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Involutory elliptic curves over Fq (T)

par ANDREAS SCHWEIZER

RESUME. Pour n ~ Fq [T], G désigne un sous-groupe d’involutions
d’Atkin-Lehner de la courbe modulaire Xo (n) de Drinfeld. On
determine tous les n et G tels que la courbe GBXo (n) est rationnelle
ou elliptique.

ABSTRACT. For n ~ Fq [T] let G be a subgroup of the Atkin-
Lehner involutions of the Drinfeld modular curve Xo (n) . We de-
termine all n and G for which the quotient curve GBX0 (n) is
rational or elliptic.

0. INTRODUCTION

In [M&#x26;SD] Mazur and Swinnerton-Dyer called a modular elliptic curve
involutory if its Weil uniformization is given by a subgroup of the Atkin-
Lehner involutions. They listed several examples. Later Kenku [Ke] showed
that there exist only finitely many.

Using a slightly more general definition for elliptic curves over Fq (T) we
ask: For which n E and which subgroups G of the Atkin-Lehner
involutions of the Drinfeld modular curve Xo (n) is the quotient curve
GBXo(n) elliptic?

In this paper we will show that there are only finitely many (for all q
together) and list them.
Two strategies are used to restrict the possible n. The first method, due

to Ogg, consists in counting rational points on a suitable reduction. The
second one transfers the problem from n to divisors I of n by exploiting the
knowledge how automorphic forms for lift to automorphic forms for
Fo (n) . Combined, these two strategies yield surprisingly good bounds for
deg(n). In the remaining cases the genus of G~Xo(n) can be calculated or
estimated using the explicit formulas of Section 2.
The results are gathered in Propositions 3.1, 3.2, 5.6, and 5.7 for elliptic

quotient and in Propositions 3.3 and 5.5 for rational quotient.
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1. BASIC FACTS

Let Fq be a finite field with q elements, A :_ Fq [T] the polynomial ring,
K := the rational function field, :=1~q ( (T -1 ) ) its completion at
oo (= T ), and C the completion of an algebraic closure of K . The letters
n, m, C, ... will denote monic elements of A and p will be a prime (i.e., a
monic irreducible element) of A. Throughout this paper we will assume

s

n i with different primes pi E A, and d will denote the degree of n.
i=i

The group GL2 (.K~ ) acts on on and on the Drinfeld

upper halfplane Q = C - Koo by fractional linear transformations. So does
the Hecke congruence subgroup

The quotient space can be compactified by adding the finite set of
cusps ro (n)BPl (K). The resulting rigid analytic space is called the Drinfeld
modular curve Xo(n).
As an algebraic curve Xo(n) is defined already over K and has good

reduction at all finite primes p with p In. Its genus is ([Gel p.79~ or [G&#x26;N]):

where

For every m(n with (m, ~) = 1 there exists the (partial) Atkin-Lehner
involution on Xo (n), sometimes simply denoted by Wm if the n is
clear. It is given on (resp. by multiplication from

the left with any matrix ( :: b with a b c d e A and determinanty (nc md) ’ ’ ’

rm for some q E F:. From this it is obvious that Wml Wm2 = with

m3 = (ml-. Consequently the Atkin-Lehner involutions of Xo (n) form a1,m2

2-elementary-abelian group W(n) of order 2.

In particular, represented for example b (1), is called thebY (f ) &#x3E; iS th

full Atkin-Lehner involution and we define X+ (n) : := Wn B Xo (n) .
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Theorem 1.1 ([Sch3]). Let n E Fq [T] be of degree d. Then
a) Xo(n) is rational if and only if d  2.
b) Xo (n) is elliptic if and only if q = 2, d = 3, and n has a multiple root.
c) Xo(n) is hyperelliptic if and only if d = 3 (except the elliptic cases

listed under b) or if q = 2 and n = (T2 + T + 1)2.
In all these cases the curve X+(n) is rational. In particular, for hyperelliptic
Xo(n) the hyperelliptic involution is always the full Atkin-Lehner involution.

Throughout the paper we will freely use the fact that we can change co-
ordinates by an affine transformation T N with 1F9 and y E Fix
This reduces drastically the amount of explicit calculation we will have to
do.

