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On blocks of arithmetic progressions
with equal products

par N. SARADHA

RÉSUMÉ. Soit f(X) ~ Q[X] un polynôme qui est une puissance d’un poly-
nôme g(X ) ~ Q[X] de degré 03BC ~ 2 et dont les racines réelles sont simples.
Etant donnés les entiers positifs  m, m) =

nous démontrons que l’équation

f(x)f(x + f(x + = + d2) ... + (mk - 1)d2)

avec + 0 pour 0 ~ j ne possède qu’un nombre fini de
solutions en les entiers x, y et k &#x3E; 1, excepté dans le cas

1, f(X) = g(X),x = f(y) + y.

ABSTRACT Let f(X)~ Q[X] be a monic polynomial which is a power of
a polynomial g(X) ~ Q[X] of degree 03BC ~ 2 and having simple real roots.
For given positive integers  m and gcd m) = 1 with
03BC ~ m + 1 whenever m &#x3E; 2, we show that the equation

f(x)f(x + + f(y)f(y + d2)... f(y + (mk - 1)d2)

with f (x + 0 for 0 ~ j  has only finitely many solutions in
integers x, y and 1 except in the case

1. Introduction.

The letters d1, ~2, ~ ~ ~ denote positive integers satisfying  m and
gcd( £, m) = 1 throughout this paper. Let 81, ... , 8J.L be rational integers
with si 

and

Manuscrit recu le 5 fevrier 1996
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In this paper we consider the equation

in integers x, y 1 with

By taking f (X) _ (X - 81) ... (X - if equation (1) holds with + sign
and f (X) _ ((X - 5i) " ’ (X - if equation (1) holds with - sign in
Theorem (a) of [5], we derive that equation (1) with k &#x3E; 2 and (2) implies
that k is bounded by an effectively computable number depending only on
di,d2)?~,~,5i,...,~. Therefore ,we restrict to consider equation (1) with
fixed k. It was shown in [5] that if x, y and k &#x3E; 2 are integers satisfying
x + 0 for 0  j  ek, then equation (1) with iL = 1 and s, = 0, that
is, the equation

implies that max(lxl, Iyl, k) is bounded by an effectively computable number
depending only on dl, d2 and m unless

We extend this result as follows.

THEOREM 1. Let x, y, l~ &#x3E; 1 and J-l &#x3E; 2 be integers satisfying equation (1)
with (2). Assume that the polynomials P1(X)... Q1 (Y) ~ ~ ~ 
have simple roots. Suppose that one of the following conditions holds:

Then

unless
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where C is an effectively computable number depending only on dl, d2, m, J-L,
i?’"-

It is clear that condition (2) is necessary and equation (1) is satis-

fied for the possibilities given by (5). The assumption that polynomials
and have simple roots is equivalent to

saying that the linear factors on the left hand side as well as the right hand
side of equation (1) are distinct. We derive Theorem 1 from a more general
result. For this, we introduce the following notation and assumptions. Let
f(X) be a monic polynomial with rational coefficients of positive degree.
We consider the equation

, .. - , ,

in integers x, y 1 with

It has been shown in Theorem (a) of [5] that equation (6) with k &#x3E; 2 and (7)
implies that k is bounded by an effectively computable number depending
only on and f . Further,when f is a power of an irreducible poly-
nomial, it was shown in Theorem(b) of [5] that equation (6) with (7) and
k &#x3E; 2 implies that max(lxl, Iyl) is bounded by an effectively computable
number depending only on di , d2 , m, k and f unless

We do not have the analogous result when f is not a power of an irreducible
polynomial. In this paper, we take f (X) = gb(X) where g(X) has real roots
~31, ~ ~ ~ such that {31  fl2  ...  (3J.£’ the leading coefficients of g(X) is
::!:l and b is a positive integer. We put

and

We assume that tkp and IUI = so that the elements of T as
well as the elements of U are pairwise distinct. This assumption is satisfied
whenever g is irreducible. We do not intend to consider the case p = k = 1.
Therefore, in view of the preceding result on equation (6), we may assume
henceforth that ti &#x3E; 2. Further,by the same result,we may take k fixed. We
follow the above notation and assumptions without any further reference.
We refer to [4] and [6] for a survey of earlier results on equation (6) with
f (X) = X. Here we prove



186

THEOREM 2.

