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Non-vanishing of n-th derivatives of twisted

elliptic L-functions in the critical point

par JACEK POMYKALA

RÉSUMÉ. On note L(n)(s, E) la dérivée n-ième de la série L de Hasse-Weil
associée à une courbe elliptique modulaire E définie sur Q. On évalue dans
cet article le nombre de tordues Ed, d ~ D, de la courbe elliptique E telles
que L(n) (1, Ed) ~ 0.

ABSTRACT. Let E be a modular elliptic curve over Q and L(n)(s, E) denote
the n-th derivative of its Hasse-Weil L-series. We estimate the number of
twisted elliptic curves Ed, d ~ D such that L(n)(1, Ed) ~ 0.

1. Introduction

Let E = E/Q be a modular elliptic curve over Q with conductor N
defined by the Weierstrass equation y2 = f (x) and let D be defined as
follows:

D = ~d - square-free : 0  d - -v2 (mod 4N) for some v prime to 

For any d e D we consider the twisted elliptic curve Ed given by the
equation -dy2 = w(x) . We denote by L(s, E) and L(s, Ed) the Hasse-
Weil L-functions associated to the curves E and Ea, respectively.

The celebrated Birch and Swinnerton-Dyer conjecture (see [B-S]) asserts
that the rank of the group of rational points of E /Q is equal to the vanishing
order of the associated Hasse-Weil function L(s, E) at s = 1. Kolyvagin [Ko]
has proved that

E/Q has rank equal to zero if:

1) L(E,1) ~ 0,

2) There exists d such that L(s, Ed) has a simple zero at s =1.
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E/Q has rank equal to one if:

1’) L(s, E) has a simple zero at s = 1.

2’) There exists d such that L(1, Ed) ~ 0.

The condition 2’) is true according to Waldspurger’s theorem (see [Wa]).
The condition 2) has been proved to hold for infinitely many d e D (see
[B-F-H], [M-M]).

Iwaniec [Iw] has also proved a quantitative result on this condition. Let

He has obtained the estimate

with arbitrary e &#x3E; 0.

The above exponent is improved to 1-e in [P-P]. Here we will generalize
this result to the n-th derivative of L(s, Ed) where n is an arbitrary non-
negative integer.

In this connection let w = w(E) be the sign in the functional equation
(see (1)). We define

We will prove

THEOREM 1 - Let 6 be an arbitrary positive reai number and n be a fixed
non-negative integer. Then yve have as D tends to infinity,

where the constant implied in the symbol » depends on n and e.

Our result is based on a recent large sieve type estimates over fundamental
discriminants obtained by Heath-Brown [HB] (see Theorem 3 of [P-P]) and
the method applied by Iwaniec in [Iw).
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2. Outline of the proofs

For Re s &#x3E; 1 the corresponding L-functions are given by

where Xd(~) _ ~=d~ (the Kronecker symbol) is a real character to modulus d
prime to 4N. They have the analytic prolongation to the whole complex
plane, where they satisfy the equations

where w and wd - are suitable constants depending on the reduction
of E at the primes dividing N, which satisfy the equality

From (1) and (2) it follows that

Theorem 1 is a consequence of the following two theorems.

THEOREM 2. For any integer n &#x3E; 0 we have the asymptotical equality

where F is a smooth function compactly supported in R+ with positive
mean-value and the star (*) above means that the summation is restricted
to d E ~D. The (nonzero) constant L(I) is described in ~Iw), while
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The proof follows the idea exploited in [Iw] (cf. also [M-M] and [P-S]).
We postpone it to sect.3.

Along the same lines as Theorem 3 of [P-P] we obtain

THEOREM 3. &#x3E; 0 and n be a fixed non-negative integer. Then we
have 

-

Now from Theorem 2 and Theorem 3 we obtain by an application of the
Cauchy-Schwarz inequality that

hence

and Theorem 1 follows.

3. Proof of Theorem 2

For n &#x3E; 0 we introduce the approximate functions

with
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where we integrate over the line Re s = 4.
By the functional equation (2) we have

Therefore

Hence defining

we obtain by the Cauchy theorem

By the definition of D we have zvd = -w for any d E D. Hence

letting X = dB/Tv we obtain



6

On the other hand the residuum of Gn may be expressed in terms of the
derivatives L(k) (s, Ed), k = 0,1, 2, ... , by means of the Laurent expansions

Namely we prove

Lemma. For any n &#x3E; 0 we have

Proof. We have

where

The expression in the second bracket is equal to

Hence
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where

Therefore

as required.

Since we obtain asymptotically

By (8) and the Lemma we obtain the formula

as d ~ oo. Next we sum both sides of the above equality multiplied by the
weighted function F (£) over the numbers d E D. The contribution of the
right-hand side of (10) is evaluated on the basis of the results on square-free
sieve obtained in § 7-§ 9 of (Iw~. Precisely we have

where
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the constant c is defined by (5) and the series L(s) is defined in §9 of [Iw].
In order to find the asymptotical behaviour of the right-hand side of (11)

we denote 
- I I -1~

and apply the contour integration to obtain

Applying the asymptotical equality (9) with G.~ replaced by Gn we ob-
tain

Hence the right-hand side of (11) is asymptotically equal to

Therefore in view of (10) we obtain the asymptotic equality

Hence we obtain immediately that the constant co in Theorem 2 is equal
to ~ 1 Z~’ ~ c, where c is the constant defined by (5).

Assuming that
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where ck are some constants we see that they have to satisfy the equality
I ~., ~ ,

To complete the proof of Theorem 2 it remains to prove that (12) holds
with the constants ck defined by (4). Indeed we have

as it is claimed. This completes the proof of Theorem 2.
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