Let T be the Bruhat-Tits tree of PGL2(K~). Its oriented edges are the
cosets where J is the so-called Iwahori subgroup. For
precise definitions and the connection between Q and T see [G&#x26;R]. We
only need some functorial properties.
The group GL2(K~) acts from the right on the functions on the oriented

edges of T by acting from the left on the argument. If cp is such a function
and M E GL2(K~) we write cp o M for the function which on the oriented
edge e takes the value 
By we denote the (finite-dimensional) R-vector space of

R-valued, alternating, harmonic, ro(n)-invariant functions on the edges of
T, having finite support modulo ro(n). Then the Atkin-Lehner involutions
act from the right on H, (T, ~"~ .
The importance of for our purposes lies in the fact that

for every subgroup G of W(n) the genus of the curve GBXo(n) equals the
dimension of the subspace of G-invariant elements 

1 -1

If tin and then is an injective linear map-

ping from H, {T, ([) into H, (7, Defining the space of newforms
the orthogonal complement of the space of oldforms

relative to the so-called Petersson scalar product,

one obtains ([G&#x26;N]):

Thus, for every specific n the dimension of the space of newforms can be
calculated recursively.

In the analogy between Xo(n) and classical modular curves (over C or
Q) the elements of H, (7-, (n) correspond to cusp forms of weight 2 for
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a Hecke congruence subgroup. For more information, as for example the
(proven!) analogue of the famous conjecture of Shimura, Taniyama, and
Weil, see [G&#x26;R].
The following results are more or less analogous to Lemmata 25, 26, and

27 in [A&#x26;L].

non-trivial eigenform for wàn) with eigenvalue 

I represents W,(3) then

One important consequence of Lemma 1.2 is:
If S is a subspace of ; is stable

under W (n) .
For I = p a prime this results from the fact that W(n) can be generated

by involutions Wm with ~p ~m. The general case then is proved by iteration.
Especially we see that the space of oldforms in H, (T, is stable

under W(n). Since the Atkin-Lehner involutions are self-adjoint with re-
spect to the Petersson scalar product, the space of newforms, too, must be
stable under W (n) . Taking S = Hrew(’T, we obtain

Proposition 1.3. The subspaces

of are stable under W(n).
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If g(GBXo(n)) = 1 for some subgroup G of W(n), then E = GBXo(n) is
an elliptic curve defined over K because Xo(n) and the Atkin-Lehner invo-
lutions are already defined over K and Xo (n) always has K-rational points.
Generalizing the definition of [M&#x26;SD] slightly we call E an involutory
elliptic curve.

E, being a quotient of Xo(n), has split multiplicative reduction at oo.
Moreover, the space of G-invariant elements of H, (T, is one-dimen-
sional. By Proposition 1.3 its basis vector ’P is contained in one of the

subspaces As the splitting of into

ain 
" °

new and old parts of different level and under the action of the Hecke algebra
and the Atkin-Lehner involutions reflects the corresponding decomposition
of the Jacobian of Xo (n), the conductor of E is oo - L

Obviously, an involutory elliptic curve E = G B Xo (n) is a strong Weil
curve if and only if cond(E) = 00. n (i.e. the corresponding ’P is a newform)
and g(UBXo(n)) &#x3E; 1 for all proper subgroups U of G.

For more information on how data of (not necessarily involutory) strong
Weil curves are encoded in the corresponding newforms see [Ge3].
Now we decompose H,(T, into its simultaneous eigenspaces under

the action of W(f). If V is such an eigenspace, then by Lemma 1.2 for
every possible choice of a and À the lifting (ia r + iQ )(V) is contained in, a(

a simultaneous W(n)-eigenspace ofH!(7,JR)ro(n). 
From this we see that the cp E H!(7, belonging to an involutory

elliptic curve E = is contained in a subspace (ia C)(V) whereBJ , , at ’

- is a one-dimensional simultaneous W(f)-eigenspace of
H! (T, IR)rO (t),

Let G be the group of all Atkin-Lehner involutions which have

eigenvalue +1 on V. Then E is isogenous over K to the involutory elliptic
curve E = GBXo(C). Since the strong Weil curve in the isogeny class of E
is necessarily involutory, we have proved

Proposition 1.4. Every involutory elliptic curve G B Xo (n) is isogenous
over K to an involutory strong Weil curve of conductor oo - I for some [In.

