that Uk and Vk , or U~ and Uk, with k  k’ have no com-
mon zero, and that Uk is irreducible (See Appendix). The Julia set of the
map G(z) is the imaginary axis J, and the (Lyubich) invariant measure 1L
is defined as the weak limit, as k - o0 of the atomic probability measure
having equal weights at the zeroes of Uk . (See [St], p164, and the Appen-
dix). [Here invariance means that = A(E) for every Borel set
E C J.] This measure gives rise to the logarithmic potential

which is a harmonic function on CBJ (see [St], p17). In fact, as ~(z-x) &#x3E; 0
for Rz &#x3E; 0, x E J, the ’complex potential’
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(taking the principal value of log) is readily shown to be analytic in the
right half-plane Rz &#x3E; 0. We now define a function g_ (z) for z in this
half-plane by

Then we claim

LEMMA 2.1. On the half-plane Rz &#x3E; 0 the function g- is analytic, is given
by

and satisfies the functional equations

and

.Furth erm ore, for real, positive t we h ave th e bounds

and hence certainly

Proof. We have, for Rz &#x3E; 0,
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as xo = z. Convergence of this product can be verified directly from the
fact that Rxk+l &#x3E; RXk and  S’Xk. Equation (2.5) now follows
straight from the fact that xl(z). To prove (2.6), note that,
from (2.4),

which gives the result.

Now take z = t &#x3E; 0. To prove (2.7), first note that, from (2.4),

We now claim that

This is readily verified by induction, using xk+1= xk + x. 1 - Hence

which gives the left-hand inequality. For the right-hand inequality, use the
fact that txl = 1 + t2.

Another functional equation

follows straight from the lemma, from which it is easy to produce the as-
ymptotic series

The graph of g- is shown in Fig. 1. Its maximum value is g-(1) =
0.420726377.

With the aid of the function g- we can reformulate a result in [F12]
(Theorem 1.2. See also [F13]):

PROPOSITION 2.2..For a sub-interval I = [~,;] of [0,1~ with qr - ps = 1

This also follows from Lemma 3.1 and Proposition 3.3.
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Fig. 1. The function g- and some computed values of g+ .

We now use this result to show

COROLLARY 2.3. Given a positive irrational number v, there are arbitrarily
small intervals I containing v which have

are the convergents in the continued fraction expansion of v.

The proof is immediate, from the consideration of the Farey intervals
with endpoints - and qn 

·

C O RO L L A RY 2 . 4 . Th ere are arbi traril y sh ort in t ervals I for which, th e con-

stant ~ in the upper bound (1.4) for t71(I) cannot be reduced below g_ ( 1 ) =
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0.420726377 .... Further, in any inequality  (c, a &#x3E; 0) valid
for sufficiently short intervals I, we have a :5 ~.
Proof. Let v be given by the continued fraction ~l, 2,1,3,1,4,1,5, ].Then,
from the recurrence for the qn , it follows that 1. The

qn+l

second part follows immediately.

3. The function g, and upper bounds for t7l. It is convenient to

work here with degree d polynomial-powers, which we define to be expres-
sions of the type 

- . - -

for some polynomial P (x) E 7G[x], of degree 9P, and d =: 8X a non-negative
real number. (While the phase of X is not well-defined, ~X ~ is, which is all
we need.) Then by definition

To define the g-function, we first define a function gp as follows: fix a
finite set P = of polynomials, and A = a corresponding
set of non-negative real numbers, and put

a polynomial-power of degree d = 2: Aj. Then gp is defined for t &#x3E; 0 by

of degree d, where 0  d  1. (The search for an optimal A is a problem
in "semi-infinite LP" , and can be carried out by, for instance, the Remez
algorithm [Ce]). Thus gp (t) is the least number such that, for some 

I - I

Next, put

Note immediately that
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LEMMA 3.1. For qr - ps = 1 we have

Proof. We have, for Xx as defined above,

on putting

and

a degree d polynomial-power in t. Since is a general degree
1 polynomial-power, we have the result.

COROLLARY 3.2. We have

for any set P of polynomials.

Informally, we can define a function g+(t) by choosing, for a given t, a
set Pt of polynomials for which gp, (t) is small, and putting g+ (t) := gpl (t).
Then

Some values of such a g+ are shown in Fig. 1, using computations from
[F12].

We now observe that
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PROPOSITION 3.3. For 0,

Proof. The proof is in essence the same as that of the classical lower
bound for tz ([0, 1]), which is equivalent to the inequality g(1) &#x3E; g- (1) - We
note first that for al, ... , ad a complete set of conjugate positive algebraic
integers 

-

so that

for :f:..j-ai the zeroes of Pk, and k large enough so that no power of Pk
divides Xx. The result follows on letting k 2013~ oo.