(a) Let k &#x3E; 1, m = 2 and It &#x3E; 2. Then l = 1 and equations (6) with (7)
implies that max(lxl, Iyl) is bounded by an effectively computable number
depending only on d1, d2, k and f unless

(b) Let k &#x3E; 2 and 2 ~ ~ ~ m + 1. Equation (6) with (7)
implies that max(lxl, Iyl) is bounded by an effectively computable number
depending only on dl, d2, m, k and f.

The proof of Theorem 2 is elementary except for the case k = 1, /-l =

2, m = 3 and fl2 - ~1 &#x3E; d2, where we apply a theorem of Baker [1] on
finiteness of integral solutions of hyper elliptic equations. This theorem
has also been utilised in the proof of Theorem 1 when dl = 1, l = 2, ~, - 1
(mod 2) 

If m &#x3E; 2 and {3i &#x3E; 0 for 1  i  M, we shall derive the assertion of
Theorem 2 whenever 0,, is large as compared with ~1, ~ ~ ~ , m, k, d1
and d2. We have

COROLLARY. Let k &#x3E; 1, &#x3E; 2 and 0  ~31  ...  ~3~. Equation (6) with
(7) and

imPly that is bounded by an effectively computable number
depending only on dl, d2, m, k and f holds.

Acknowledgement. I thank Professor T.N. Shorey for many useful discus-
sions.

2. Proof of Theorem 2

Let all the assumptions of Theorem 2 stated in section 1 be satisfied.
Let Cl, C2 and c3 denote effectively computable numbers depending only on
d1,d2,m,k and f. By equation (6) we may assume that Iyl &#x3E; ci where cl
is sufficiently large. Now, we follow the proof of section 4 of [5] to conclude
(10) and (11) of [5] which implies the following: There exist Ti = I
1  h,  f I C T for 1  i  tik satisfying Ti n Tj = 0 for i # j and
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IIi = f Ui,h I 1  h  m} C U for 1  i  satisfying Ui fl uj = 0 for
i 0 j such that

There is no loss of generality in assuming that ti,l  ~ ~ ~  and ui, I 
...  Ui,m for 1 ~ i  Let 1  i, j Then we have

Taking logarithms and expanding we get

We derive as in the proof of (13) of [5] that

which implies that Ve = W~ . Put

Then, by using (10), we derive as in the proof of (14) of [5] the polynomial
relations

for 1  i, j  We observe that 0 for i ~ j. Further, from (11)
and m 2: 2, we get

and since
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we have

We set

and

We observe from (11) that

where Ej = E1,j for 2  j  pk. Further, we put Ei = 0. We re-arrange
Ej ’s, if necessary, so that El  E2  ...  Elk - Now, we follow an
argument depending on Rolle’s Theorem of the proof of Theorem 2 of [4]
to obtain the distribution of t’s and u’s as in Figure (1) and Figure (2)
respectively.

1 indicates t (or u) is increasing. T indicates t (or u) is decreasing.
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Figure (2)
We shall use Figure (1) and Figure (2) without reference at many places in
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Proof of Theorem 2 (a). Let m = 2. Then i = 1. For any i, j with 1 
we compute v1 = tj, 1 - t2,1. Then we obtain from (11) and (10)

that

Further, we have = (2k - 1)d2, = Hence by (12),

(2k - 2)d2). Also, we have t¡.¿k,1 = (3j.£-1 or 0,, - dl. Now, we
use (14) with i = ~I~ -1, j = ttk to obtain the following four possibilities:

if and

if = ~~, - d1. When ttk-l,l = /?~ - di, we have,3,,-,  (3J.L - d1 i.e.

