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Associated Orders of Certain Extensions

Arising from Lubin-Tate Formal Groups

par NIGEL P. BYOTT

RÉSUMÉ. Soit k une extension finie de Qp, et k3 les corps de division de
niveaux respectifs 1 et 3 associés à un groupe formel de Lubin-Tate, et soit
0393 = Gal(k3/k1). On sait que si k ~ Qp l’anneau de valuation de k3 n’est
pas libre sur son ordre dans K0393. Nous dans le cas

où l’indice absolu de ramification de k est assez grand.

ABSTRACT. Let k be a finite extension ofQp, let k1, respectively k3, be the
division fields of level 1, respectively 3, arising from a Lubin-Tate formal
group over k, and let 0393 = Gal(k3/k1). It is known that the valuation ring
k3 cannot be free over its associated in K0393 unless k = Qp. We
determine explicitly under the hypothesis that the absolute ramification
index of k is sufficiently large.

1. INTRODUCTION

Let p be a prime number and let k be a finite extension of the p-adic
field Qp. Let o be the valuation ring of k, let 7r be a fixed generator of the
maximal ideal in o, and let q be the cardinality of the residue field 0/7r0.
Let f (X) E o~~X~~ be a Lubin-Tate power series for k corresponding to
~r. By standard theory, as described for example in (S), there is a unique
formal group F over o with f (X) as an endomorphism. For n &#x3E; 1, the set
Gn of zeros of the nth iterate of f (X) is a group under F. The field kn,
obtained by adjoining to k the elements of Gn, is a totally ramified abelian
extension of k with Galois group isomorphic to (o/,7rno)x. We denote the
valuation ring of kn by o~ .
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Let r, m &#x3E; 1 and let r = Gal(km+r/kr). In the so-called Kummer case
m  r, Taylor [T] determined the associated order of in the group
algebra krf, and showed that o,+r is a free module over this order. In

the non-Kummer case m &#x3E; r, Chan and Lim [C-L] showed that is

again free over its associated order if k = Qp. Subsequently Chan [C] gave
an explicit description of this associated order. When m &#x3E; r and k # Qp,
however, is not free over its associated order. This is proved in [B2]
by an indirect argument which does not require explicit knowledge of the
associated order.

The aim of this paper is to determine the associated order in a certain

family of extensions of the above type. We consider only the case r = 1,
m = 2, and we assume that the absolute ramification index e of k satisfies
e &#x3E; q2. Under these hypotheses, the associated order admits a somewhat
similar description to that of the order determined in [Bl] . Although our
hypotheses are rather restrictive, k may be chosen to make q arbitrarily
large. If p is odd, the extension k3/kl is elementary abelian of degree q2 .
Our result therefore provides examples of elementary abelian extensions
L/K of arbitrarily large even rank, in which the valuation ring of L is not
free over its associated order, but for which this order is known explicitly.

The fields kn depend only on x, and not on the Lubin-Tate power series
f (X ) . We are therefore free to make a convenient choice of ¡(X). We take
f (X ) to be the polynomial X q + xX. The use of this particularly simple
Lubin-Tate series, together with the hypothesis that e is sufficiently large,
enables us to obtain strong congruences for the action of r on a basis of 03.
It is these congruences which permit us to determine the associated order.

2. NOTATION AND STATEMENT OF THE MAIN RESULT

We first establish some notation and recall some standard facts from the

theory of Lubin-Tate formal groups. For proofs of these, see [S, §3] . The
following notation is fixed for the rest of the paper:

1~: a finite extension of Qp.
o: the valuation ring of k.

~-: a fixed generator of the maximal ideal of o.

q = pf: the cardinality of o/xo.
e: the absolute ramification index of k (so 7reo = po).

/z: the (q - 1)th roots of unity in 1~. (These form a cyclic group of order
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q - 1).

f (X) = Xq + our chosen Lubin-Tate series.

F(X, Y) E o [[X, Y]]: the formal group with f as an endomorphism.

[a] (X) E o[[X]] ] (for each a E 0): the unique endomorphism of F(X,Y)
with (a)(X) - aX (mod 

The existence and uniqueness of F(X,Y), and of [a] (X) for each a, are
guaranteed by Lubin-Tate theory. In particular, it follows that [7r](X) =
f(X), and that [ab](X) _ [a] ([b] (X)) for all a, b E o.

Let k’ be a fixed algebraic closure of k. For n &#x3E; 0 let

Then Gn is an o-module, where addition is given by F, and where a E o
takes X E Gn to [a] (x) .

