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A computer algorithm for finding new euclidean
number fields

par ROLAND QUÊME

RESUME. Cet article donne la description d’un algorithme infor-
matique fournissant une condition suffisante pour qu’un corps de
nombres soit euclidien pour la norme, ou plus brièvement eucli-
dien. Dans le recensement des corps euclidiens et des méthodes
de recherche de ceux-ci, Franz Lemmermeyer a mentionné, [3] p
405, que 743 corps de nombres euclidiens étaient connus (mars
1994), (le premier d’entre eux, Q découvert par Euclide, trois
siecles avant J.-C.!). Durant les premiers mois de 1997, nous
avons trouvé plus de 1200 nouveaux corps de nombres euclidiens
de degre 4, 5 et 6. Ces résultats ont été obtenus grace à un algo-
rithme informatique mettant en oeuvre les proprietes classiques
des réseaux, plongements de 1’anneau des entiers d’un corps de
nombres K de degre n dans Rn , ainsi que la structure du groupe
des unités de K. La fin de cet article est une generalisation a la
recherche des anneaux euclidiens de S-entiers des corps de nom-
bres K et à l’étude du minimum inhomogene de la forme Norme.
Les resultats obtenus sont coherents avec ceux de la bibliographie.

ABSTRACT. This article describes a computer algorithm which
exhibits a sufficient condition for a number field to be euclidean
for the norm. In the survey [3] p 405, Franz Lemmermeyer pointed
out that 743 number fields where known (march 1994) to be eu-
clidean (the first one, Q, discovered by Euclid, three centuries
B.C.!). In the first months of 1997, we found more than 1200 new
euclidean number fields of degree 4, 5 and 6 with a computer al-
gorithm involving classical lattice properties of the embedding of
the degree n field K into Rn and the structure of the unit group
of K. This articles ends with a generalization of the method for
the determination of rings of S-integers of number fields euclidean
for the norm and for the study of the inhomogeneous minimum of
the norm form. Our results are in accordance with known results.
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1. SOME GENERALITIES

1.1. Definitions on number fields. In this section, we define the prin-
cipal mathematical objects used in the proofs and in the C++ program.
Let II8 be the field of real numbers. Let C be the field of complex numbers.
Let K be a number field of degree n defined by a monic polynomial P(X)
with integral coefficients, thus K = with P(x) = 0.

Let us define the signature (rl , r2 ) of the number field K, where ri is the
number of real roots of P(X) = 0 in C and 2r2 is the number of complex
roots of P(X) = 0 in C. Let aci, i = 1, ... , n be the roots of P(X) = 0 in
C. In the sequel, these roots will be ordered in this way : xi, i = 1, ... , r1
are the real roots of P(X) = 0 and r2 are the

complex roots of P (X ) - 0, where Xrl+2i = = 1, ... , r2 . The
discriminant of the number field K is noted D.
We define the embedding K # x ~’’2 , by the relation

and, concurrently, we note also the n conjugates of x by the relations

Then, the bijective map x C2 -~ is defined by

Finally, the third map T is defined as the composition map of the previous
ones:

Note that, if the field K is totally real, then Tl is the identity map and
a = T. In this article, we note A the ring of integers of the number field
K = ~(x) . The is a basis of K. We define an integral

y2, ... , of A in function of the basis {1, x, ... , x’ I of K by
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the relations :

1.2. Classical geometric properties of number fields. This para-
graph states some basic geometric results and notations used in the sequel.
We use the notation p = (pl, ... , p~,) for the points of The map T
defined in the relation (5) allows us to give a geometric description of the
ring of integers A. The set TA = r(A) = {T(a) la E A} is a lattice 
A basis of the lattice is the set of n points

The fundamental domain F of the lattice TA is the set of points p E I~n
which verify the relations p = ribi - + ribi -f- + Tnbn, where ri 
verify the inequalities 1  i  n.