2. CALCULATING THE GENUS OF GBXo(n)
We obtain almost the same formula as in the classical setting ([Kl]).

Proposition 2.1. For any subgroups G of W(n) we have
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where #(Wm) denotes the number of fixed points of Wm on Xo(n), and 6 is
1 if q is even and 0 if q is odd.

Proof. This is essentially the Hurwitz formula. If q is odd, all ramification
of the covering Xo(n) --+ GBXo(n) is tame. If q is even, all ramification
is wild but by a theorem of Gekeler, based on results of R. Crew and
M. Raynaud, the second ramification groups are trivial (compare [Sch3],
Proposition 7). 0

There are two types of fixed points of Wm on Xo(n), those which are
cusps and those which are interior points (i.e. in We denote
their respective numbers by and 

Proposition 2.2. Let Wm be a non-trivial Atkin-Lehner involution of Xo(n).
For y E A define the number- theoretic function

a) If q is odd we have

Here r denotes the number of different prime divisors of ~.
b) If q is even zve have

otherwise.

The polynomials yl and y2 are understood to be monic.

Proof. Combine Propositions 1 and 9 of [Sch3]. 0

Proposition 2.3 ([Sch3]). If q is odd, the number of interior (i.e., non-
cusp) fixed points of Wm on Xo(n) is

Here a E a fixed non-square, the Legendre symbol, and
denotes the ideal class number of the (not necessarily order
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Lemma 2.4 ([Sch3]). Suppose that q is even and n = [m with (1, m) = 1
and deg(m) &#x3E; 1. Write m = m2m1 with m1, m2 E Fq [T], where ml is square-
free. There exist uniquely determined .5, t E not necessarily monic,
with m1 = Let

a) The numbers of interior fixed points of Wm on Xo(m) is

b) More generally, we have
. 1-

In particular, #t(W~’) = 0 if m is a square.
c) If there exists a p with ordp ( C) &#x3E; + 1, then = 0.

d) If C is square-free and m is not a square, then

Example 2.5. Let q = 2 and n = T (T 3 + T 2 + 1 ) . Then g (X o (n) ) = 6 and
has 5 fixed points and hence =1.T3+T2+1 + +

We claim that the WT3+T2+1-invaxiant form in H, (T, is a new-
form. This can be seen as follows:

Since acts as -1 (and Wi as +1), &#x3E; it

follows from Lemma 1.2 that W, (n) and have opposite signs onfollows from Lemma 1.2 that Wn and WT have pp g on

So acts as -1 on the oldforms. We conclude that the involutoryT3+T2+1
elliptic curve

has conductor oo - + T~ + 1). It is even a strong Weil curve, for
Xo (T(T + T 2 + 1)) is not elliptic.

Furthermore one easily calculates that

has genus 0.

Example 2.6. Now let q = 2 and n = T 2 (T 3 +T 2 + 1 ); then g (X o (n) ) = 13.
Moreover, WT2 has 2 fixed points (which are cusps) and Wn has 4 but
Lemma 2.4 gives only a crude upper bound for the number of fixed points
of WT3+T2+1. Proposition 2.1 tells us that WT3+T2+1 has 2, 6 or 10 fixed
points and that the genus of W(n)~Xo(n) is 2, 1 or 0, correspondingly.
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Using Lemma 1.2 and the fact that Hfew(T, is 2-dimen-

sional, we see that H, (7-, R) ro (,) contains a 6-dimensional subspace of WT2 -
invariant oldforms. As g (WT2 X o (n) ) = 6 we conclude that every WT2 -
invariant element (and a fortiori every W(n)-invariant element) of

H~ (T, R) ro (n) must be an oldform.
Now suppose that + is a YV(n)-invariant oldform. Then, a(

I cannot be T3 + T2 + 1 (same reason as in Example 2.5), so

Moreover, p must be WT3+T2+1-invariant, for otherwise the lifting would
have opposite eigenvalues under WT2 and Wn. Finally, the fact that the
WT3+T2+1-invariant form in H, (T, has eigenvalue -1 un-
der WT (compare Example 2.5) forces À = -1.