For n &#x3E; 1 let wn denote a fixed element of In particular, we
have wf + = 0 # cvl, so

For notational convenience, we assume that the wn are chosen so that
[1r](úJn+l) = wn. Let kn = k(Gn), and let o~, be its valuation ring. Then
kn /k is a totally ramified abelian extension, and wn generates the maximal
ideal of o.~. The action of o on Gn induces an isomorphism 

Let (a) denote the element of Gal(kn/k) corresponding to a E 0.
Then (a~ (x) _ [a] (x) for x E Gn.
We will be concerned with the extension k3/kl. Set r = Gal(k3/kl)-

Then F E3f (1 + +,7r 30). It follows that r is elementary abelian of
order q2 unless either e = 1 or p = 2. Let

the associated order of 03 in the group algebra klr.
We next define some elements of klr which will turn out to lie in St.

DEFINITION 2.2. For 1  I  q - 1 let



452

Also let 60 = To = 1.

Remark. The ai are essentially the basis elements given by Taylor [T] for
the associated order in the extension k3 /k2, but with the numbering re-
versed.

We require certain numbers a(h, i), related to the radix p expansions of
h and i. For any integers c &#x3E; 0 and N &#x3E; 1, we write (c mod N) for the
least non-negative residue of c modulo N. Thus 0  (c mod N)  N - 1
and c - (c mod N) E NZ.

DEFINITION 2.3. Let 0   q - 1.

If (h mod + (i mod p+ )  for all t E {0, ... , f - 1} (that is,
if no carries occur in the radix p addition of h and i) define

a(h, i) = 0.

Otherwise, let t E f 0, f - 1} be maximal such that (h mod +

(i pt+n (Thus the "last" carry in the radix p addition of h
and i is from the pt-digit.) Then define

a(h, i) = (h mod + (i mod + 1 = (h + i + 1 mod pt+l).

We can now state our main result.

THEOREM 2.4. If e &#x3E; q2 then the q2 elerrcents 1THEOREM 2.. jye &#x3E; (j 1 o/
klr form an ol-basis 0

3. THE FORMAL GROUP F(X, Y)

In this section we obtain some properties of F(X, Y) which result from
our choice of the special Lubin-Tate series X9 + 7rX for f (X).

PROPOSITION 3.1. If a then [a](X) = aX.

Proof. We know from [S, §3, Proposition 2] that ~a~(X) is uniquely deter-
mined by the two conditions

I"I (x) " aX (mod X2o[[X]]), f([a](X)) _ [a](f(X). °

Clearly aX satisfies the first of these, and, since aq = a, it also satisfies
the second: f (aX) = (aX)q + 7r(aX) = a(XQ + = a f (X). 0
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PROPOSITION 3.2.

where the coefficients cr,s E 0 satisfy

Proof. Any formal group can be written in the form (3.3) for some coeffi-
cients Let a E ti have order q -1. As [a~ (X ) is an endomorphism, we
have F(aX, aY) - aF(X, Y) by Proposition 3.1. Equating coefficients of
X’Y’ gives = proving (i) .
Now f(X) = is also an endomorphism. Expanding the identity

f (F(X, Y)) = F( f (X ), f (Y)), reducing mod p, and subtracting the terms
irY, X q, yq, we obtain

We will show by induction on j in the range 1  j  e - 1 that

Indeed, for any r‘, s‘ with r’ -f- s‘  1 + (q - 1) j we have == 0

(mod by (i) and the induction hypothesis. Thus, if r + s =
1 + (q - 1) j, equating coefficients of XY in (3.4) gives

Hence ( 1 - _ 0 (mod 7re-jo). Since 1 - is a unit in

o, this completes the induction. Statement (ii) now follows from (3.5) and
(i) . 0

We adopt the convention that the binomial coefficient (~) is to be inter-
preted as 0 if s &#x3E; j . As an immediate consequence of Proposition 3.2, we
have
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COROLLARY 3.6. For j &#x3E; 0,

where the coefficients br,s E 0 (depending on j) satisfy

For N &#x3E; n &#x3E; 1, let %N,n denote the trace from kN to kn. The following
result was pointed out to me by Gfnter Lettl.

PROPOSITION 3.9.

Proof. If Xl, ... , zm are the zeros of a monic polynomial xm + E~~ 1 arxr
of degree m, then for 1 ~ j ~ m, one can express Ei x1 as a polyno-
mial in ac~_1, ... , am-j with no constant term. Applying this to the min-
imal polynomial xq + 1rX - Wn of over kn, we find immediately that

= 0 for 1 ~ j ~ q-2. Clearly 
q, so it remains to consider the case j - q - 1.