1.3. Geometric definition of the norm form. Let c be an algebraic
number, c E K. The norm of c is defined by the formula

From the previous relation, we deduce immediately that :

The norm form, or shortly, the norm of a point p of RI is the form given
by the formula :

From the two relations (9) and (10), we deduce that, for c E K, we have
the identity connecting the algebraic and geometric point of view :
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1.4. Definition of fundamental units. The set of units of A, noted A*,
is a group of Z-rank r = rl + r2 - 1. Any unit - E A* can be written :

where 770 generates the group of roots of unity in K and f/1, ... , fIr is a set
of r fundamental units.

1.5. Definition of euclidean number fields. The number field K is said
to be euclidean if, for all c E K, there exists q E A such that q) I 
1 o N(T(c - q))  1 « N(T(c) - T(q))  1. For K to be euclidean, a
sufficient geometric condition is that, for all p E R~, there exists q E A
such as

We shall use that sufficient geometric condition in the sequel :
~ we say that a point p E Rn is euclidean if there exists q E A such that

N~P ‘ T (q) )  1.
~ we say that a subset G of W is euclidean if for all p E G, there exists

q E A such that N( p - T (q) )  1.
~ Note that, if the fundamental domain F of K is euclidean, then IEgn is

euclidean and the number field K is also euclidean.

2. PRINCIPLES OF THE ALGORITHM

The fundamental domain F is covered by a set of small cubes of R~
and the algorithm checks over the euclideanity of each of them by different
angles of attack. If the fundamental domain F is covered by a set of cubes
all euclidean, the number field K is euclidean. Note that the algorithm
exhibits sufficient condition for a number field to be euclidean, but not at
all a necessary and sufhcient condition. Stage 1 of the algorithm searches for
euclidean cubes only by geometric considerations. Stage 2 of the algorithm
searches for euclidean cubes, among those left indeterminate in stage 1,
using the geometric properties of the embedding T of the units of the ring
of integers A in 

3. STAGE 1

3.1. Some definitions. Here, are some specific definitions and notations
of this part of the algorithm :

9 Let p E RI and a E I~. Let C(p, a) denote the cube of R7, of center
p, of edge length a, of which the n pairs of faces are perpendicular to
the n axes R(i),i = 1, ... , r~ of R7.
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9 Let Let d(pi,p2) denote the distance between PI and p2
given classically by the formula :

. Let 0 be the origin of Let F be a fundamental domain of T(A)
of which the origin 0 is a vertex. F is a parallelotope. Let bl, ... , bn
be the basis of the lattice TA defined by (7). Let s be the symmetry
center of the parallelotope F. Let P; (F) be the face of F defined by
the set of n points {O, b1,... , bi- 1, bi+ 1, ... , Let be the
second face of F parallel to Pi(F). Let Pi (H) be the plane of Rn,
parallel to Pi(F), at a distance J = x f of Pi(F) and not in the
same side of Pi(F) than s. Let Pn+i(H) be the plane of parallel
to at a distance J = ~ x 9 of and not in the same
side of than s. Let H be the parallelotope of of which
faces are the 2n planes i = 1,..., n.

3.2. Some theoretic propositions. This section contains some theoretic
propositions used in the programming of stage 1 of the algorithm.

Proposition 1. The fundamental domain F is symmetric with respect to
the point T(bs) = If the point p is euclidean (respectivedy
not euclidean), then the point T(2bs) - p is euclidean (respectively not eu-
clidean).

Proof. The fundamental domain F is a parallelotope built on the origin 0
and the basis {bl, ... , bn} of the lattice TA. Classically, this parallelotope is
symmetric with respect to the point r(bs) = T( 61+’2+bn ). If p is euclidean,
then there exists q E A such that N(p - T(q))  1 ~ N((T(2bs) - p) -

TA ~ T (2bS ) - p is an euclidean point symmetric to the euclidean point p.
The proof is similar for non euclidean points. 0

Therefore, in the algorithm, by symmetry, we shall limit the determi-
nation of euclideanity of the fundamental domain F to half a part of this
domain and thus reduce the CPU time by 2.

