JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ARTŪRAS DUBICKAS

The mean values of logarithms of algebraic integers

Journal de Théorie des Nombres de Bordeaux, tome 10, n° 2 (1998), p. 301-313

http://www.numdam.org/item?id=JTNB_1998__10_2_301_0

© Université Bordeaux 1, 1998, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

The mean values of logarithms of algebraic integers

par Artūras DUBICKAS

RÉSUMÉ. Soit $\alpha_1 = \alpha, \alpha_2, \dots, \alpha_d$ l'ensemble des conjugués d'un entier algébrique α de degré d, n'étant pas une racine de l'unité. Dans cet article on propose de minorer

$$M_p(\alpha) = \sqrt[p]{\frac{1}{d} \sum_{i=1}^d |\log |\alpha_i||^p}$$

où p > 1.

ABSTRACT. Let α be an algebraic integer of degree d with conjugates $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_d$. In the paper we give a lower bound for the mean value

$$M_p(\alpha) = \sqrt[p]{\frac{1}{d} \sum_{i=1}^{d} |\log |\alpha_i||^p}$$

when α is not a root of unity and p > 1.

1. Introduction.

Let α be an algebraic number of degree $d \geq 2$ with

$$P(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_0 = a_d (x - \alpha_1) (x - \alpha_2) \dots (x - \alpha_d)$$

as its minimal polynomial over \mathbb{Z} and a_d positive. Following Mahler, the Mahler measure of α is defined by

$$M(\alpha) = a_d \prod_{i=1}^d \max(1, |\alpha_i|).$$

The house of an algebraic number is the maximum of the modulus of its conjugates:

$$\overline{|\alpha|} = \max\{|\alpha_1|, |\alpha_2|, \dots, |\alpha_d|\}.$$

Put also

$$d(\alpha) = \max\left\{\overline{|\alpha|}, \overline{|\alpha^{-1}|}\right\} = \max\left\{|\alpha_1|, \dots, |\alpha_d|, 1/|\alpha_1|, \dots, 1/|\alpha_d|\right\}$$

Manuscrit reçu le 29 novembre 1996.

for the "symmetric deviation" of conjugates from the unit circle. Denote for p>0

$$M_p(\alpha) = \sqrt[p]{\frac{1}{d} \sum_{i=1}^d |\log |\alpha_i||^p}.$$

Our main concern here is the lower bound for this mean value when α is an algebraic integer $(a_d = 1)$ which is not a root of unity.

In 1933, D.H. Lehmer [8] asked whether it is true that for every positive ε there exists an algebraic number α for which $1 < M(\alpha) < 1 + \varepsilon$. In its strong form Lehmer's problem has been reformulated as whether it is true that if α is not a root unity then $M(\alpha) \ge \alpha_0 = 1.1762808...$ where α_0 is the root of the polynomial

$$x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1$$

In 1971, C.J. Smyth [16] proved that if α is a non-reciprocal algebraic integer then $M(\alpha) \geq \theta = 1.32471...$ where θ is the real root of the polynomial $x^3 - x - 1$. This result reduces Lehmer's problem to the case of reciprocal algebraic integers (those with minimal polynomial satisfying the identity $P(x) \equiv x^d P(1/x)$). P.E. Blanksby and H.L.Montgomery [2] used Fourier analysis to prove that $M(\alpha) > 1 + 1/52d \log(6d)$. In 1978, C.L. Stewart [18] proved that $M(\alpha) > 1 + 1/10^4 d \log d$. Although this result is weaker than the previous one, the method used has become very important and led to further improvements. Recently M. Mignotte and M. Waldschmidt [12] obtained Stewart's result via the interpolation determinant.

In 1979, E. Dobrowolski [4] obtained a remarkable improvement of these results showing that for each $\varepsilon > 0$, there exists an effective $d(\varepsilon)$ such that for $d > d(\varepsilon)$

(1.1)
$$M(\alpha) > 1 + (1 - \varepsilon) \left(\frac{\log \log d}{\log d}\right)^3.$$

D.C. Cantor and E.G. Straus [3] in 1982 introduced the interpolation determinant to simplify Dobrowolski's proof and to replace the constant $1-\varepsilon$ by $2-\varepsilon$. Finally, R. Louboutin [9] was able to improve this constant to $9/4-\varepsilon$. M. Meyer [11] obtained Louboutin's result using a version of Siegel's lemma due to Bombieri and Vaaler. Recently P. Voutier [19] showed that inequality (1) holds for all $d \ge 2$ with the weaker constant 1/4 instead of $1-\varepsilon$.

