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Classical and Overconvergent
Modular Forms of Higher Level

par ROBERT F. COLEMAN

RÉSUMÉ. Nous définissons la notion de forme modulaire surconvergente
pour 0393(Npn) où p est un nombre premier, N et n sont des entiers et N est
premier à p. Nous démontrons que toute forme primitive surconvergente
pour 03931(NPn), de poids k et dont la valeur propre de Up associée est de
valuation strictement inférieure à k - 1 est une forme modulaire au sens

classique.

ABSTRACT. We define the notion overconvergent modular forms on 03931 (Npn)
where p is a prime, N and n are positive integers and N is prime to p. We
show that an overconvergent eigenform on 03931 (Npn) of weight k whose Up-
eigenvalue has valuation strictly less than k - 1 is classical.

In this note we define a notion of overconvergent modular form of level
where lV is a positive integer, p is a prime, (N, p) = 1 1

and generalize the main result of [2]. That is, we show that overconvergent
forms of level weight l~ and slope strictly less that k - 1 are
classical.

This allows one to recover most of the finite dimensional space of classical
forms in the immense (of uncountable dimension) space of overconvergent
forms. Using the extra freedom one has with overconvergent modular forms
one can use this to prove important results about classical forms (see below).

The only essentially new wrinkle in this paper is the proof of the equality
of the dimensions:

which is a generalization of [2, Prop. 8.4]. The terms on the right are
defined in terms of overconvergent forms of level in §l and the
term on the left is defined in terms of modular forms on in §2
(and in [6]~. The following observation of Ogus is crucial for our proof.
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OBSERVATION (Ogus). S is a locally free rank m coherent sheaf on
a curve X over a field K and S2 is an invertible sheaf. Suppose S’: 
is a complex. Thenx(S’) =: =-mdegf2.

Proof. This follows from Riemann-Roch and the magic of Euler charac-
teristics. Namely, using the "Hodge to de Rham" spectral sequence we
deduce

Now using using the fact that the alternating sum of the Euler character-
istics of the terms in an exact sequence of locally free sheaves is zero and
Riemann-Roch we see X(S ~ S2) = + m deg S2.

(Of course we have connections in mind.)
A consequence of this are the results in ~10~.

THEOREM. Suppose a E Q and X is a character on (ZjNpnz)*. Then the
dimension of the space of modular forms on Xl (N pn) of weight k &#x3E; a + 1,

and slope a is locally constant as a function of k where k is
considered as an element of (Z/(p - I)Z)* x Zp.

1. Overconvergent forms of level Np’~.

In this section we will suppress the level N from the notation when conve-
nient.

Recall from [2~, we have a commutative diagram

in level Np. Here Wi(p) is the connected component of the rigid sub-
space of Xl(Np) fv(Ep-,(x))  p2-i/(p + 1)} containing the cusp 00
and Ei(p) is the pullback of the universal elliptic curve over Xl(Np) to
Wi(p). Also, 16 and o are the Tate-Deligne morphisms. We let for
n &#x3E; 1, denote the inverse image in of with respect
to the morphism from X1(Np) which takes the point corre-
sponding to (E, a: ppm -~ E) to the point corresponding to (E’, a’) where
E’ = and a’ is the map induced by a from up to

E’. Better, Wi(pn) consists of points corresponding to pairs E)
such that the point corresponding to (E, alJLp) is in and



397

Also let Z(p) be the inverse image of Z(p), where Z(p) is the ordinary
locus in W2(p). (and also Wl(p)). Then Z(p’) is the minimal underlying
affinoid of Wi(pn) containing the cusps in this wide open for i = 1 or 2
(the requirement about the cusps is only necessary when the genus of the
Igusa curve (see below) is 0 and the number of supersingular points
on is less than 3 (see [1]).
We have a natural lifting of 0 to a map from W2(p-) to Wl(p") which

takes the point corresponding to a pair (E, a: E) to the point corre-
sponding to a’) where a’(~) = if Q E and pQ = a(~’).
Then we have a commutative diagram analogous to (1.1).

