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Linear Fractional Transformations of Continued

Fractions with Bounded Partial Quotients

par J.C. LAGARIAS ET J.O. SHALLIT

RÉSUMÉ. Soit 03B8 un nombre réel de développement en fraction continue

03B8 = [03B10, 03B11, 03B12,... ],

et soit 

une matrice d’entiers tel que det M ~ 0. Si 03B8 est à quotients partiels
bornés, alors [a*0, a*1, a*2,...] est aussi à quotients partiels bornés.
Plus précisément, si aj ~ K pour tout j suflisamment grand, alors a*j ~
| det(M)|(K + 2) pour tout j suffisamment grand. Nous donnons aussi une
borne plus faible qui est valable pour tout a*j avec j ~ 1. Les demonstrations
utilisent la constante d’approximation diophantienne homogène L~(03B8) =
lim sup q~~ (q~q03B8~)-1. Nous montrons que

ABSTRACT. Let 03B8 be a real number with continued fraction expansion

03B8 = [a0, a1, a2,...],

and let 

be a matrix with integer entries and nonzero determinant. If 03B8 has bounded

partial quotients, then [a*0, a*1, a*2, ...] also has bounded partial
quotients. More precisely, if aj ~ K for all sufficiently large j, then 
| det (M)|(K + 2) for all sufficiently large j. We also give a weaker bound
valid for all with j ~ 1. The proofs use the homogeneous Diophantine
approximation constant L~(03B8) = lim sup q~~(q~q03B8~)-1. We show that

det(M)|L~(03B8).

Manuscrit re~u le 28 avril 1997
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1. INTRODUCTION.

Let 0 be a real number whose expansion as a simple continued fraction
is

and set

where we adopt the convention that K(0) = +oo if 0 is rational. We say
that 0 has bounded partial quotients if K(O) is finite. We also set

with the convention that Koo (8) = +oo if 0 is rational. Certainly Koo (8) ~
K(8), and is finite if and only if K(B) is finite.
A survey of results about real numbers with bounded partial quotients

is given in [17]. The property of having bounded partial quotients is equiv-
alent to 0 being a badly approximable number, which is a number 0 such
that

in which Ilxll I = min(x - x) denotes the distance from x to the
nearest integer and q runs through integers.

This note proves two quantitative versions of the theorem that if B has

bounded partial quotients and M b is an integer matrix with
J

det(M) # 0, also has bounded partial quotients.co+d

The first result bounds K ( °’B+6 ) in terms of Koo(8) and depends onlycO+d
on 

THEOREM 1.1. Let 0 have a bounded partial quotients.

an integer matrix with 0, then

The second result upper bounds K( de+b in terms and depends0 ) P
on the entries of M:
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THEOREM 1.2. Let 9 have bounded partial quotients. If M = [a dJ is
Lc d.

an integer matrix with det(M) # 0, then

The last term in (1.4) can be bounded in terms of the partial quotient
ao of 9, since

Theorem 1.2 gives no bound for the partial quotient ao := I i of 
Chowla [3] proved in 1931 that  2ad(K(O) +1)3 , a result rather

weaker than Theorem 1.2.

We obtain Theorem 1.1 and Theorem 1.2 from stronger bounds that
relate Diophantine approximation constants of 9 and which appear
below as Theorem 3.2 and Theorem 4.1, respectively. Theorem 3.2 is a

simple consequence of a result of Cusick and Mend6s France [5] concerning
the Lagrange constant of 0 (defined in Section 2).

The continued fraction of can be directly computed from that for
8, as was observed in 1894 by Hurwitz [9], who gave an explicit formula for
the continued fraction of 20 in terms of that of 0. In 1912 Chitelet [2] gave
an algorithm for computing the continued fraction of from that of 0,
and in 1947 Hall [7] also gave a method. Let M (n, Z) denote the set of n x n

integer matrices. Raney [15] gave for each M = a b E M (2, Z) with
-c d ’

det(M) =1= 0 an explicit finite automaton to compute the additive continued
fraction of from the additive continued fraction of 0.

cO+d

In connection with the bound of Theorem 1.1, Davenport [6] observed
that for each irrational 0 and prime p there exists some integer 0  a  p
such that 0’ = 0 + ~ has infinitely many partial quotients an(B’) &#x3E; p.
Mend6s France [13] then showed that there exists some 0’ = 0 + P havingp

the property that a positive proportion of the partial quotients of 0’ have
an (0’) 2:: P.

Some other related results appear in Mend6s France [11,12]. Basic facts
on continued fractions appear in [1,8,10,18].

2. BADLY APPROXIMABLE NUMBERS

Recall that the continued fraction expansion of an irrational real number
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0 = ~ao, al,...] ] is determined by

and for n &#x3E; 1 by the recursion

The n-th complete quotient an of 0 is

The n-th convergent v’ of 0 isqn

whose denominator is given by the recursion q_ 1 - 0, qo - 1, and 
an+lqn + It is well known (see [8, §10.7]) that

Since an+1  + 1 and qn, this implies that

for n &#x3E; 0.

We consider the following Diophantine approximation constants. For an
irrational number 0 define its type L(O) by

and define the horraogeneous Diophantine approximation constant or La-
grange constant of 0 by
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We use the convention that if B is rational, then L(0) = L~(B) _ +oo.
(N.B.: some authors study the reciprocal of what we have called the La-
grange constant.)

The best approximation properties of continued fraction convergents give

The set of values taken by over all 0 is called the Lagrange spec-
trum [4]. It is well known that L~ (B) &#x3E; J5 for all 0. If 0 = [ao, at, a2, ... ~,
then another formula for Loo(6) is

see [4,p. 1].
There are simple relations between these quantities and the partial quo-

tient bounds K(O) and cf. [16, pp. 22-23].

