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Sets of block structure and discrepancy estimates

par REINHARD WINKLER

RÉSUMÉ. Soient x = (xn)n~N une suite d’éléments d’un ensemble
fini M et f = (fn)n~N une suite d’applications fn : M ~ M.
Quelle information sur x et f permet d’obtenir des estimations de
la discrépance de la suite f(x) = (fn(xn))n~N? Nous donnons
dans cet article des réponses à cette question, en utilisant un
résultat qualitatif récent.

ABSTRACT. Given a sequence x = (xn)n~N on the finite set M
and a sequence f = (fn)n~N of maps fn : M ~ M. Which
information about x and f is suitable for getting estimates for the
discrepancy of the sequence f(x) = (fn (xn))n~N? The paper’s
object is, using a recent qualitative result, to give answers to this
question.

1. Introduction

Let M be a finite set, w.l.o.g. M = {1, ... , m~. For a sequence x =

on M and a sequence f = of transformations In : M -~ M
we are going to study the distribution behaviour of the sequence f(x) =
y = = fn(xn). The qualitative question is: Which f have the
property that y is uniformly distributed (u.d.) whenever x is u.d.? (As
general references for the theory of u.d. sequences cf. (Kui-N), [H] or (D-T~.)
An answer is contained in [W] by means of a characterization of all those
so-called u.d.p. (uniform distribution preserving) f. Proposition 2 recalls
the result adopted for our purposes. In this paper we show in which way
one can derive quantitative versions which are necessary for applications
similar to Monte Carlo and Quasi-Monte Carlo methods. More precise: We
are looking for functions FN such that

holds. DN(x) denotes the discrepancy which, for an arbitrary sequence x
on a finite set M of cardinality #M = m, is defined in the following way.
For arbitrary T C N put
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and (for N &#x3E; min T, T 0 0)

If T = N we shortly write A(N, x, a) resp. DN(x) for the discrepancy.
Drr(x) tends to 0 for N -~ oo if and only if x is u.d. Similarly s-block
discrepancy is defined by = where

is considered as a sequence on M~ consisting of the members

A sequence x is called s-block u.d. if D~r,~(x) -&#x3E; 0, x is called completely
u.d. if this holds for all s 

Section 2 presents Theorem 1 which shows why FN has to depend on
x in a more complicated way than just via DN(x). Interesting and much
deeper results on similar complexity questions on uniform distribution can
be found in [G] and [Ki-Li]. Section 3 is devoted to the notion of sets of block
structure which has been introduced in [W] and is useful for our purposes.
This notion is closely related to the concept of almost constant sequences
which has been studied by Rindler and Losert, cf. for instance [Ri], [Ri-
Lo] and [Lo]. They continued investigations due to Rauzy, cf. [Rau], who
seems to be the first one who investigated questions on u.d.p. sequences in
a similar way. For more references cf. ~W~. In this paper (section 3) several
simple properties of sets of block structure are proved which are relevant
for us. Section 4 analyses how the qualitative characterization of u.d.p. f in
Proposition 2 can be modified in such a way that it can be used for concrete
and quantitative discrepancy estimates. The discussion is essentially lead
by the results of Section 2 and 3. A discrepancy estimate of the desired
type is carried out in the final section 5. The problem is discussed also for
s-block discrepancy. One easily gets a characterization of those u.d.p. f
which also preserve s-block or complete uniform distribution.

2. Discrepancy alone is not enough information

Our main question is: In which way should Fnr depend on its arguments?
If FN is allowed to be an arbitrary function the setting of the question is too
general, since FN(x, f) = DN(f(x)), in a trivial way, is the optimal solution
but not interesting for computations. The first restriction one thinks of is
to require that FN depends in the first argument not on all information
about x but just on the discrepancy: FN = FN(DN(x), f). But this cannot
be done in a reasonable way as Theorem 1 explains.
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THEOREM 1. There is no family of functions FN = FN(DN(X), f), N E N,
each FN depending on x only via DN(x) and on f = (In)nEN, fn : M - M,
in an arbitrary way with the following properties:

for all N and

whenever x is uniforml y distributed and f preserves uniform distribution.
Proof: Suppose, by contradiction, that such a sequence of FN exists. For
technical convenience suppose M = (0, 1) and define g : M - ~VI by
g(i)~i,i=0,1. Let fn = IdM if aj 
j = 0,1, ... , where the sequence