,Q~ - ,Q~,_1 &#x3E; di. Thus the possibilities (iii) and (iv) do not hold. If either

(i) or (ii) holds, we see that p = 2, k = d2 = 1. This yields by (9) with
i = 2, u2,1 = 01 - 1, U2,2 = t2,1 = {32, the possibilities (8) .

Now, we turn to the proof of Theorem 2(b). Therefore, we suppose
that m &#x3E; 3 from now onward in this section. The proof of Theorem 2(b)
depends on the following lemmas.

Proof. It is clear that uj,m &#x3E; &#x3E; ui,m-2 ~ 
... &#x3E; ui,l. In (11), we put Y = and uj,m-, to get
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The product of the last (m - 2) terms on the left hand side is greater than
the product of the last (m - 2) terms on the right hand side in the above
equality. Thus we derive that

Therefore,

which, since &#x3E; implies the lemma. 11

The next lemma is more general than necessary. This generalisation may
be useful for polynomials whose roots are not far apart.

LEMMA 2. Let Ko = 0 and Kl be the number of roots of g(X) in (/3 -
d2, 3. For an integer h with 2  h  k, let Kh denote the number of roots
of g(X) in (~3~ - hd2, {3/-L - (h - 1)d2). We assume that

Then equation (6) with (7) and (15) imply that max(lxl, Iyl, k) is bounded

by an effectively computable number depending only on d1, d2, m and f .

Proof. We may assume that Iyl &#x3E; cl so that Figure (2) is valid and we shall
arrive at a contradiction implying the assertion of the lemma. We observe
that Kl &#x3E; 1 and

We now show that
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equal to . .- - -, B /" - r- , -

Thus lies in the m-th column of Figure4 ., l! ’ I

(2). This proves (17).
Let

We claim that there exist i, J1 and h such that

with

Suppose (18) does not hold. Then (3r - Jd2  (3i - Jld2 for all i, J1 and h
I-

satisfying (19). The number of such

The total number of u’s exceeding (3r - Jd2 is 2/ 2013 2013 1. Thus

Therefore

which contradicts (15). This proves (18). We now show that

For, if J &#x3E; mk-k, (18) and (19) imply that hd2. On
the other hand, we observe from (19) and (16) that /3r - /3i :::;  h,d2.
This contradiction proves (20).

Now, we choose io, Jo, ho such that !3io - Jod2 is the largest among !3i -
Jid2 satisfying (18) with (19). Thus we derive from (19), (16) and (17)
that there exists no satisfying
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Therefore

Hence by the maximality of Jod2, we have

by the maximality of f3J-L - Jod2, we have

We derive from (21) and (17) that

if no  I-tk. Similarly, we obtain from (22) that

if no = Consequently by (19) and (20), there are at least K elements
- I . r~ , ,.. , . ~ -- I - --- ... _ _
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On the other hand, we apply Lemma 1 with i = J-Lk - K, j = yk and (17)
for deriving that

This is a contradiction.

Proof of Theorem 2 (b). By Lemma 2, we may assume that

Therefore, since p  m + 1, we derive that either Kl = 1 or Kl = 2, J.L =
m+l.

First, we consider the case Kl = 1. Thus = /3J.L and 
/3~ " d2. Suppose there exists /3r with 1  r  p such that

for some J4 with 0  J4  2, then (3r - ( J4 + 1)d2
and hence d2 which contradicts Lemma 1 with
i = ~l~ -1, j = Thus we may assume that (23) does not hold. Then it
is easy to observe that for any r with I  r  p, either &#x3E; !3r-J d2
for all J with 0  J  mk or !3r - (J + 1)d2 for all J with
0  J  2. Let Eo be the number of r’s for which the latter inequality
holds. Then mkco is the number of elements of U greater than or equal
to It is clear from Figure (2) that this number is also equal to
2J-lk - 1. Thus mkEo = 1 which, together m + 1, implies
that

First, suppose p &#x3E; 3. We see that

We use Lemma 1 with i = pk - 2, j = ,~1~ -1 to get a contradiction. Thus
we may assume that p = 2. Then m = 3 and we have