Proposition 2. Let C(0, a) be a cube of hence of center 0 and of edge
length a. Let p be a point Then, for all points u E C(0, a), we have

where

This inequality is the best possible in the sense that, for a vertex of C(0, a),
the inequality becomes an equality.



38

Proof. Let u E C(0, a). We have the inequalities :

which leads to relation (15). The equality is effectively obtained when, for
i = 1,... n, we have [ = g and sign(ui) = therefore the result
is the best possible. 0

Proposition 3. Let La = {ila, ... , ina I il E Z, ... , in E Z} be the lattice
defined from a, edge length of the cube C(0, a). Let I be the (finite)

set of points of La fl H, where the ParallelotoPe H is defined in the section
(3.1). Then, the set J of cubes I Pi E I} covers the fundamental
domain F.

Proof. If 0, then there exists a point y E F such that

a # because the euclidean distance 6 of any point of the cube
C(0, a) to the center of this cube is smaller than Then, from the
definitions of the parallelotopes F and H, we deduce that Pi E H. There-
fore, the set J of all the cubes whose center belongs to La n H cover the
fundamental domain F. D

3.3. Stage 1 of the algorithm. In this section, we describe the first
stage of the algorithm. Let K be a number field, with the fundamental
domain F of the lattice 7 A. To prove that K is an euclidean number field,
it is sufficient to prove that all the cubes of the set J (defined above) are
euclidean. Let a cube C(p, a) E J. To prove that the cube C(p, a) is

euclidean, it is sufficient, using the proposition 2, that there exists q E A
verifying the relation

Determination of euclidean cubes C(p, a). Recall that C(p, a) denotes
the cube of of center p E La n H and of edge length a. The candidates
for are taken from the set of lattice points with d (T (q), o)  m¡n,
verifying relation(18), with m --~ +oo. The computer algorithm takes the
greatest values m possible which are reasonably compatible with the CPU
speed of the computer.
A trick of the algorithm is, when we fail to find q with euclidean cube

C((p, a), consists in trying again locally for this cube, with a partition of
C(p, a) in smaller cubes of edge length 2 , or 

Then, at the end of the stage 1 of the algorithm, the alternative is :
~ All the cubes of J are euclidean, and the number field K is euclidean.
~ For m cubes c J, j = 1, ... , m~, the algorithm stage 1
does not allows us to conclude if they are euclidean : then, we say
that these m cubes are indeterminate.
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4. STAGE 2 OF THE ALGORITHM

In this section, we describe the part of the algorithm involving the units
of the number field K, to reduce, and, if possible to annihilate, the number
of indeterminate cubes. The method is similar to the one explained by
Stefania Cavallar and Franz Lemmermeyer in [1] for cubic fields.

4.1. Definitions. Recall that the map a, Tl and T are respectively defined
by the relations (2), (4) and (5). We fix some notations and definitions for
this part of the algorithm:

~ Let Cj = C(pj, a), j = l, ... , m be the remaining indeterminate
cubes at the end of stage 1 of the algorithm.

~ Let E E A* be a unit of the ring A.
~ Let d = {dl, ... , dn} be a point of From the relation (4), we
have

where i is the complex number, i2 + 1 = 0.
9 Let c E K. If [  1 with q E A, then ]  1. In

the same way, if q)~ &#x3E; 1 for all q E A, then q)1 ~ 1
for all q E A. The multiplication by a unlit 6 of A* lefts invariant the
set of non euclidean points of r(~). This remark leads us to define a
map r (K) 4 T(.K) by = r(bê).