is defined in such a way that aj = 3aj-l and 2aj for j &#x3E; 2. Then
f = is u.d.p. This follows from the main result in [W], here restated
as Proposition 2 in section 4. Consider the sequence x = defined

by xn = i E M with n - i mod 2. x is u.d. and, by assumption,

Now define y = (Y,,),,Elq in such a way that yn = 1 if In = IdM and yn = 0
if fn = g. Hence In(Yn) = 1 for all n E N and DN(f(y)) = 2 for all N E N.
Note Da;(Y) = Da;(x) = 0 for all j &#x3E; 1. For arbitrary - &#x3E; 0 and sufficiently
large j this yields

contradiction. q.e.d.
Thus one has to make finer investigations of u.d. sequences x and use

properties which fit to u.d.p. sequences f in the sense of Proposition 2
(cf. section 4). For that we have to turn to the concept of sets with block
structure.

3. Sets of block structure and related concepts

For a better understanding of our problem we consider partitions of the
set N of positive integers into blocks. For this reason we use the following
notations. If

0
is a given sequence of integers let Ik = (ak-1, ak] n N denote the induced
blocks (intervals) and call the family I = (Ik )kEN the partition of N induced
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by a = If 0 (or, equivalently, ak+llak - 1) for h --~ o0
we call I = short partition. We introduce the abbreviation

where k(N) is the greatest index such that ak(N)  N. If this quantity is
small this means that almost each block Ik is almost contained either in T
or in its complement Hence it is obvious why we say that T has block
structure if L(T, I, N) = 0 for all short partitions I. It is easy to
see that this is, for instance, the case if T is compatible with a sequence
a = with &#x3E; 1 (example: a (q) = q &#x3E; 1), in
the following sense: A set T C N is called compatible with a sequence a
(or with the induced partition I = I(a) = (Ik)ken) if and only if each Ik is
contained either in T or in its complement ~1 ~ T . With ,~ we denote the
system of all sets T C N with block structure. Sets of block structure have
been characterized in [W] in several ways.
A related topic which is important for us is the distribution of restricted

sequences. For TON define

and for xT = 1, call the positive number

the restricted discrepancy. We say that XT is u.d. w.r.t. T if DN(xT) -
0 for N -- oo. Note that DN(x, T ) where, in general, the
inequality is strict.

The sequence of numbers densN(T) E ~0,1~, N E N, has an upper limit
dens(T), called upper density of T. Similarly the lower density dens(T) is
defined as the lower limit. In case of coincidence of both the common value

dens(T) is called density of T. It is easy to check that, for arbitrary sets
S, T C N of natural numbers, d(S, T) = W(S4lT) defines a pseudometric
d inducing a topology on the power set of N. Here = (S ~ T) U (T B
S) denotes the symmetric difference of the involved sets. Note that the

topological closure of the singleton {0}, for instance, contains exactly the
sets T with dens(T) = 0.

Here are descriptions from [W] of sets with block structure:

PROPOSITION 1. For T C N the following three conditions are equivalent:
(1) T E B.
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(2) For all - &#x3E; 0 there is a q &#x3E; 1 and an S compatible with a (q) such
that d(S, T)  E.

(3) For all u.d. sequences x on a finite set M with #M &#x3E; 2 the restric-
tion XT is u, d. zv. r. t. T.

Proof: Follows from [W], Theorem 1. q.e.d.
The following theorem presents further useful observations on B.

THEOREM 2. B is a Boolean set algebra (not a a-algebra) on N, and, as a
subset of the power set of N, it is topologically closed w.r.t. d.

Proof: ,Ci is not a Q-algebra since, for instance, An = {2n} E l3, but A =
UnEF1 An B. Obviously ,CB contains 0, N and, immediately by definition, is
closed under complements, i.e. T implies N B T E Ci. To show that B
is a Boolean set algebra on N it therefore suffices to prove that S U T E ,Ci
under the assumption that S, T E B:
For any given short partition I define

sk + tk . This implies

since ,S‘ and T are supposed to have block structure. Thus ~5’ U T E B.

