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Some 03A9-results related to the fourth power moment
of the Riemann Zeta-function

and to the additive divisor problem

par JERZY KACZOROWSKI* ET BOGDAN SZYDLO

RÉSUMÉ. Nous donnons des estimations de type 03A9 relatives au
terme reste dans la formule asymptotique pour le moment d’ordre
quatre de la fonction zeta de Riemann et au terme reste dans le

problème des diviseurs.

ABSTRACT. We improve the "two-sided" omega results in the
fourth power mean problem for the Riemann zeta-function and
in the additive divisor problem.

1. Introduction

Let E2(X) denote the remainder term in the asymptotic formula for the
fourth power mean of the Riemann zeta-function:

where P is a certain polynomial of degree four. Further, let E(x, k) denote
the remainder term in the additive divisor problem:

where k is a fixed positive integer, d(n) stands for the number of positive
divisors of n, and Pk is a certain quadratic polynomial.

In this note E(x) will always denote or E(x,k).
Recent results on oscillations of these remainders can be written as fol-

lows

They are due to Y. Motohashi [10] in the case of E(x) = and to the
second author [11] in the case of E(x) = E(x, k) .

* Supported by KBN Grant nr. 2 P03A 028 09.
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The results stated in (1) have in fact been obtained in an analogous way.
First of all, the meromorphic continuation of the Mellin transforms

is needed. In the context of the fourth power mean of the Riemann zeta-
function it was obtained by Y. Motohashi [10] and in the context of the
additive divisor problem for the first time by L.A. Tahtadjan and A.I. Vino-
gradov [12] (cf. also [5] for some revision of [12]). The methods adopted to
achieve this goal made essential use of the spectral theory of the hyperbolic
Laplacian. It turns out that the only singularities of Z(s) in the half plane

1/2 are simple poles at s = 1/2 + ix, where 1/4 + rc2 are certain
eigenvalues of the hyperbolic Laplacian. It is well known that 1/4+~2 &#x3E; 0.

In particular, Z(s) is regular at s = 1/2. The relevant "nonvanishing" of
the residues:

for infinitely many 1/2 + irc, was obtained by Y. Motohashi [8],[9], cf. also
[11]. This is crucial for a successful application of a certain general result
of E. Landau [7] (cf. also [1]). The issue is the two-sided omega result (1).

In this note we indicate a possibility of further improvements of (1), cf.
Theorems 1 and 2 below.

Firstly, we remark that quite detailed information on the size of E(x) is
now available, see [2], [3], [4] and [9]. Consequently, the mentioned above
theorem of E. Landau may possibly be replaced by a more appropriate
means, something like a recent generalization of it by the first author [6],
Theorem 12. It states that if f : [1, oo) -j R is a function such that

for every A &#x3E; 0, and which Mellin transform

is regular at s = 0 and is not regular in any half-plane a &#x3E; 8 - r~ with q &#x3E; 0,
then the Lebesgue measure of both sets

is for every - &#x3E; 0 as T tends to infinity. The first difficulty we
are faced with when applying this result to errors like E(x) is that we are
unable to verify (2), though it conjecturally holds in this case. Actually,
the following known estimates ([3], [2] resp.)
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for every positive ê, where c is an effectively computable positive constant,
coupled with a slight modification of the just mentioned Theorem 12 from
[6] together with analytic properties of Z(s) could produce the following
estimates

in which ii denotes the Lebesgue measure on the real axis and e denotes an
arbitrary positive real number.
We prove more than this.

THEOREM 1. There exist constants c &#x3E; 0 and ro &#x3E; 0 such that for every
0  a  ro we have as T -~ oo

THEOREM 2. For every fixed positive integer k there exists a constant
r(k) &#x3E; 0 such that for every 0  a  r(k) and e &#x3E; 0 we have as T - oo

The main idea leading to these results is that instead of using individual
estimates of type (2) we rather resort to estimates in mean, cf. Section

2, formula (5). This is crucial since A. Ivi6 and Y. Motohashi [4] proved
recently the excellent inequalities

with an effectively computable constant c &#x3E; 0, and

for every positive E. We prove that (3) and (4) are sharp.