Let f n: Xl (Np") be the universal generalized elliptic curve
over Xl (Npn) (with the singular points above the cusps removed) and let
w = * For k E Z we call sections of Wk on 

convergent forms of level sections on any strict neighborhood
of overconvergent forms of level ]F,(Npn). We note that any
overconvergent form of finite slope extends to an section of wk on W, (pn).
Therefore, we set Mk(p") = Mk(ri(Npn)) =: The space
of modular forms of weight k on Xl(Np"), which we denote 
naturally injects into and we say that elements in the image are
classical. We identify Mk,,, (pn) with the space of classical modular forms.
Then we can define an operator U on Mk(p") in the same way as in [2,§2].
On Mk,n(p") this acts as the Hecke operator Up and so it follows that the
slope of any classical form of weight k + 2 is at most k + 1 if it is finite.

THEOREM 1.1. Every p-adic overconvergent form of weight k + 2 and slope
strictly less that k + 1 in Mk+2 (pn) is classical.

The proof of this theorem follows the same lines as the proof of Theorem
8.1 of [2]. The definitions and results of Sections 2-4 of [2] carry over to
this situation without difficulty. In particular, there is a linear map 0 from
M-k(pn) to Mk+,(pn) which on q-expansion s is (qdldq)’+’ and which
satisfies

We will use the notation Symk to denote the kth symmetric power of
the relative de Rham cohomology complex of El(Npn) (minus its singular
points) over X,(Np). Let denote the union of the cuspidal residue
classes,

and let denote the kernel of
the map
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We may deduce in the same way as in [2] that there exists an endomor-
phism Ver of the quotient is

naturally isomorphic to this space and the following diagram commutes:

For k &#x3E; 0, we set Sk+2(p") equal to the subspace of Mk(pn) consist-
ing of cusp forms with trivial residues (in the sense of [11]) on 
This is also equal to the inverse image with respect to the above map of

in 

2. Dimensions: Modular forms and Cohomology
Let X denote the curve Xl(Npn) over Cp. We let denote

the subspace of primitive forms in Recall this is the space
spanned by the images of the weight k forms of level rl(NpT) of primitive
nebentypus at p of 0 ~ r  n and is the subspace of primitive
cusp forms. (We point out that two copies of the level N forms are contained
in when n &#x3E; 1 via the two degeneracy maps.) It follows from

the work of Ogg and Li that the subspace of on which (Z/p"Z)*
acts non-trivially is the same as the subspace of on which

(Z/p"Z)* acts non-trivially and rlsUpMk(p") = M~~"’’(p’’~) + 
We set r(N; p’’) = = 

X(N;pT) = etc., in the notation of Mazur-Wiles [MW].
For a representable moduli problem P over Ell/R we let In(P) denote

the Igusa problem of level 0, over P (so that Io(P) = P). If

P is a representable moduli problem over Ell/k we let X(P) denote the
completion of representation space yep), C(P) the cuspidal divisor on
X(P) and Sl(P) = We also set

etc. We will also use to denote the k-th symmetric product of
the first relative de Rham cohomology complex of the universal elliptic
curve over X(P) and V will denote the relevant connection. The group

is defined similarly to Mk (p -
We let X be stable model of (X, C) over R (we only need to worry

about C when X has genus 0 or 1) . Then let be the "good" Igusa
component of X containing oo. Let I =: be the rigid space in X
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whose closed points reduce to points in In(N) (this is the generic fiber of
the tube of In(N) in X) and I’ = I’(N) be the rigid space corresponding to
the other good Igusa component (which equals w~I for any primitive p-the
root unity ~). We also let U = Ul(Npn) denote the reduction inverse of
the union of all the components of the stable model of X besides the good
ones. Let SS denote the supersingular divisor on or its degree when
no confusion will arise. Then the spaces I n U and are each the union
of SS annuli.