Summarizing: the subspace of W(n)-invariant forms in H, (T, R) ro (n) is
one-dimensional with basis 2T T T3+TZ+1 (SP) where cp is
the WT3+T2+1-invariant form in H, (T, ~)ro (T(T3+T2+1)) ) discussed in the
previous example.

So

is an elliptic curve with conductor 00. + T~ + 1) and isogenous over
F2(T) to the strong Weil curve + T 2 + 1)).
Now that we know the number of fixed points of W  32T2 +T 2+1, ’ weT3+T2+1 7

easily check that none of the curves + T2 + 1)) is elliptic.

3. THE CASE deg(n)  3

According to Theorem 1.1, deg(n) = 3 is the smallest possible case for
which an elliptic G,Xo(n) might exist.

If deg(n) = 3, then the genus of Xo (n) is q if n is square-free, and
q -1 if not. We will also freely use the fact that then the full Atkin-Lehner
involution Wn acts as -1 on H, (T, R) ro (n) (compare Theorem 1.1 or [Ge2]).
Moreover, since there are no oldforms, every elliptic quotient of Xo (n) has
conductor oo . n.

Proposition 3.1. Let deg(n)  3. Up to af jirce transformations T e
yT + ~3 (’Y, (3 E IE’q, ’Y 54 0), the curve Wm, Xo (n) is elliptic exactly in the
following cases:
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For q = 2 the curve 2-isogenous to the elliptic
curve XO(T2(T + 1)). All other curves are strong Weil curves, and in fact
these are all of the strong Weil curves for the given q and n.

The equations of the strong Weil curves for q = 2 are

Proof. If deg(m) = 1, then gm := g(Wm BXo(n)) = 2 (q + 1- f), where
f E ~0,1, 2} depends on q, n, and m (see [Ge2], 8.5 and 8.8). This can also
be derived from the formulas in Section 2. Since = g - gm,

n’

there remains to determine all m of degree one with g. =1 or gm = g -1.
For odd q this implies I

q - 1 - 2 (q + 1), whence q  3 or q  5, respectively. Similarly for even
q. The remaining possible values for q and n are then checked by direct
calculation.
The remark on strong Weil curves follows from the table in [Ge2, p.142~

and the equations for q = 2 are given in [Ge3] and (G&#x26;R~. D

Proposition 3.2. Up to transformations T ~ ’YT+(3 with y, (3 E Fq,
-y ~ 0, the 12 curves listed below are the only elliptic curves of the form
GBXo(n) with deg(n)  3 and G C W(n) with ~G~ &#x3E; 4.
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Here, of course, F4 = F2(~). The curves for q = 3 are 2-isogenous to the
elliptic curves given in Proposition ~. ~. All others are strong Weil curves.

Proof. If GBXo(n) is elliptic and IGI = 4, then n must be a product of 3
different linear factors, because G cannot contain Wn.

Fix a simultaneous eigenbasis B = for all

and similarly B_+ and B_ _ .
For odd q we know from the proof of Proposition 3.1 that 

?’ 1, and fih (because is
a basis for the elements having eigenvalue -1 under Wml IB++I = 1
this leads to q - 3  + 2 , and hence q  7. For even q a
similar argument yields q  4. D

Proposition 3.3. For deg(n)  3 the curve rational in and

only in the following cases:

a) deg(n)  2, q arbitrary, G any subgroup of W (n).
b) deg(n) = 3, q arbztrary, G a subgroups of W(n) contaznzng the full

Atkin-Lehner involution Wn.
c) For q = 2 in addition to cases a) and b),

I),- - -1 ..,. , _ _ . , ,



117

d) For q = 3 in addition to cases a) and b),

Proof. From Theorem 1.1 it is clear that the curves GBXo(n) in case a) and
b) are rational.