From [BoEr], Theorem 3.4, we now know, surprisingly, that &#x3E;

g_ (1), so that g- # g. Presumably Borwein and Erd6lyi’s method will
extend to show that g(t) &#x3E; g- (t) for t &#x3E; 0.

Next, we derive a functional equation and a functional inequality for g:

PROPOSITION 3.4. The function g satisfies for all t &#x3E; 0

[Compare Lemma 

Proof. With Xx as in (3.1), of degree d  1, we have
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where P* = · Since every set of polynomials belongs
to a set with P = P*, we have

and (3.11) follows.
To prove (3.12) note first that, for any set P

Now, for any polynomial P,

for some reciprocal polynomial R(x) = x2aPR (~), so that

Thus, on defining

we get
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as 8Rj = 28P~, for X’ a polynomial-power, again of degree So

from (3.13)

as (t + + t ) &#x3E;_ t2 for t  1. Then the lower bound follows on using
(3.4). For the upper bound, note that

as both minima are attained at the same A.

Now for any P3

for some Qj, so,
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where Q = Finally, from the definition of g and the fact that gQ &#x3E; g,
we obtain the upper bound for g (t + t~ in (3.12).

4. Small intervals with one rational endpoint. In this section we
bound for small intervals of length 6 with one fixed rational endpoint
9 . Our main result is the following:

THEOREM 4.1. There is a numerically determined constant c and a func-
tion m(b) (0  b  1) for which the following estimates hold. Let c &#x3E; 0 be

arbitrary, r/s be a rational numberin (0,1]~ and let 6  min (llc, 2c/c 2 )/S 2
Let p/q be the Farey fraction of largest denominator with

and put

where ~ ~ denotes fractional part. Then the interval [~ 2013 6, ~] has integer
transfinite diameter in the range

the upper bound being attained at b = 0 and 1. further, if b = 0, then the
left-hand side of (4.1) can be replaced by 8s - 28283.

The constant c is that in Proposition 7.1. The theorem generalises results
of [Am] and [BoEr] for s = 1. However, for the upper bound, Amoroso had
the better constant 1.648 instead of our 1.6-e above (in the worst case). We
expect that we should be able to improve the constant 1.6 in Proposition
7.1 to greater than 1.65, with a corresponding improvement here. (See
the remarks after the proof of Prop. 7.1). For the lower bound, Amoroso
already had the above bound (I.e. 6 - 2b2) in the case s = 1, b = 0, while
Borwein and Erd6lyi showed that the 2 could be replaced by a number less
than 2.



151

COROLLARY 4.2. The same bounds ~0,1), 0 
l5  1 - rs.

Proof of 4.2. This follows from the fact that tz ( [a, b]) = b,1- a ) for
0  a  b  1, which in turn comes from replacing x by 1 - ~ in a "good"
polynomial P(x) on [a, b].

The following result is well-known:

COROLLARY 4.3. None of the putative properties tz (ci) = 

or + c) = holds in general.

Proof of 4.3. For counterexamples to the first two, note that

using Theorem 2.2, while t~ ( (0, 2~ )  ~ by (1.4) . For the third, note that,
from Theorem 4.1,

for 6 sufficiently small.

See also Rhin [Rh2] for another example of this kind.
For the proof of Theorem 4.1, we need the following

LEMMA 4.4. For 0  A  6, b E [0,1) and x &#x3E; b we have

Proof It is readily checked that has minimum value v in [b, oo) of

. Then the trivial bound
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shows that

Proof of Theorem 4.I. The basis of the proof is the use of two Farey
intervals [~-, ~] and [~7, s ~ with

For our given rational 1:, we choose the rational P-  1: to be the adjacent.9 
. 

’7 s

rational in the Farey series of largest denominator s. Thus qr - ps = 1.
Then also 

,,~

Choose k so that

Then for p’ := p+kr (and, for later use, p" := p+(k+1)r) and a := r / s - 6

so that b E [0,1). Note also that

Now suppose that we have found a positive function ml (b) (0  b  1)
such that, for each b there is a polynomial-power Ub of degree d* with

Note that d*  1, as otherwise the left-hand side of (4.6) would be negative
for large ~. Then, in a similar way to (4.1-2),
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where

is of degree d* in t. Thus the left-hand side of (4.7) is a degree 1 polynomial-
power in t, showing that