For a rigid subspace W of X we let denote the kernel of
the restriction map from to H’ (W n 

THEOREM 2.1. The natural map from 

is an isomorphism.

Note: The map from HI (X, Symk)prim to HI (I, Symk) factors through
Symk)* because (Z/pnZ)* acts trivially on the cohomology of the

complex Sym k when restricted to the supersingular annuli.
Proof. First, using [5, Thm. 10.13.12~, we see that when n &#x3E; 2

and similarly

Hence, as H1 (X, modulo HI (Xl is isomor-

phic to

when n &#x3E; 1 (all the maps involved here are injections) we see using the ob-
servation of Ogus and [5, Cor. 12.9.4], that the dimension of

Hl(X, Symk)prim is
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Now we have to compute We do this by adding
disks to I to make a complete smooth lifting of the Igusa curve In(N), i,
and extending the connection SyTnk to a connection on I which only
has log poles at the cusps C in I (see [2, §8]). Then the observation of

Ogus mentioned in the introduction implies that X(t) = deg 91 (log C) =
Since H°(tf) = 0 if k &#x3E; 2 this gives us what we want.

Similarly, we can work on the reduction inverse image I(N, p") of the good
component containing o0 on the stable reduction of the curve X(N, p")
define and prove its dimension is 

We also let denote the reduction inverse of the bad components
of the stable model of 

To prove the isomorphism in the theorem we use Meyer-Vietoris and
induction on n. It is true when n = 1 by [2]. We have exact sequences

Where Y is either Xl (Npn) or X(N,pn), V is either Ui (Np") or U(N; p"),
J is either I(N) or etc. accordingly. When k &#x3E; 0 the first maps
are injections and the last maps are surjections. In any case we deduce that

(it is easy to see that the map from the second of these spaces to the first is
an injection, and we identify it with its image) is isomorphic to the direct
sum of

But, using the triviality of the action of (Z/eZ)* on the cohomology over
the supersingular annuli, either of the first two spaces is isomorphic under
the natural map to

and it follows from the above that this space has dimension

Hence the map to the sum of the first two spaces above is an isomorphism,
which proves the theorem, and it follows that the dimension of the third is
zero. I

This last assertion implies:
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COROLLARY 2.2.

In particular, every primitive modular form of weight k + 2 when considered
as a section of Symk 0!1l(Npn) and restricted to Ul(Npn) is equal to B7G
for some section G of Symk on 

For a subspace W of X we set Symk) equal to

Then

COROLLARY 2.3. We have which

equals

where 6 = 2 if k = 0 and 6 = 0 otherwise.

Proof. By Riemann-Roch and [5, Thm. 10.13.12]

when k &#x3E; 0. It follows that, in this case,

which implies the result using Ogus’ observation and [5, Cor. 12.9.4]..
This and the isomorphism between 

and (p’~), Symk) enables us to prove (0.1).

REMARK. It follows from the results in ~8,§~ ~ §3] that the stable reduc-
tion of X(N;pn) is the same as that of Xl (Np") except that the two good
components in the latter are each replaced by a copy of In-l(N). On the
other hand we point out that the stable reduction of Xl (Npn) is not known
(but see [3J).
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3. Conclusion

As in [2, §5] we can put a pairings ( , )1 and ( , ) I, on Syrrvk)* and
on We can conclude in the same way as in [2, §5] that

Moreover, if ( , ) is the natural pairing on ( , ) restricts

to a perfect pairing on and if ac and b are elements of

H

This and Theorem 2.1 implies that ( , )1 is non-degenerate which allows us
to generalize [2, Prop. 8.3~ .
We can conclude that the map from the slope a subspace of P72 M to the

slope a subspace of Symk)* is an isomorphism if a  k + 1

exactly as in [2, §8]. The proof of Theorem 1.1 may be completed by
arguments similar to those used in [2].
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