If deg(n) = 3 and G doesn’t contain Wn, by the same theorem, Xo (n)
must be elliptic or G ( = 4, since the hyperelliptic involution is unique.
Then by the same argument as in the preceding proofs we obtain q  3. 0

4. DIVIDING BY A SINGLE INVOLUTION

Proposition 4.1. The only rational curve of the form with

deg(n) &#x3E; 4 is the one with q = 2 and n = m = (T 2 + T + 1)2.
Proof. This follows immediately from Theorem 1.1. D

Lemma 4.2. Let G be a subgroups of W(n).
a) If there exists a Q E Fq with (T - 0) In, then

b) If there exists a prime p E A of degree 2 with p 1 n, then

Proof. a) The curve Xo (n) has good reduction mod (T - {3) and the Atkin-
Lehner involutions induce non-trivial automorphisms of the reduced curve.
Thus Xo (n) mod (T - Q) is a covering of degree G ( of a curve of genus
g(GBXo(n)). Therefore the right side of the inequality is an upper bound
for the number of rational points of Xo (n) rnod (T - /3) over the quadratic
extension of A/(T - {3). On the other hand, we know from the proof of
Lemma 18 in [Sch3] that 2’ + is a lower bound for the number of theseq+l

rational points, namely: there are at least 21 rational cusps and $# interiorq+l
points coming from a special supersingular Drinfeld module.

b) is proved similarly. D

Lemma 4.3.

a) If WmBXo(n) is elliptic and tim with 1, then 1.

b) If WmBXo(n) is elliptic and mi (In with deg([)  deg(n), then WmBXo (1)
is rational.

Proof. a) Suppose CPl, CP2 E H,(T, are linearly independent.
If they are Wm -invariant, then by taking a = 1 in Lemma 1.2 we obtain

I

two linearly independent Wm-invariant elements of H, (T, n) . A similar
construction works if cpl and p2 have eigenvalue -1 under Wm .

I
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So far we have proved 2. By Theorem 1.1 this implies
3 or q = 2, r = (T2 + T + 1)2. Hence ~p1 and w2 are necessarily

newforms. Therefore the 4 forms 

are also linearly independent and we obtain a 2-dimensional Wm-invariant
subspace of H, (T, (n) .

b) Assume that E is invariant under Then )  ! r ) m . n,

or both as

space.

... ,

So acts as identity on this 2-dimensional

0

Corollary 4.4. and Wm B Xo (n) is elliptic, then s  3 and

Proof. We may assume Then g(Xo(~1)) G 1 by part a) of the pre-
ceding lemma, and Theorem 1.1 implies s - 1  2 and (E ei) - 1  3. 0

Now assume that WmBXo(n) is elliptic and deg(n) &#x3E; 4.
If q &#x3E; 4, then by Corollary 4.4 there exists a /3 E IF9 with (T-(3) In. Thus

15 q3 a contradiction.
If q = 3, then n = T 2 (T -1 ) (T + 1) (according to Corollary 4.4 up to

translation the only possibility with (T3 - is excluded by Lemma 4.3
a). Hence (T3 - T) In, and Lemma 4.2 implies ~(n)  120 (and conse-
quently d  4). The few cases holding this condition are excluded by direct
calculation.

So we are left with q = 2. Applying 4.2, 4.3, and 4.4 imposes the
restriction that d = 4 or n is irreducible of degree 5.

Using the explicit formulas from Section 2 we obtain

Proposition 4.5. Elliptic curves of the f orm Wm 1 Xo (n) with deg(n) &#x3E; 4
exist only for q = 2. There are 10 such curves given by the following values
and their translates under T H T + 1:

The first three curves are strong Weil curves. Their equations over I~2 (T)
are:
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The curves E4 and E5 are isogenous over F2 (T) to respectively
Xo(T(T + 1)2).
To find the equations of the strong Weil curves one proceeds as in Section

4 of [Ge3]. This involves the calculation of some Hecke operators on the
quotient graph ro (n) ~ T, which is carried out in Chapter 4 of ~Schl~. The
results are also listed in [Sch2].