To find ml (b) for 6 small, we note that, from the definition of b above,

Next, we use the fact that, by Proposition 7.1, we can find a constant c
and, for each b E ~0,1) a constant m(b) with m(b) - b &#x3E; 1.6 such that there
is a polynomial-power Wb with

and

Then, for each 6 &#x3E; 0, and A := s2 S, using (4.4) and then Lemma 4.4 we
have

for a  =: Ao say, i.e. 8  Hence from (4.8)
and (4.9)
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for A  Ao and x &#x3E; b. Then, putting Ub := (Wb)À we can take
...

so that

giving the upper bound of (4.1).
For the lower bound, choose p" and q" as at the start of the proof. Next,

note that, from (2.8), t"g(t") &#x3E; t2 - 2t4 if .1 &#x3E; t" &#x3E; t. Now, with the help
of (4.4) choose t’ and t" to be

Then, by Theorem 2.2,

as t2  s2 b. This completes the proof of Theorem 4.1.

5. Critical polynomials and lower bounds for exponents. Con-
sider an irreducible polynomial P(x) = adxd + ... E Z[x], ad &#x3E; 0, all
of whose zeros ai lie in an interval I, and for which its critical value

cp := is greater than We call such a polynomial a critical
polynomials (for I). In practice, of course, tz(I) is not known exactly, so
that in order to identify a polynomial P as being critical for I we need to
find another polynomial Q in Z[z] whose maximum

is less than cp, so that

Now, by a classical argument (see [Chu], [BoEr]) if P and Q are relatively
prime, and P has all its zeros in I, then cp. Thus if P is critical
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for I then P and Q must have a non-trivial common factor, so that in fact
P divides Q, since P is irreducible. Note that then, writing Q = PkR we
have that

We now show something stronger than P~Q, namely that

THEOREM 5.1. Suppose that the polynomial P is critical for I, with critical
value cp, and that Q E Z[x] has m :=  cp. Then Pk divides Q,
where k &#x3E; ,8Q, where y &#x3E; 0 depends only on P and m.

The proof of Theorem 5.1 follows straight from Proposition 5.3 below,
on taking P to be critical for I, and M := cp. Specific lower estimates for
y are also given. As examples, the lower bounds 7 are then computed in
Section 6 for all known critical polynomials of [0,1~.

This result is essentially a generalisation of a result of Borwein and
Erd6lyi [BoEr], where they prove this result in the special case of the critical
polynomial x for I = (0,1~. The basic idea is as follows: for any zero a in
I of a critical polynomial, re-parametrize by y E [0, 1] a sub-interval of I
having a as one endpoint. Then apply their argument, making use of the
y-parametrization.

However, we first need a slight generalisation of a result of theirs ( [BoEr~,
Theorem 3.1):

LEMMA 5.2. Let c, m, M be positive constants with m  M. Suppose that
there is a real polynomial

where 0  k  n, with cAM’and rra. Then k &#x3E; yn,
where -y is the least positive root of

Proof This is essentially the proof given in [BoEr] for c = 1. However,
it has been modified so that it is valid for all n, instead of only for n
sufficiently large.
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We apply the Gram-Schmidt process to the inner-product space of real
polynomials with ordered basis elements xn, x’~"1, ... , xk, and inner-product
~p, q~ := This gives [BoEr] the Muntz-Legendre polynomials

- + 1). Now, writing = we have

j/ 2 2J + 1 and, since a is the coefficient of xk in AkLk ,

Next, from the simple inequality

we obtain, for a = k/n and

that f (a) and hence that

Finally, since any power f~~ of Q also satisfies the conditions of the the
lemma, we can replace n by nN and k by and let N - oo, giving
simply

from which the result follows.

We now apply the lemma to an arbitrary finite interval 7.
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PROPOSITION 5.3. Let P be a real polynomial with all its zeroes ai distinct
and lying in I, and R another real polynomial such that

for some positive integer k, wh ere m  M  1. Then there is a positive
independent of R (but in general depending on I, m, M, and P)

such that I~ &#x3E; In. Explicitly, , is given by Lemma 5.2 with the constant c
defined as follows:

let I = [t_, t+], a1, ... , be the zeros of P’, and xo := t_, zap :=
t+, while for i = 2, ... , 8P --1 let xi be specified by being the two
roots ai) = P’(ai) in (ai-1, cxi+1 ) . Then c can be taken to be

if 9P &#x3E; 1

where

Proof From (i), there is some at, say a, such that Let
u be a point in I such that there are no zeros of P in [u, a) (or (a, u] if
u &#x3E; a). Put d := u - a (possibly negative), Po(x) := P(x)/(x - a) and
y := (x - a)/d. Then for 0  y  1, x E I and 0. Hence (ii)
implies that
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where n := 8(P*’ R) . Thus if

then

as m  1. Hence we can apply Lemma 5.2 to the polynomial y k(rd)k R(yd+
a), whose coefficients of yk is at least in modulus. Thus we
can take c := in the lemma.