Finally Proposition 1.2 says ~3 = C for

hence Ci is indeed a closed set. q.e.d.
From the results up to now it follows that, for T E ? and E &#x3E; 0, there is

a set S E Ci compatible with some a = with ak+l~ak &#x3E; q for some
q &#x3E; 1 such that d(S, T)  E. Since d is a pseudometric and not a metric
the question arises whether one can even take 6’ = 0. That this is not the
case follows from Theorem 3.

THEOREM 3. There are sets T with block structure such that d(S,T) &#x3E; 0

for all S compatible with some I = I(a), a = (ak)kEN with q &#x3E; 1

or, equivalently,

for all such I = I(a).
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Proof: Construction of T: For j, I &#x3E; 1 define the numbers r( j, l) = 2 2j+l +
2’, = 22j+l + 2 ~ 21 = 22j +1 + 2’+’ and the sets

We claim that the set T = Too = Aj has the desired properties. (Note
that n E Ai if and only if the binary representation of n - 1 starts with a
block 100 ...001 where the number of 0-digits between the first two 1-digits
is 2j - 1.)
T E B: The set Aj is, by definition, compatible with the sequence

Check that the quotients of succeding members of this sequence are bounded
below by 1 + (2 2j + 1)-1 = qj &#x3E; 1. Hence Aj for all j and thus, by
Theorem for all i E N. Now observe

J=Z

for sufficiently large i. Thus T E N} C .C~ = .f3 by Theorem 2.
It is obvious that the both remaining assertions of the theorem are indeed

equivalent. We prefer to prove the second one. For that reason suppose
now that I = I(a), a = is a partition with q for some

q &#x3E; 1. If the quotients are not bounded it is easy to see that

Hence we may suppose Q for some fixed Q to show that L(T, I, N)
has a positive upper limit.

For each n let kn be chosen in such a way that  For

q = such that 2-2~  ~/3. 2j + 2 and I = n - 2j we
distinguish two cases:

First case: ak"  With the notation

and, using

we get
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From the definition of T follows

Second case: r( j, l)  akn. Similar to the first case, just replacing j by
j + 1, 1 by 1 - 2 and kn by one gets

Combining both cases and choosing E = 22Ji2Q) one gets

Theorem 3 and the following fact will also be relevant on the search for
possible estimates, cf. the discussion in section 4.

THEOREM 4. Let (I(’))’EN, 1(1) = I(a(l)) = a(l) = be an

arbitrary countable family of short partitions. Then there is a set T ç N
with L(T, I~i~, ~ ) -~ 0 for atI l E l~ but T ~ B.
Proof: Since all are short partitions there is a sequence

such that #  1 whenever I  d and and with N1+1/N1 --1- oo.la _ k _ t 1+1’ i
k

Furthermore there exists a short partition J = = J(b), b = 
such that sufficintly large I fulfill t2  if Jk n 0.
Define 

..-- i 1 .

To estimate

note that only those k contribute a notvanishing term for which bk, E Iki)
for some k’. Using the bounds for and ~Jk/bk we conclude
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On the other hand let I = I(a) be a short partition with )  if

Ik n (Ni, Ni+i ) # @ for sufficiently large 1. Since #-~I~’- - 0 for 
and k, k’ 2013~ 00 a further use of the bounds for and those for

yields

implying lim L(T, I, ~V) &#x3E; 3. Thus T does not have block structure.
q.e.d.

4. Reconsidering a qualitative result

For given f = ~VI --~ M, we consider the sets T~ _ ~ n E
I fn = 7r} for every permutation 7r E SM of the set M (SM denotes the

symmetric group acting on the set C = ~n E N I In = c,~~ of all n
for which fn is a constant function taking some value cn and the

remaining set D = N B C B T where T = T1I". Now we are ready
to formulate the characterization of u.d.p. sequences f = of maps
which is the motivation for our quantitative results.

PROPOSITION 2. The sequence f = f,~ : M -&#x3E; M, is u.d.p. if and
only if the following three conditions hold:
1. dens(D) = 0.
2. All sets C, D and T1r, 7r E SM, have block structure.
3. The sequence cc = (Cn)nEC is u.d. w.r.t. C.