We observe from Figure (1) that



195

and if £ = 2, we have

Thus, by subtracting second equation from the first in both the cases £ =
1, 2 and using /32 = ,C31 + 4d2, we derive that 3d2 = 1 if ~ = 1 and 3d2 =
d1 if t = 2. Thus we need to consider only t = 2. In this case using
fl2 = ~1 + + fl2 E Q and d1 = 3d2, we see that /31 E Q and

6d~+4d~ where x = x-+- 3d2-4d2-2a1 . This is an elliptic equation. Suppose
a is a double root of h(Y) where h(Y) = 

- - - - c

0 = h(a) = 4d2 -t- 3 This is impossible since7 is irrational.
Hence the roots of h(Y) are simple. We now apply a theorem of Baker [1]
to conclude that Iyl)  c2 which implies that Iyl)  C3-

Next, we consider the case Kl = 2 and p = m + 1. Then UJ1-k,m =

/~-:h~-2~ = ~ - d2. Suppose there exist ~3S and {3r
with 1  s, r G p and s # r such that

for some J5 , J6 with 0  J5 , J6  mk - 2, then !3s - ( J5 + 1)d2
and hence d2 which contradicts Lemma 1 with
i = J.Lk - 2, j = tLk. Thus we may assume that (24) does not hold. This
means there can be at most one ~35,1  s  ~c satisfying

for some J5 with 0  J5  mk - 2 and for any /3r with 1  r  tt and r # s
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The number of elements of U greater than or equal to utk-2,,,,-l is 2 pk - 2.
Let El be the number of (3r’s with (3r - (mk - 1)d2. Suppose
there is no /35 satisfying (25). Then 2J-Lk - 2 = 2(m + 1)k - 2 = This
is possible only when el = 2, k = 1. In this case, we have =

/3j.t - OA-1 (m - 1)d2 and
{3j.t - d2. We apply Lemma 1 with i = pk - 3, j 2 to

get a contradiction. Thus we may assume that there exists a /3s satisfying
(25). Then by counting again the elements of U greater than or equal to

in two ways as earlier we get 2pk - 2 = 2(m-f-1)k - 2 = mkEl +
J5+1. This is possible only when el = 2, k &#x3E; 2 since 0  mk-2. Thus
for (3r = we have ~r-(mk-1)d2 and (25) is satisfied
for s = tt-2. Since 2mk-J-lk = (m-1)k &#x3E; 4 and  d2, we observe
that ,~~ -(ml~-2)d2, /3~-i - (~A; - 2)~2, /3~ - (~~ -1)~2, /?~-i - (~ 20131)~2
are all in the (m-1) th column of Figure (2). Let = /3~2013(?7~20132)d2.
Then we have the following possibilities for 

for some J7, J8 with 0  ~J7, J8  mk - 1. In the possibility (ii), we
note that 0,-2- For, if = 04-2 - Jgd2 for some Jg
with 0  J9  mk - 1, then fl, - (mk - 2)d2 &#x3E; ~3~_2 - (Jg - 1)d2 &#x3E;

_2 - Jgd2. Thus either or must be equal to 3,_2 -
( I9 - 1)d2 which is not possible. When (i) or (ii) holds, we observe that
atleast two of u2+2,?.,.L, Ui,m belong to the same arithmetic progression
with common difference d2 since these three elements lie in atmost two
arithmetic progressions with common difference d2 containing ,~~ and 
Thus Ui+2,m - d2. Now, we apply Lemma 1 with i = i, j - i -f- 2
to obtain a contradiction. A similar application of Lemma 1 with i =

i, j = i + 3 leads to a contradiction whenever (iii) or (iv) holds. Here, we
need to observe that atleast two of u2+g,r,.t, u2+.2,m, ui,m belong to
the same arithmetic progression with common difference d2 since these four
elements lie in atmost three arithmetic progressions with common difference
d2 containing and 0,, - 2. Thus the case Kl - 2,J.L = m+ 1 does not
hold. This completes the proof of Theorem 2. D