Let d E I~n . The map -y, can be extended to the map R’ 4 by
the relation

From = 1, it can be seen that the transformation -Y, keeps the
volumes of 

· We note, in the sequel, the compact of R~ defined by :

Note that the volume in RI of is equal to the volume in of

Cj because the map 7t keeps the volumes.
Call size of a compact C C W, the real s defined by s = sup(d(x, y))

for all x, y E C. The size of the compact r j (e) is generally much larger
than the size of the cube Cj and even of the fundamental domain F
of because i = 1, ... , rl + r2) is, generally, much
larger than 1.
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4.2. Some theoretic results. The cubes Cj, j = 1, ... , rrz are left in-
determinate by stage 1. Generally, some of them are in fact euclidean,
sometimes all. The stage 2 of the algorithm aims to reduce, or to annihi-
late, the number of cubes left indeterminate in stage 1. Stage 2 rests on the
three next propositions using the geometric properties of the fundamental
units.
The compact rl(e), 1 = 1, ... , m is said euclidean if all its points are

euclidean. is euclidean if and only if the cube C, is euclidean because
7, lefts invariants the units of A* . The subset T () } of]Rn
contains all the non euclidean points of In the same way, the subset

contains all the non euclidean points of 
Therefore, if a cube Cj has a non euclidean point, there exists at least one
1, 1  L  m and one a E A such that OJ n (r~(~) - 7-(c~)) ~ 0. On the
other hand, if ci n (rl(e) - T (a) ) ~ = 0, we conclude that Cj is
euclidean, which leads to the next proposition:

Proposition 4. If we have the relation

then the cube Cj is euclidean.

The two next propositions aim to find cubes Cj verifying the relation
(22) to eliminate them qua euclidean cubes.

Proposition 5. Let m be the number of indeterminate cubes Cj = C(pj, a)
at the end of stage 1 of the algorithm. Let the cube Cj and the compact
ri (e) - A necessary condition on a E A for Cj fl (fl(e) - -r (a)) 0 0 is that
r( a) = ~ .. , art +2r2) E Rn verzf y the
relations :
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Proof. To have the relation (rl(e) - 0, it is necessary that
there exists u E C(0, a), v E C(0, a) and a E A which verify the relation

. For i =1, ... , r1: we deduce

From this relation and from the inequalities and ivil ]  2 , we
can deduce the relation (23).

o For i = 1, ... , r2: From the relation (28), we have

Then, we obtain from the relation (20) and the previous relation (30)
the relation in C,

From this relation and of the inequalities R, f,
and we can deduce the relations (24),

(25), (26) and (27).
0

4.3. Remark. If the edge length a of C(pj, a) is small compared to the
fundamental domain F, there exists at most one a E A verifying the propo-
sition (5).
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4.4. Remark. The proposition (5) shows that the integers a of A veri-
fying (23),(24),(25),(26) and (27) if any, are contained in a parallelotope
T whose faces are perpendicular to axes Rl’) of Rn and of which the re-
lations (23), (24), (25), (26) and (27) gives the vertex coordinate on In
the computer algorithm, the determination of the integers a E A such
that belongs to this parallelotope is obtained in this way: We com-
pute, for k = l, ... , 2’ the coordinates i = l, ... , n of the vertex
of T on the integral basis Y = {T ( y~ ), ... , T ( yn ) ~ , and then, for each

i, 1  i  n, the minimum rrai = k = 1, ... , 2’~ and maxi-
mum Mi = max(tk(i)), k = l, ... , 2n.

Let, for a E A, the expression of T(a) on the integral basis Y:

al, a2, ... , an E Z. The possible values ai are bounded by the relations

where the number of candidate a is finite because ai E Z.

Let the cube C~ and the compact for j, l given. Then, let a E A
verifying the necessary condition of proposition (5). The next proposition
gives a criterium, easily implemented on a computer, to determine if

cj n (rl(e) - T(a)) - 0. In fact, we define a discrete set of points
C such that n OJ = 0 =&#x3E; ri (e) n cj = 0.