In order to get good estimates for q for particular critical polynomials
of a specific interval I, we need to choose u so that the value c = rldl is
as large as possible. Working for us is the fact that we can choose d to be
of either sign, allowing us to choose whichever sign maximises c. Working
against us, however, is the fact that we don’t know which aj is a, so we
must minimise over all i .

To obtain a good value of c, we first assemble some elementary facts
about P, P’, the Pi and their roots:

(iii) For 9P = 1 and = 2, ... , o~P - 1, I has a unique maximum in
and the equation has exactly two roots ai

and (say) xi in this interval.

(iv) For each i, is monotonic in and in [aa p, t+~.

We now apply these results to the proof. The case aP = 1 is trivial, so
we can assume that 8P &#x3E; 1. For each zero ai of P we choose, successively
for each I, the number u above to be one of aZ_1, a~ or xi, as follows:

For d = u - ai we want to choose d so that

is as large as possible. Clearly we need u E so that wi (d) ~ 0.
Now, by (iii) above, I Pi (ai + yd) has no local minimum for y E [0, 1], and
hence
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Now and + d ) have the same sign in the range of d under
discussion, so the maximum of occurs when P’(az)d = P(ai + d) or
when P’(ai + d) = 0 or when ai + d is an endpoint of I (i.e. d = ai_1 - ai
or a~ - az in either of these last two cases.) If aN (respectively az_1) is

between ai and xZ then the maximum of wi (d) on [ai, aZ+1] (respectively
lai-1, ai]) occurs at xi (i.e. for d = xi - ai). Otherwise it occurs at 

(respectively (}~-1). The final value of c is obtained by minimising over all
i. This completes the proof.

6. Application to [0, 1]. In this section we apply our results to the
interval [o,1] . To do this, we make use of some computations from [Fll].
All the polynomials

have all their zeroes in [0, too), and among such polynomials) have small
absolute Mahler measure (see [Sml]). Following [BoEr], [F12] define poly-
nomials by Qo (t) = t - 1 and

I . I

and exponents ei, (i = 0, ...,10) as
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Then, from [Fll], pp. 67-68 the polynomial-power Q(t) _ 
6t + has m[o,l] (Q) = 0.42353115, so that any polynomial atd + ...
with all zeroes in (0,1~ and 0.42353115 is critical. In particular,

are all critical. Now apply Theorem 5.1 with the precise
lower bound for 7 given by Lemma 5.4, for M := cp and m := m[o,l] (Q).
We see that if a polynomial P with integer coefficients satisfies

then divides P. The polynomials Qi, the corresponding exponents
y2 and critical values cQi are as follows:

TABLE 2. Ten critical polynomials for the interval [0,1].

Earlier Aparicio [Ap3] had obtained the values 1’0 - 0.1456,~2 =
0.016 and q3 = 0.0037. Borwein and Erd6lyi [BoEr] improved 1’0,1’1 sub-
stantially to 0.26. Further, they showed (Corollary 2.3) that these poly-
nomials Qi must all be factors of any "integer Chebyshev polynomial" of
[0,1], which has sufhciently high degree, i.e. of any polynomial P for which

(P) is minimal among all integer polynomials of that degree. Here we
quantify their result by providing lower bounds for the power of the factor
Qi dividing P, relative to the degree of P.

7. The trace of totally real algebraic integers. The main result of
this section is the following, which was needed in Section 4:

PROPOSITION 7.1. There is a constant c such that, for every b in [0,1)
there is a polynomial-power Xb such that for x &#x3E; b
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an d for x &#x3E; c

Proof. For b = 0, one can check that, for

and all x &#x3E; 0 we have

This Xo(x) was the polynomial-power used in [Sm2](see also [Sm3]) to
prove that 1.7719 for all totally positive algebraic integers
not a zero of Xo. (Xo did not appear in [Sm2] as the table containing it was
removed to save space). We refer to this computation as Run 0 in Table 3.
We have now found, by a Remez-type optimisation algorithm, , 10 further
polynomial-powers Xb~ ( j = 1, ... , 10) where, for b = bj

, , ,#.-- , ,

The bj, m (bj) and Xb, Pnii (x )eii are given by Tables 3,4 and
5. The polynomials used in the optimisation, and those in Table 6, were
found by the same search procedure as used in [Sm3]. However, the poly-
nomials searched for were specified to have their zeroes in the intervals
[0.05 k, oo), (k = 0,1... 19) instead of only [0, oo) as in [Sm3].