Proof: Follows, by specialization, immediately from [W], Theorem 3.

q.e.d.
If we say that f is compatible modulo constant maps with a partition P

of N if on each T either all In coincide or all In are constant maps then
we can reformulate condition 2 of Proposition 2 as follows: f is compatible
modulo constant maps with a finite partition of N into sets with block
structure.

In order to use the conditions from Proposition 2 for discrepancy esti-
mates we have to analyse how they can be made concrete by means of suit-
able quantities. For condition 1 and condition 3 this is clear: dens(D) = 0
if and only if the quantity densN(D) tends to 0 and c = is u.d.
w.r.t. C if and only if the quantity DN(CC) tends to 0.
Which quantity describes how good the block structure of some T 6 ~

is? This question is not so trivial. The reason is that in the definition for
T the limit relation for L(T, I, N) must hold for all, even uncountably
many, short partitions I. Unfortunately the behaviour of one fixed I or
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even of countably many of them does not give enough information. This
has been illustrated by Theorem 4.

Looking at certain special examples of sequences with block structure
(as the sequences a (q) for q &#x3E; 1), one observes that L(T, I, N) - 0 for some
suitably chosen "long" partition I with &#x3E; 1. The hope that
this might happen for all T has been destroyed by Theorem 3. But
what we may expect is that L(T, I, N) gets small in dependence on N and
b if 1 + 6- (Let as call partitions I = I(a) with this property
6-partitions.) This approach indeed is possible as Theorem 5.1 will show.
Theorem 5.2 is an application of Theorem 5.1 to u.d.p. f.

But how to match a u.d. x with a u.d.p. f? Condition 2 in Proposition
2 tells us that in a u.d.p. f the permutations 7r : M --~ M occur (with few
exceptions) in long blocks. On such blocks the distribution behaviour of
the xn is the same as the behaviour of the 7r(xn) (up to a fixed
permutation 7r of the elements of M). Hence we have to guarantee, that
the blocks are long enough such that the uniform distribution of x can be
observed. This will be the object of Theorem 5.3.

THEOREM 5. ( 1 ) Suppose that T has block structure and &#x3E; 0 is given.
Then there exist a positive b = 6T(E) &#x3E; 0 and a natural number

such that

1 11 -, 1 /

holds for all N &#x3E; NT(£,6) and all b-partitions I = (1k)kEIq-
(2) Suppose that E &#x3E; 0 and f u.d.p. are given. Then there is a positive

b = ~f(~) &#x3E; 0 and a natural number N1= 6) such that for all
N &#x3E; N1 and all 6-partitions I there is an f’ = compatible
with I modulo constant maps such that

Furthermore we may assume DN(f(x)c)  - for such N.
(3) Suppose that x is u.d. and E, b &#x3E; 0 are given. Then there is a

positive integer No = b) E ~I such that for all I = (N’, Ni] n N
with N’ &#x3E; No and (1 + 6)N’ and all N &#x3E; N1

Proof:

(1) Suppose, by contradiction, that there is some E &#x3E; 0 such that for
ah 6 &#x3E; 0 and all N there is a 6-partition 1(6, N) = (Ik(6, N))keN
and an N’ = lV’( ~, N ) &#x3E; N such that
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By a standard diagonal argument (similar as in the proof of The-
orem 4) the partitions 1(/) = I( t, N1) with sufhciently rapidly in-
creasing Ni &#x3E; and corresponding Ni can be combined to a
short partition I with

implying

contradiction.

(2) 1 x E ?M} where C, T7r ~ 8 and D ~ S are as
above. All S E S, by Proposition 2, have block structure. Thus part
1 of the theorem guarantees that there are, for each S E S and for

2~+2) ? numbers and with the properties
stated there. Let b = 6f(s) &#x3E; 0 be the minimum of the 

s E S, w.l.o.g.  E/2. Furthermore, by Proposition 2, there
is a natural number N’ = ND(£1,8D(£1)), such that densN(D)  £1
for all N &#x3E; lV’, Define