Proposition 6. Let the cube OJ and the compact given. Let a E A
verif ying the relations (~3), (,~,~~, (~5), (~6) of the proposition (5).
Let pi E R, i = 1, ... , n be elements defined by the relations:

Let Ml be the finite discrete set of points ~C of defined by the relations

Proof. We examine successively the case of real and complex embeddings:
. At first, consider the real embeddings i = 1, ... , rl : the minimal

distance Ji on the ith coordinate of RI between two points of
is given by the relation 6i = pilai(e)l. Therefore, from the
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relation (33),

. Then, consider the complex embeddings (r1 + 2i - 1, r1 + 2i), i =
1, ... , r2: Note that the square of edge length a of +2i-1) X +2i)

~ C ~ I~2, whose the vertex coordinate are (0,0), (a, 0), (0, a), (a, a)
is transformed by the multiplication

_ , . _ .. , _ . ,

on a square of edge length alurl+2i-1(e)1 ] # the minimal distance
~rl+2i-1 between two points of on the coordinate jR(rl +2i-l) x

]R2 is given by the relation ðrl+2i-1 = IUrl+2i-1(e)1 x
which leads, from the definition of Prl+2i-1, as for the real

embeddings to

Therefore, the minimal distance ~? i = 1, ... , rl between two points of
a real embedding on or the minimal distance 6r~ +2j-1 , I = 1 , ... , r2
between two points of a complex embedding on R(Il +2i-1) X Rl +2i) N ~g2 is
always  1. Then, from the definition of and from the relations (35)
and (36), we deduce that if (ri (e) - T(a)) n C(pj, a) # 0, there is at least
one point of (Ml(ê) - T(a)) E # (Ml(~) - 0,
which leads to the result :

If (Ml(E) - T(a)) has no points in the cube C(pj, a), then 
r(a)) nC (pj, a) = 0. 0

4.5. Description of stage 2 of the algorithm. At the end of the stage
1 of the algorithm, the alternative is : all the cubes C(p, a) covering F
are euclidean and the number field K is euclidean, or there are m cubes

a), , j =1, ... , m which are left indeterminate: stage 1 did not allow
us to conclude that these cubes are euclidean. Stage 2 of the algorithm aims
to find some euclidean cubes among them. Let the indeterminate cubes

~C(pj, a) ( j = 1, ... , ?7~}. The algorithm examines each of them, for j =
1,..., m. Suppose j and I are given. If there are not any a E A which verify
the relations (23), (24), (25),(26) and (27) of proposition (5), then, for all
a E A, (rl(e) - T(a)) a) = 0 =* the pair (j, 1) can be eliminated.
If not, we can then find a such that the relations (23), (24), (25), (26) and
(27) are verified. Notice that, if we suppose that the edge length a of the
cubes C is sufficiently small, a is unique. Then, we apply the proposition
(6) : if we have (Ml(~) - T(a)) n C(pj, a) = 0, we can eliminate the pair
( j, 1). If, for j given, we can eliminate all the pairs ( j, 1), l = 1,..., m,
then the cube is euclidean from the proposition (4).
We have made no assumption on the unit E, thus this algorithm can

be used with all units - E A*. It is CPU time consuming if the unit
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is of large size, more precisely if = 1, ... , n is a large real
number, for instance greater than 146. Therefore, we limit the algorithm to
a set of fundamental units of small size and their inverse I , i =

1, ... , T1 +~2 2013 1}. If there are no cubes C (pj, a) left indeterminate by stage
2 of the algorithm, the number field K is euclidean.

5. COMPUTER RESULTS

This section gives the results obtained in the first semester of 1997 for the
number fields of degree n, 4  n  6 with the C++ program described
in this article. The number field K, generated by a root x of the polyno-
mial P(X), of discriminant D, of integral basis {yl, ... , yn} expressed in
function of the basis {1, x, ... , of K, with the set of fundamental units
{~1, ... , expressed in function of the integral basis 
are found in the files of the Server

megrez . math . u-bordeaux . f r/numberf ields/
of the Bordeaux University.
When, in the following results, the discriminants are noted D1, D2, ... ,

that means that in the given degree and signature, there are several fields
K with the same discriminant D.

Among them, 65 are new, compared with the list given by Franz Lem-
mermeyer in [3].
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14400, 14515,14591, 14703, 14843, 14896, 14975 are left indeterminate 1
in the computer test we made 2. The other 681 fields are norm-euclidean.
Among them, 664 are new, compared with the list given in [3].