Proof of Corollary. As in the proof of Theorem 2, we may assume that
I &#x3E; c 1. Further, by Theorem 2, we have m &#x3E; 3 m + 2. As in (13),
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From the above equality with i = ttk and ,Q~, we get

which implies that

This contradicts our assumption. For f = 1, we use (13) with i = lik and
p &#x3E; n + 2 to m (,Ql + ... (m2 -4ym-1 ) d2 , This proves- u - 2 u 4

the Corollary. D

3. Proof of Theorem 1

Denote by C4, C5, C6 and C7 effectively computable numbers depending
only on di, d2, m, ~c, s 1, ~ ~ ~ , ,8J.L. As in the proof of Theorem 2, we may
suppose that c4 with c~ sufhciently large and we shall arrive at a
contradiction. In the notation of Theorem 2, we set si - (3i,l :::; i :::;
~c, f (X ) - g(X ) if equation (1) holds with + sign and f (X ) - g2 (X ) if

equation (1) holds with - sign. By the assumption that P,(X) ... 
and ~1 (Y) ~ ~ ~ Q, (Y) have simple roots, we have = and = 

so that the elements of T as well as U are distinct. Thus the assumptions
of Theorem 2 are satisfied so that Figure (1), Figure (2), Lemma 1 and
assertions of Theorem 2 are valid.

Let m = 2 or J.-L E {2,3,4}. Then we derive from Theorem 2 that

C5 which is not possible if c4 is sufhciently large. It remains to prove
Theorem 1 under the conditions (iii) and (iv) in (3).
(iii) Let d2 =1. In view of Theorem 1 (i), we may assume that m &#x3E; 3. By
Theorem 2(b), we need to consider J.-L &#x3E; m + 1 &#x3E; 4. Since ~31, ~ ~ ~ , ~3~ are
rational integers, we observe that the elements of U are ordered as
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Further, from (27), we see that among three consecutive u’s in Figure (2),
atleast two of them are consecutive integers. In particular, either

or

We apply Lemma 1 with i = f-lk - 2, j = ~,1~ - 1 if the former equality
holds and with i = f-lk - 1, j = iLk if the latter equality holds to get a
contradiction.

(iv) Let di = 1. From Theorem l(i), we derive that m &#x3E; 3. First, we take
e &#x3E; 3. Then, by Theorem 2(b), we may assume that ~m+2~+3~6.
We use (11) and argue as in Lemma 1 to obtain &#x3E; - ti,e
for 1  i  j  Then we apply the preceding inequality as in the case
(iii) to get the assertion. Next, we consider t = 2 and p D 1 (mod 2). Let
A = 2b + 1. Then we observe from Figure (1) that tl,l = /3~-$ 2013 k, tl,2 =
,Q~_b - (k - 1). We use (9) with i = 1 to obtain

which implies

where X2 = x~- Zk-1 22,0~_s , We apply Theorem III of [3] to derive that the
polynomial 4(Y - v,l,l) ~ ~ ~ (Y - ui,m) + 1 is irreducible over Q. Now, we
apply a theorem of Baker [1] on hyper elliptic equations to conclude that
Iyl  c6 which is not possible if c4 is sufficiently large. Finally, we consider
t = 1, k &#x3E; 2. Then tl,i = (k - 1), t2,1 = ol - (k - 2). Thus, from (9)
with i = 1, 2, we get

which implies
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where X3 = X + 2k- 2 2a’ . Now, we apply the results of [3] and [1] as in the
case f = 2, fl = 1(mod 2) for deriving that Iyl I  c7 and this completes the
proof of Theorem 1. D

Remark: The argument for the assertion in the beginning of the first
paragraph on page 72 of [5] should be corrected as follows: Observe that
[Q(ti,j) : Q(vi)] for 1  j  ~ and (~(v,i,~~) : Q(vi)] for 1  j’  m are equal
to 1L/[Q(Vi) : Q]. Therefore, by (10) and (11), Q] divides f and
m and hence [Q(vi) : Q] = JL.
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