THEOREM 3. We have as T - oc
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A. Ivi6 and Y. Motohashi conjectured in [3] that

as T -. oo, and also that = O(T3/2+£) for every positive E. The
above Theorem 3 supports to some extent this conjecture. Finally, let us
remark that Theorem 3 has the ordinary Q-results

as corollaries. These were proved earlier than (1), cf. [3], [9].
Acknowledgement. We thank Professor Aleksandar Ivi6 for valuable re-
marks on the first version of this work.

2. A Laudau-type theorem for Mellin transforms

We formulate now a general theorem which plays the principal role in
this note. Let 0 be a fixed real number and f (x) be real for x &#x3E; 1. Suppose
that for U &#x3E; 1 we have

where q : (1, oo) certain positive and nondecreasing continuous
function such that for every 6 &#x3E; 0

as x ~ oo. Then for every o~ &#x3E; 0 we have
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Indeed, from (5) and (6) it follows for a &#x3E; 0 and 6 &#x3E; 0

if 6 &#x3E; 0 and ê &#x3E; 0 are chosen so that 6 + c  2(Q - 0).
Hence the Mellin transform

is holomorphic in the half-plane ?5 = Q &#x3E; 0. Moreover, suppose that for
real numbers r and to ~ 0 we have

Under these assumptions we have the following result.

THEOREM 4. For every a  r 0)F(u) and for every b &#x3E;

-r +limsuPu-+9+(u - 0)F(u) we have as T --~ oo

where denotes the Lebesgue measure of a set A of real numbers.

Let us observe that the above theorem is in fact a tauberian-type result.
Indeed, we do not need any information on F to the left of 0. In particular,
we do not assume that F has analytic continuation to any region larger
than the half-plane of absolute convergence. Applying this theorem to E(x)
requires less information on the analytic character of Z(s) than is in fact
available. In particular, we make no use of its meromorphic continuation
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on the half-plane u  1/2. However, we require that Z(s) behaves in a
rather special, "singular" way when s approaches to the vertical u = 1/2
from right. So, it is sufficient and natural for us to employ the fact that
Z(s) has a simple pole ( with a non-zero residue) on the line Q = 1/2, but
no singularity at s = 1/2, cf. section 1.

3. Proofs

Theorems 1 and 2 follow from Theorem 4 by taking f (x) = E2(X) or
= E(x, k). Indeed, the mean square estimates (3) and (4) and the

analytic properties of Mellin transforms Z(s) (cf. section 1) show that
all assumptions of Theorem 4 are then satisfied; we have B = 1/2, r =
SUPIER I &#x3E; 0, and 0)Z(u) = 0.

In order to deduce Theorem 3 from Theorem 4 let us put

and suppose the contrary, i.e. that

holds. Then is bounded as U -&#x3E; oo. From Theorem 4 we have for a
certain sequence T - oo and c &#x3E; 0

with r &#x3E; 0 is as above. From this follows

which contradicts (10). Hence it suffices to prove Theorem 4.
Proof of Theorem 4. Observe that (9) follows from (8) by replacing

f by - f . It suffices therefore to prove (8).
Let us put
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Further, let us denote

Then

Now, suppose that (8) is not true. With

it means that

For any 0 we have

say. From (5) we have
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Integrating by parts it follows that

But observe that for any 1  x,  X2 we have

because the functions and M are nondecreasing. Hence, by well-known
properties of the Riemann-Stieltjes integral, it follows that

Next, let us fix a positive 5. From (12) it follows that there exists 1

such that 
--

From (15) we have therefore

say. Hence, from (13), (14) and (16) we have for any fixed 6 &#x3E; 0

Consequently, (12) implies that

for all real t. Observe also that for cr &#x3E; 0 we have
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From (7), (11), (17) and (18) we deduce further that for a certain se-
quence of a tending to 0 from above we have

This contradicts our assumption that a  r + B)F(Q).
Therefore (8) follows.
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