5.3. Number fields n = 4, r1 = 4, r2 = 0. Among the 283 fields with
0 37532, the field with D = 21025 is not principal therefore
not euclidean, the 26 fields with discriminant D = 13725, 15125, 16400,
17725, 18432, 22000, 23525, 24336, 26225, 27725, 28400, 30125, 30400,
32225, 32625, 33625, 33725, 34816, 35152, 35225, 37525, 37952, 38000,
38225, 38725, 38864. are indeterminate. The 256 other fields are euclidean.
Among them, 239 are new, compared with [3].

5.4. Number fields n = 5,ri = 3, r2 = 1. The two fields with D =

-18463, -24671 are indeterminate for a trivial reason! the Bairstow method
of resolution of P(x)=0 for the polynomial P(X) has failed in the test).

All the other 92 fields with discriminant D, 0  37532 are norm-
euclidean. Among them, at least 82 are new, compared with [3].

5.5. Number fields n = 5,ri = 1, r2 = 2. The field with D = 16129 is
indeterminate for the same reason. the Bairstow method of resolution of

P(x)=0 for the polynomial P(X) fails in the test) All the other 146 fields
with 0  D  17232 are euclidean. Among them, at least 132 are new,
compared with [3].

5.6. Number fields n = 5,n = 5, r2 = 0. The 25 fields with 0  D 
161121 are euclidean. Among them, 22 are new, compared with [3].

5.7. Number fields n = 6,ri = 0, r2 = 3. The 5 fields with 9747 f I D
11691 are euclidean.

5.8. Number fields n = 6,ri = 2, r2 = 2. The 11 fields with 28037 
35557 are euclidean.

5.9. Synthesis. There are at least 1204 new fields, compared with [3],
where the number of euclidean fields known in 1994 was 743, with degree
n, 1n12.

1 The meaning of this word is given previously in the article
2with the initial parameters chosen, especially the value of the edge a of the cubes a)

covering the fundamental domain F : it is possible, that for different initial parameters , some
of them would be found norm-euclidean
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6. SOME GENERALIZATIONS

We give here two generalizations of the algorithm:
. the study of euclidean rings of S-integers As of number fields K, with

. the study of the inhomogeneous minimum of the norm form N( p-T (q) )
and q E A.

6.1. Rings of S’-integers As of number fields K. Let v~l, ... , vpt be a
set of t non archimedean valuations of K. Let As be the ring of S-integers
of the number field K corresponding to this set of valuations, therefore
such that for all vp 0 and for all a E As , we have 0.
O’Meara’s theorem asserts that, for all rings As defined by a valuation set
8 = fvpl it is always possible to find a finite set of valuations
8’ = {v, ... , with g C g’ such that the ring As, is euclidean for the
norm, see for instance O.T. O’Meara in [5]. The Minkowski Bound of a
number field .K is the constant B given by the formula

The quantitative form of O’Meara’s theorem asserts that, if there exists
m &#x3E; B with sl, ... , sm E Ski for 1~ ~ k’, (s~ - Ski) E AS,
group of units of As, then the ring As is euclidean for the norm, see for
instance H.W. Lenstra in [4]. The next proposition aims to enlarge the
algorithm we have explained to the rings As of K.

Proposition 7. Let C(pj, a), j =1, ... , t be a set of cubes covering the
fundamental domain F of the lattice TA. Let M E N. Let 8 be the set of
valuations corresponding to all the primes ideals of A above a prime p of
N verif ying 1  p  M. Let As be the ring of K corresponding to the set
of valuations S. Then, for As to be euclidean, it is sufficient that, for all
j, 1  j  t, there exists one value kj E N, 1  k~  M such that the
cube kja) is euclidean.