Let y = Multiplying the equation + Wn = 0 by
we obtain = 0. Since kn(y) it follows

that Jr. Thus Jr) = 7r - qJr as
required. D

COROLLARY 3.10. If q = 0 (mod then for 0  r  q - 2 we have

Proof As r.a3 + IrW3 = úJ2, we have
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Now C 7rOn by Proposition 3.9, so

Applying Proposition 3.9 again, we therefore have

and yet another application of Proposition 3.9 gives

As Gal(k3/k2) consists of the automorphisms (1 + a1r2) for a E p u f 0},
we have

and hence

Similarly, (q - = + a~~ - (1)), and this acts on k2 as
(1’r2,1 - q). Since Tq-1(qo3) C qo3, we have from (3.12) that

As q7r-l = 0 (mod 7r 20), the result now follows from (3.11). D

4. GALOIS ACTION CONGRUENCES

From now on, we assume that e &#x3E; q2. Let v: k3 {-oo} denote
the additive valuation, normalised so that v(w3) = 1. Thus V(W2) = q,
v(wl) = q2 and v(7r) = (q - 1)q2.

LEMMA 4.1.
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In particular, (1i(03) C 03, and v(ai(x» &#x3E; v(x) - i for all x E ks.

Proof. If i = 0 then (ji = 1 and (4.2) is clear. Now let i &#x3E; 1. From

Definition 2.2 and Proposition 3.1 we have

Now (1 + a1r2)(w~) = ([1 + a7r’](W3))j- (Note that this is not the same as
[1 + a~r2](W3).) As G3 is an o-module, we calculate

again using Proposition 3.1. Thus

with coefficients bT,s E o as in Corollary 3.6. Substituting into (4.3) and
reversing the order of summation, we have

This simplifies to

using (2_1) and the fact that

otherwise.

The terms in the first sum of (4.4) with s # i are divisible by wim -
To evaluate mod 7r03, we may therefore replace this sum by

the single term with s = i. This applies even when i &#x3E; j, since then
the binomial coefficient vanishes. To prove (4.2) we must therefore show
that the second sum in (4.4) vanishes mod 7r03. But by (3.8), br,s = 0
(mod 7ro) when r + s  j + (q - 1)e, and for the remaining terms we have

r+s-i &#x3E; (q - I)(e - I) &#x3E; v(7r) since e &#x3E; by hypothesis.
This completes the proof of (4.2), and the remaining statements of the
Lemma follow since is an ol-basis for 03. D
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In particular, Th(03) ç 03, and v(x) + (q - 1)h for all x E k3.

Proof. Calculating as in the proof of Lemma 4.1, but this time using that

we obtain

where again the coefficients are as in Corollary 3.6. In the second sum,
all non-zero terms have r -I- s &#x3E; j -I- q - 1 by (3.7) . If m 0 (mod Tro)
then

since s &#x3E; h. On the other hand, if br,s "¥: 0 (mod 7ro) then 
by (3.8), and

since v(~r) = and e &#x3E; q2+1. Thus the second sum in (4.7) vanishes
mod Jrw£~~~~ ~~~~~~~ o3 . This proves (4.6). The remaining statements follow
since is an ol-basis of 03. 0

LEMMA 4.8. Let 0  i  q - 1 and 1  h  q - 1. Then, for j &#x3E; 0,
(4.9) 

_ _ _ _
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In particular, 9 o3.

Proof. By the last assertion of Lemma ,4.5 we have

We may therefore apply (4.6) (with j - i in place of j) to (4.2), obtaining

Since ~i~ ~’s z~ = this gives the congruence (4.9). The final

assertion is then clear. D

5. BINOMIAL COEFFICIENTS AND THE NUMBERS 

We shall need to know when the binomial coefficients ~2 ss~ in (4.9) are
divisible by p. It is this which accounts for the appearance of the numbers
a(h, i) of Definition 2.3 in the description of the associated order.

By a result of Kummer (see for instance [R, p. 24]), the exact power of
p dividing ~z 9S~ is given by the number of carries occurring in the radix
p addition of i and s. In particular, 0 (mod p) precisely when no
carries occur. Thus, writing

and adopting similar notation for s, we have that (i+s) 0 0 (mod p) if and
only if it + st  p for all t, or equivalently, if and only if (i mod p+ ) +
(s mod p’+’)  pt+1 for all t.

LEMMA 5.2. Let 0  h, i  q-l. Then the smallest integer s &#x3E; h satisfying
the two conditions

is given by s = h + (q - 1)a(h,i).

Proof. Set s = h + (q - 1)a with a &#x3E; 0. We will show that a(h, i) is the

minimal value of a for which ( ’+’) s 0 0 (mod p).
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If no carries occur in the radix p addition of h and i then 0

(mod ~), and also a(h, i) = 0. The Lemma therefore holds in this case.
Now suppose that at least one carry occurs in the addition of h and i.

Expand i, h and s in radix p, as in (5.1). Then it = ht = 0 for t &#x3E; f. Let
t E {0, ... , f - 1} be maximal such that (h mod pt+i) + (i mod 
pt+ 1. We then have a(h, i) = (h + (i pt+’ + 1.
Clearly a(h, i)  (hmodpt+l), so if a  a(h, i) we have (s 
(h - a mod pt+l) = (h mod a.