LEMMA 2.1. For any irrational 0 with bounded partial quotients, we have

Proof. This is immediate from (2.2) and (2.3). 0

LEMMA 2.2. For any irrational 0 with bounded partial quotients

Proof. This is immediate from (2.2) and (2.4). 0

Although we do not use it in the sequel, we note that both inequalities
in (2.7) can be slightly improved. Since (an -I- l)qn-l, (2.1) yields



272

Since from some point on, this and (2.4) yield

Next, from (2.1) we have

Hence

Let K = K,,. (0). Then for all n sufficiently large we have

so

We conclude that

3. LAGRANGE CONSTANTS AND PROOF OF THEOREM 1.1.

An integer matrix M = La d I with det(M) # 0, acts as a linear[c oj
fractional transformation on a real number 8 by

Note that Ml(M2(8)) = MlM2(8).
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LEMMA 3.1. If M is an integers matrix with det(M) = ~1, then the La-
grange constants of 0 and M(O) are related by

Proof. This is well-known, cf. [14] and [5, Lemma 1], and is deducible from
(2.5). D

The main result of Cusick and Mend6s France [5] yields:

THEOREM 3.2. For any integers m &#x3E; 1, let

Then for any irrational number 0,

and

Proof. Theorem 1 of [5] states that

Let GL(2, Z) denote the group of 2 x 2 integer matrices with determinant
~1. We need only observe that for any M in Gm there exists some M E

GL(2, Z) such that 1Vl M = 0 d’ with a‘d’ = m and 0  b’  d’ . For if
0 U d

so, and 0 = then Lemma 3.1 gives

whence (3.4) implies (3.2). To construct M = L C we must have
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Take C = and Then gcd(C, D) - 1, so we may

complete this row to a matrix M E GL(2, Z). Multiplying this by a suitable

matrix c 
yields the desired M.1 0 ±l ’ 
y

The lower bound (3.3) follows from the upper bound (3.2). We use the
adjoint matrix 

- -

We prove by contradiction. Suppose (3.3) were false, so that for some
M E Gm and some 0 we have

This states that

which contradicts (3.2) for 0’, since det(M’) = det(M) = m. 0

Remark. The lower bound (3.3) holds with equality for some values of 0
and not for other values. If for given 0 we choose an M E Gm which gives
equality in (3.2), so that = then equality holds in (3.3)
for B’ = adj(M)(0). However, if = V5, as occurs for 0 = then

for all M; hence (3.3) does not hold with equality
when m &#x3E; 2.

Proof of Theorem 1.1. Theorem 3.2 gives :5 Now

apply Lemma 2.2 twice to get

To obtain the lower bound, we use the adjoint J

and apply (3.5) with M’ and 0’ = M(O) to obtain
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Since I det (M) I = this yields

4. NUMBERS OF BOUNDED TYPE AND PROOF OF THEOREM 1.2

Recall that the type L(8) of 0 is the smallest real number such that

THEOREM 4.1. Let 0 have bounded partial quotients.

an integer matrix with det(M) # 0, then

Proof. Set 1b = Suppose first that c = 0 so that I det(M)1 = ladl &#x3E; 0.

Then L(0) &#x3E; 1, where

We have

For any e &#x3E; 0 we may choose q in (4.2) so that ~ ~ L(1f;) - e. Then

Letting c -~ 0 yields (4.1) when c = 0.

Suppose now that 0. Again L(~) &#x3E; ~ where
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We have

so that

We first treat the case qa - pc = 0. Now

since det = det(M) # 0. Thus if qa - pc = 0 then lPd - 1,.J
hence (4.5) gives

It follows that qa - pc ,-~ 0 provided that

~/

We next treat the case when qa - pc 54 0. Now from the definition of 
we see

Given e &#x3E; 0, we may choose q so that ~ ~ L(~) - e, and we obtain from
(4.6) and (4.9) that

However, the bound
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implies that

Multiplying this by § and applying it to the left side of (4.10) yieldsq

Letting e -7 0 and using q &#x3E; 1 yields

provided that (4.8) holds. Now (4.8) fails to hold only if

The last two inequalities imply (4.1) when 0. 0

Proof of Theorem Applying Theorem 4.1 and Lemma 2.1 gives

which is the desired bound. 0

Remarks. (1). The proof method of Theorem 4.1 can also be used to
directly prove the bounds

of Theorem 3.2, from which Theorem 1.1 can be easily deduced. The lower
bound in (4.14) follows from the upper bound as in the proof of Theo-
rem 3.2. We sketch a proof of the upper bound in (4.14) for the case
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9 = with 0. For any c* &#x3E; 0 and all sufficiently large q* &#x3E; q* (E* ),
we have

We choose q = qn (1b) for sufficiently large n, and note that

as n -~ oo, since 0 is irrational. We can then replace (4.9) by (4.15), and
then deduce (4.11) with L(O) replaced by +,E*. Letting q -+ oo,
f -+ 0 and E* -~ 0 in that order yields the upper bound in (4.14).

(2). For a given matrix M consider the set of attainable ratios

By Lemma 3.1 the set V(M) depends only on its SL(2, Z)-double coset

Theorem 3.2 shows that

It is an interesting open problem to determine the set Both I
and 

I 
lie in V(M), as follows from Theorem 3.2 and the remark

following it.

Acknowledgment. We are indebted to the referee for helpful comments
and references, and in particular for raising the open problem about V(M) .
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