Note that

(this being of course the basis by which the bj have been chosen) so that
certainly (7.1) holds for b = bj. But also, any inequality (7.3), valid for b
is also trivially valid (with Xbl := Xb) for x &#x3E; b’ with b’ &#x3E; b. Thus, if we
put Xb := Xb, and m(b) := m(bj) for b E then, because of (7.4),



162

TABLE 3. The values of b used in the proof of Proposition 7.1,
and required functions of m(b).

(7.1) holds for all b E [0, 1). Finally, (7.2) is a consequence of the fact that
Xo above, and each of the Xb’s in Table 5 is O (x2 ~83 ) ,

As mentioned earlier, we expect that, with the use of substantially more
than ten values bj of b, we should be able to improve the constant 1.6
to at least 1.65, in Theorem 4.1, Proposition 7.1 and Theorem 1.1. This
is because all the values in Column 3 of Table 3 are at least this value.
Of course further improvements may also be possible perhaps using extra
polynomials. One polynomial which may give such an improvement is the
factor of Habsieger and Salvy’s polynomial mentioned in the introduction.

The proof of Theorem 1.1 now follows easily. Let a and al be as in the
statement of the theorem. By replacing a by a - Laij we can assume that
al E [0, 1). Then we take b = al in Proposition 7.1, and so by (7.1)

z

unless (ai) = 0, as ITi (ai) is a product of positive powers of the
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resultants of the minimal polynomial of a and the polynomials making up
Hence (1.6) holds unless al is a root of one of the polynomials of

Table 5, and only those listed in the statement of the theorem actually
have  1.6 + al.

TABLE 4. The polynomial factors of the Xb in Proposition 7.1
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TABLE 5.
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TABLE 6. List of irreducible polynomials up to degree 6 with all zeroes
real, minimum zero rl in [0,1], and trace/degree -rl less than 1.7000.

Appendix: The Gorskov polynomials. These polynomials Gk were
defined originally by Gorgkov[Gor], and later independently by Wirsing
and Montgomery [Mo], p.183 and by Smyth[Sml]. See also [Ap2], p.6,
and [BoEr], p.667. They are monic, with integer coefhcients. One could
say that the Gorskov polynomials bear a comparable relationship to the
positive half line, where all their zeroes lie, as the cyclotomic polynomials
do to the unit circle.

Let Hz := z - 1 /z, and let H kz be its kth iterate. Put Go (y) := y - 1,
Do (y) = 1, so that Hz = D° z . The Gorskov polynomial Gk of degreeot )
2k is then defined by

so that, for k = 1, 2, ...
- 1 t’),
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From this we obtain, for k = 1, 2, ...

The first four Gorskov polynomials are the polynomials P2, P3, P4, P7 at
the start of Section 6. The Gk are known to be irreducible, as was proved
by Smyth[Sml], Lemma 4, and by Wirsing(see [Mo], p.187). Wirsing’s
elegant proof is self-contained and elementary. Note, however, that Gk(z2)
is reducible, as it is the difference of two squares in (A.2). Thus, for any
zero a of Gk(y), va is one of It follows straight from
the definitions that each Gk (y) is monic with integral coefficients, and that
all its zeroes are real and positive. Also, from Hk+lz = HkHz we have for
k = 1,2,... that 

-

Further, as observed by Wirsing and Montgomery[Mo], p.184, we have, for
1~ = 1, 2, ... the recurrence

To prove this, note that from (A.3) and (A.4)

Now eliminate yDk(y) using (A.3). (In fact Wirsing and Montgomery
worked with fk(z) := G~(~ 2013 1), which has all its zeroes in [0,1], instead
of with Gk.)

To see the connection between the polynomials of Section 2 and Gorskov
polynomials, define the map I by Iz := iz, and take Gz := z as in

Section 2. Then Gz = 1-1 Hlz, so that the kth iterate Gkz is given by

Hence the polynomials Uk, Vk of Section 2 are, for k &#x3E; 2, given by Uk (z) =
-ZDk(-Z2). Note that Uk (z) is irreducible, because

any root {3 of Uk is imaginary, so that
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since is irreducible.

It is clear that G~ and Dk, and Gk and Gk, with k’  l~ have no
common zeroes([Mo], p.186). Thus the same applies to Uk, Vk and to

The distribution, as k -. o0 of the zeroes of Gk, is highly ir-
regular. In fact their limiting probability density has Hausdorff dimension
0.800611138269168784. For details see [DaSm], in which also the density
function of the 32768 zeroes of G15 is illustrated.

Acknowledgement. We thank the referees for some very helpful remarks.
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