If a  a(h, i) then

Thus, in the radix p addition of i and s, a carry occurs from the pt-digit,
and hence is divisible by p.

It remains to show that if a = a(h, i) then no carries occur in the radix
p addition of s and i. In this case we have

This implies that there is no carry from the p"-digit for any t’  t. (Indeed,
if t’ were minimal such that there is a carry from the pt’-digit then it, 
p and it’ + st, = p -1 (mod p), which is impossible as 0  it,, st,  p -1.)
Since a(h, i) :5 (h and s = qa + h - a, we have st, = ht, if
t  t’  f , and by the maximality of t there can be no carry from the
pt~-digit. As it, = 0 for t’ &#x3E; f , this completes the proof. 0

The next result records some further properties of the a(h , i) . These are
all immediate from Definition 2.3.

PROPOSITION 5.3.

6. PROOF OF THEOREM 2.4

Theorem 2.4 will be proved by a similar method to [Bl] .
We first show that
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For h = 0, this is clear from Lemma 4.1. For h &#x3E; 1 we use Lemma 4.8. By
Lemma 5.2, the term in the sum on the right of (4.9)
vanishes mod p if s  h + (q -1)a(h, i) . This term also vanishes 
and for the remaining terms we have

since a(h, i)  h by Proposition 5.3(i). Since C ~~~03 and
p E 03, this implies (6.1).

It is clear from (6.1) that the elements lie in the
associated order 21.. By Nakayama’s Lemma, they will span 21. over o 1, pro-
vided that their images span 2l/Wl21 over the residue field o 1 /wl 01. Count-
ing dimensions, this will occur if these images are linearly independent. It
is therefore sufficient to prove the following: if we are given

with the property that

then each coefficient xh,i must lie in WI °1.

We will show by induction on r in the range 0  r  q - 1 that, if ~
satisfies (6.3), then xh,i E wl 01 for each pair (h, i) with = r. This
will complete the proof of the Theorem.

From Lemma 4.8,

for all j 2: 0, provided that h 2: 1. We take j = rq + q - 1.

First consider pairs (h, i) with &#x3E; r + 1. (For these, h &#x3E; 1 since

a(0, i) = 0.) For such pairs, i + h - (r + 1) 2:: 0 by Proposition 5.3(iii), so
i + h + (r + 1)(q - 1) &#x3E; (r + l)g &#x3E; j. Thus, in each term of the above
sum, we  h + (r + 1)(q - 1), and these terms vanish mod
p by Lemma 5.2. We have therefore shown that = 0

(mod &#x3E; r+1, and hence that 
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0 (mod wlo3) if a(h, i) &#x3E;_ r+1 and a(h, i) 34 q-l. But in the excluded case
a(h i -1 &#x3E; r we have h = i -1 0l - q - q 1 q 1 q 1 3

(mod by Corollary 3.10. Thus, in either case, we have

Next consider pairs (h, i) with r = a(h, i). For any such pair 0,
the above argument shows that all terms in (4.9) vanish mod p except
possibly that with s = h + (q - 1)r. Thus

By Lemma 4.1, this is still valid when h = 0 (so r = a(h, i) = 0). The second
binomial coefficient is a unit mod p by Lemma 5.2. The first binomial
coefficient is also a unit mod p; this is because no carries can occur in
the radix p addition of q - 1 - (h + i - r) to rq + (h + i - r). (We have

Proposition 5.3(iii).) Thus, for all pairs (h, i) with
a(h, i) = r, it follows that

provided that

This condition is clearly satisfied if r  q - l, since (q -1) (1 + h - r)  q2,
and is also satisfied when r = q - 1 since then h = i = q - 1. Thus (6.5)
holds whenever a(h, i) = r.

Recall that ~ is given by (6.2) and satisfies (6.3). Our induction hypoth-
esis is that xh,i E wioi when a(h, i)  r. It follows from (6.4) and (6.3)
that

Let (h, i) be any pair with a(h, i) = r and Xh,i f/: w, o 1. Then by (6.5),
the corresponding term in (6.6) has valuation (q-1)(1-f-h-r)-i. This is at
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most (q - I)q. Moreover, it is easily verified that if (q -1) (1 + h - r) - i =
(q - 1)(1 + h’ - r) - i’ with a(h, i) = r = a(h’, i’) then (h, i) = (h’, il),
Thus the terms in (6.6) with xh,i ¢ have distinct valuations, all less
than V(Wl) = q2. Since a non-empty sum of such terms cannot vanish mod
W103, it follows that xh,,i E wlol for all pairs (h, i) with a(h, i) = r. This
completes the induction. D
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