Now choose any 6-partition I = I(a). We have to find an f’ =
with the properties stated in the theorem. For all n E 11

let f ~ be the same arbitrary but fixed mapping. For n E Ik, k &#x3E; 2

distinguish two cases: °

Case 1: If E Ik ~ fn = 7r} &#x3E; #Ik/2 for some 7r E SM put 
for all n ~ Ik.
Case 2: Otherwise define f,~ = cn for some constant cn where cn = Cn
for the case that f n = c,~ is constant.
By definition f’ is compatible with I modulo constant maps. We
have to estimate densN(X) for X = ~n E N I fn} and N &#x3E;

Nr(e,6). Let Ak = and, for S E S, AS,k = min(#Ik n
s, ~Ik ~ S). In case 1 we have Ak - ATr,k for some ~r E sM. In
case 2 we have Ak = #(I~ 1 C) and we distinguish two subcases: If

C) &#x3E; ~(Ik 1 C) then Ak = Ac,k . In the other subcase we get

Combining all cases and estimating very generously we conclude
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lY ’ I

which is the assertion of the second part of the theorem.

(3) Follows with the same method as Lemma 1 in [W]. q.e.d.

5. Discrepancy estimates and s-blocks

Using Theorem 5 we are now in the position to deduce a discrepancy
estimate for f(x) of the following type:

THEOREM 6. Given a u.d. sequence x and a u.d.p. sequence f of maps.
For arbirarily given e &#x3E; 0 let b = bf(s)  1~ and Nl = Nf(E, 6)
(w.l.o.g. N1 2:: a) be as in Theorem 5.2. Furthermore let 80 E (0, b - 2
and No  N’  N1 where No = as in Theorem 5.3. Then for
all N &#x3E; Nl the discrepancy of the sequence f(x) can be estimated by

Proof: Fix any partition I = I(a) with 1 + 1 -E- b and

~Nl/2  EN,. (Note that this is possible by the assumption on bo
since 1.) Let f’ be as in Theorem 5.2 compatible with I modulo
constant maps and let the sets resp. C~D~T~T~ be associated
to f resp. f’ as in section 4. Define for arbitrary N

and the numbers I~o and 1~1 by  N’  ako resp. 0~1  N  ak1 +1.
Observe for N &#x3E; Nl the following relations.
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Combination of these estimates gives

Since E and 6 can be chosen arbitrarily small, this result gives a method
to determine how large N must be such that DN(f(x)) gets smaller than
any given positive value. For given u.d. x and u.d.p. f one has to know the
integer functions Nx(£,6) and Nf(ê,6) which exist by Theorem 5.

It is clear that the explicit bounds for DN(f(x)) stemming from the
proofs of Theorem 5 and Theorem 6 are not optimal. But a more careful
estimation would have taken so much technical effort that the view to the
main object would have been obscured by boring calculations. What we
want to emphasize is that functions Nx(s) and Nf(s) depending only on one
argument E do not give enough information to guarantee DN(f (x))  6~ but
the functions N x( ê, b) and 6) guaranteed by Theorem 5 and used in
Theorem 6 do.

Finally we have to investigate how our methods apply to s-block discrep-
ancy. If one assumes that f is u.d.p. then the generalizations are straight
forward. The only modifications are as follows:

In estimating one has to look at the blocks

If only one of the Xi or fz, i = n, ... , n + s -1, does not behave regularly,
this may affect not only one but s members in the sequence yes) = 
Hence discrepancy estimates have to take this into account by a factor s.
It is clear that, for every fixed s E N, the asymptotic definition of block
structure causes that this problem does not affect the nature of the results.
Of course we have to modify the definition of restricted discrepancy in the
following way: For T C N and a E MS define

-- ---- I ........ - I

x is called s-block u.d. w.r.t. T if DN(x) - 0 for N - oo. Similarly one
calls x completely u.d. w.r.t. T if this is the case for all s E N.

In the natural way we call f s-block resp. complete u.d.p. if f (x) is s-block
resp. completely u.d. whenever x is s-block resp. completely u.d. With the
same notations as in Proposition 2 the qualitative result is the following:

THEOREM 7. Let f be u.d.p. Then f is s-block resp. completely u.d.p. if
and only if cc = s-block resp. completely u.d. w.r.t. C.
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Proof: Carry out the program described above. We omit details. q.e.d.
Note that in Theorem 7 we have assumed that f is u.d.p. It is a conjecture

but yet unproved whether s-block or complete u.d.p. always implies u.d.p.
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