5. DIVIDING BY ALL INVOLUTIONS

is a W(n)-invariant subspace

is invariant under W(1) and i

are two linearly independent W(n)-invariant forms in

Corollary 5.2. Suppose

Proo f . Lemma 5.1 combined with Propositions 4.1 and 4.5. 0

Proposition 5.3. For q &#x3E; 7 there don’t exist arcy involutory elliptic curves
over 1Fq(T).
Proof. Suppose
inequality of Lemma 4.2. a) can be weakened to

and

provided there exists a 3 E IE9 with (T - ,0) In.
First we show that for q &#x3E; 16 there exist no involutory curves. If 

T)Xn, inequality (*) shows s  3. If applying Lemma 5.1 a)
and then inequality (*) we obtain s - 1  3. As q &#x3E; 16, again (Tq - 
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and consequently s  3 must hold for general n. Furthermore, equation
(**) implies qd   q4, and hence d  3. But this was already16 16 -

excluded in Propositions 3.1 and 3.2.
For q E {9,11,13} the same argument yields d = s = 4. After aSine

transformation we may assume n = T (T -1 ) (T - ,Q) (T - y) where 0, 1, (3, ~y
are different and q is a square in Using Proposition 2.1, one sees that
g(W(n)BXo(n)) &#x3E; 1. (For the number of fixed points of Wm with deg(m) = 3
it suffices to estimate and h() by q + 1 + 

Likewise, for q = 8 the decomposition types (1,1, 1, ) and (2,1,1) must
be treated by direct computation. 0

Lemma 5.4. Let be such that g(W(n)~Xo(n)  1. Then (with
d = deg(n)) one of the following assertions must hold:

Proof. We treat only the case q = 3 in detail.
First we assume (T3 - T) ,.rn. Then s  5 by inequality (*) and d  6 by

inequality (**). But if d  6, then s cannot be greater than 4. Moreover,
the only possible decomposition type for n with s = 4, namely (1,1, 2, 2),
is excluded by Lemma 4.2 a). Hence s  3 and reentering (**) gives d  5.
The above discussion already implies s _ 4 for general n. Thus, if (T3 -

we can apply Lemma 4.2 b) and obtain 43 - 3d-3  £(n)  1600, and
consequently d  5.
The proofs in the other cases are quite similar. For q = 7 the cases

3  s  d = 4, which resist Lemma 4.2, have to be excluded by direct
computation. D

It is even possible to improve on some of the bounds, but since we want to
determine all involutory elliptic curves anyway, it’s less work to start from
below (i.e. first settle the case d = 4) and make use of Lemma 5.1. Carrying
out all the calculations one obtains the following three propositions.

Proposition 5.5. There are exactly 9 cases with deg(n) &#x3E; 4 for which the
curve rational, namety (up to translations T + ~3):
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The only rational curve of the form GBXo(n) where deg(n) &#x3E; 4 and G is
a proper subgroup of W(n) is the one with q = 2, n = T(T+1)(T2+T+1)

Proposition 5.6. There are 72 elliptic curves of the form

with deg(n) &#x3E; 4, namely (up to affine transformations T f-t -yT + ,Q):

As usual F4 =1F2 (1?). The number I denotes the length of the orbit of n
under affine transformations.

Proposition 5.7. A complete list of all elliptic curves E = where

deg(n) &#x3E; 4 and G is a proper subgroup of W(n) is given below. Each
horizontal box consists of one orbit under affine trans f ormations T H ’YT +
0.

For display reasons we use the abbreviations
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One sees that all the elliptic curves with conductor 00 . n listed in Propo-
sitions 5.6 and 5.7 are strong Weil curves.
The calculations (compare Example 2.6) also show that for q = 2 and

n = T(T + 1) (T2 + T + 1) the curve (WT, Wn) B Xo (n) is isogenous over
F2 (T) to the strong Weil curve WT B Xo (T (T2 + T + 1)). The other three
involutory curves over F2(T) with conductor are isogenous

For q = 3 and n = T 2 (T -1 ) (T + 1) the curve W(n) ) Xo(n) is isoge-
nous to + 1)). The last curve in the table of
Proposition 5.7 is isogenous to (WT(T-1), 19)).

For all other curves listed it is clear to which strong Weil curve they are
isogenous, either by translating T or because there is only one involutory
strong Weil curve of the given conductor.
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