Proof. Let kj E N verify the hypothesis. We deduce that, Vu E C(O, kja)
there exists q E A such that N(kjpj + u - T(q))  1 Vul E C(O, a), there
exists q E A such that + ul ) - T (q) )  1. But, if 1  1~~  M, it
results from the definition of the ring As, that kj E (As)*. Therefore, for
all c E K, it is possible to find - E (As)* and q E A C As verifying the
relation N(T(ce) - T(q))  1, which is a sufhcient condition, for As to be
norm-euclidean. 0

6.2. Remark. Note that this proposition is effectively more general than
the sufficient condition that we considered for the ring of integers A to be
euclidean : it is possible that, for j, pj given, the algorithm fails to find the
euclideanity of one cube C(pj, a), but succeeds in finding the euclideanity
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of the cube C(kjpj, kja) for one value M. Then, it is possible
that, for some M, the algorithm conclude that As is euclidean though it
leaves A indeterminate, which is confirmed by the tests of the computer
program.

6.3. Example of results. Let us consider the example of the complex
cubic fields K, n = 3, r, = 1, r2 = 1. Among the fields with D, 0 
! D ~  492, the fields with IDI = 199, 283, 307, 327, 331, 335, 339, 351,
364, 367, 436, 439, 459, 491 are not euclidean, see for instance [3]. The

computer program result shows that, for all these discriminants D, 0 
[  492, then the fraction ring AS(2) is norm-euclidean, where the set of

non archimedean valuations 8 corresponds to the set of all primes above
the prime ideal 2Z of Z. The Minkowki bound, for this set of number fields
is bounded by MB  fi, 276. Therefore, with the quantitative version of
O’Meara Theorem, the ring AS’(6) is norm-euclidean, where the set of non
archimedean valuations g’ (6) corresponds to the set of all primes above the
prime ideals 2Z, 3Z and 5Z of Z, which, clearly, is less precise than the
previous result.

6.4. Inhomogeneous minimum of the norm form. To study the in-
homogeneous minimum of the norm form with the computer algorithm,
we have only to replace in the program the condition N( p - T (q) )  1 by
N( p - T (q) )  M, where M &#x3E; 0 is given. To do that, we have only to
change one instruction of the C++ program!

6.5. Example of results. Let .F~ be a number field of degree n, of signa-
ture (~1,7*2) and of discriminant D. H. Davenport has shown in [2], that
for all number fields I~, we have the inequality

where ~y is a positive constant depending on n only.
Consider, as an example, the fields K with :

Some of them are left indeterminate for euclideanity in the section of com-
puter results. We have verified that, for all of them we have the relation

where B is the Minkowski Bound of the field K. For these fields, this result
is better than the result of Davenport: in that case, our result is on ~
instead of D 2n-2T2 _
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Perhaps, it would be possible, to formulate a generalization of the Min-
kowski conjecture for totally real fields (N(p - T(q))  2"~B/D) : for all
number fields K with (rl, r2) 0 (0,1), we should have

Acknowledgements It is our pleasure to express our gratitude to Prof.
Jacques Martinet and Henri Cohen for helpful advice on this work and to
Franz Lemmermeyer for many suggestions during all the period of concep-
tion and of testing of the C++ algorithm. The consistency of the results
of Stefania Cavallar and Franz Lemmermeyer in [1] for cubic fields and of
Franz Lemmermeyer for the quartic fields with our results was largely used
for the validation of the algorithm and of the C++ program.

REFERENCES

[1] S. Cavallar and F. Lemmermeyer, The euclidean algorithm in cubic number fields, draft
(August 1996).

[2] H. Davenport, Linear forms associated with an algebraic number field, Quarterly J. Math.,
(2) 3, (1952), pp. 32-41.

[3] F. Lemmermeyer, The euclidean algorithm in algebraic number fields, Expo. Mat., no 13
(1995), pp. 385-416.

[4] H.W. Lenstra, Euclidean number fields of large degree, Invent. Math., n0 38, (1977), pp. 237-
254.

[5] O.T. O’Meara, On the finite generation of linear groups over Hasse domains, J. Reine Angew.
Math. n0 217 (1965), pp. 79-108.

[6] P. Samuel, Theorie algébrique des nombres, Hermann, (1967).

Roland QUBME
13, avenue du chateau d’eau
31490 Brax

France

E-mail : 106104.14470compuserve.com