In 1965, A. Schinzel and H. Zassenhaus [13] conjectured that there exists an absolute positive constant γ such that $|\alpha| > 1 + \gamma/d$ whenever α is not a root of unity. The best known result on this problem is due to the author [5]:

we have

(1.2)
$$\overline{|\alpha|} > 1 + \left(\frac{64}{\pi^2} - \varepsilon\right) \frac{1}{d} \left(\frac{\log\log d}{\log d}\right)^3$$

where $d > d_1(\varepsilon)$. In fact, both inequalities (1), (2) and the respective conjectures can be considered in terms of the lower bound for $M_p(\alpha)$. Indeed, notice that

$$M_1(\alpha) = \frac{2\log M(\alpha) - \log|a_0|}{d}.$$

Therefore, for $|a_0| \geq 2$,

$$M_1(\alpha) = \frac{2\log|a_0| - \log|a_0|}{d} \ge \frac{\log 2}{d}.$$

If $|a_0| = 1$, then

$$M_1(\alpha) = \frac{2\log M(\alpha)}{d}.$$

Louboutin's result can be written as follows

(1.3)
$$dM_1(\alpha) > \left(\frac{9}{2} - \varepsilon\right) \left(\frac{\log \log d}{\log d}\right)^3.$$

Taking $p = \infty$, we can write the inequality (2) in the following form

$$(1.4) dM_{\infty}(\alpha) = d\log d(\alpha) \ge d\log \overline{|\alpha|} > \left(\frac{64}{\pi^2} - \varepsilon\right) \left(\frac{\log\log d}{\log d}\right)^3.$$

The function $p \to M_p(\alpha)$ is nondecreasing. Hence the inequality $dM_p(\alpha) \geq c_p$ where $1 and <math>c_p > 0$ lies between the conjecture of Lehmer p=1 and the "symmetric" form of the conjecture of Schinzel and Zassenhaus $p=\infty$ (see also [1] for a problem which lies between these two conjectures). We have noticed above that the conjectural value for c_1 is $2\log\alpha_0$. It would be of interest to find out whether it is true that $d(\alpha) \geq \sqrt[d]{2}$. The equality holds for the polynomial x^d-2 . We conjecture that the answer to the above question is affirmative, so that $c_\infty = \log 2$. In this paper, we take up the interpolation determinant again (see [3],[5],[9],[10], [19]) and fill the gap between inequalities (3) and (4) (Theorem 2). One can also consider the mean value of conjugates of an algebraic integer

$$m_p(\alpha) = \sqrt[p]{rac{1}{d} \sum_{i=1}^d |\alpha_i|^p}$$

and the mean value of the differences

$$t_p(\alpha) = p \sqrt{\frac{2}{d(d-1)} \sum_{i \le j} |\alpha_i - \alpha_j|^p}.$$

The lower bound for $m_1(\alpha)$ where α is a totally positive integer was considered by I. Schur [14], C.L. Siegel [15], C.J. Smyth [17]. In 1988, M. Langevin [7] solved Favard's problem proving that $t_{\infty}(\alpha) := \max_{i,j} |\alpha_i - \alpha_j| > 2 - \varepsilon$ for an algebraic integer of a sufficiently large degree. The author [6] proved that $t_2(\alpha) > \sqrt[4]{e} - \varepsilon$. The problem of finding an upper bound for $t_{-\infty}(\alpha) := 1/\min_{i \neq j} |\alpha_i - \alpha_j|$ is known as a separation problem. In this article, we apply the lower bound for $M_2(\alpha)$ to estimate $m_p(\alpha)$ from below (Theorem 3).

2. Statement of the results.

The notations are the following. Let G(x) be a real valued function in [0;1] such that G(0)=1, G(1)=0. Let also the derivative of G(x) be continuous and negative in the interval (0;1). Put

$$(2.5) I = \int_{0}^{1} G(x)dx,$$

(2.6)
$$J = \int_{0}^{1} \left(G(x)\right)^{2} dx,$$

(2.7)
$$L = \int_{0}^{1} \left(G'(x)\right)^{2} dx.$$

Put also for brevity

$$\delta(d) = \left(\frac{\log\log d}{\log d}\right)^3.$$

Let α be a reciprocal algebraic integer, i.e. $d=2m, m \in \mathbb{N}, \alpha_{2m}=1/\alpha_1, \alpha_{2m-1}=1/\alpha_2,\ldots,\alpha_{m+1}=1/\alpha_m$ where $|\alpha_1| \geq |\alpha_2| \geq \cdots \geq |\alpha_m| \geq 1$. Suppose also that α is not a root of unity. With these hypotheses, our main result is the following:

Theorem 1. For every $\varepsilon > 0$ there exists $d_0(\varepsilon)$ such that we have

(2.8)
$$\sum_{j=1}^{d/2} \left(I - \frac{2j}{d} J \right) \log |\alpha_j| > \frac{1-\varepsilon}{L} \delta(d)$$

whenever $d > d_0(\varepsilon)$.

The constant $d_0(\varepsilon)$ and the constants $d_1(\varepsilon), d_2(\varepsilon), d_3(\varepsilon), d_4, d_5(p)$ used below are effective. Taking $G(x) = (1-x)^2$, we get I = 1/3, J = 1/5, L = 4/3. Hence the following inequality holds:

Corollary 1. For every $\varepsilon > 0$ there exists $d_1(\varepsilon)$ such that

$$\sum_{j=1}^{d/2} \left(1 - \frac{6j}{5d}\right) \log|\alpha_j| > \left(\frac{9}{4} - \varepsilon\right) \delta(d)$$

whenever $d > d_1(\varepsilon)$.

This inequality obviously implies Louboutin's result. On the other hand, taking $G(x) = 1 - \sin(\pi x/2)$, we have $I = 1 - 2/\pi$, $J = 3/2 - 4/\pi$, $L = \pi^2/8$. Hence

$$\sum_{j=1}^{d/2} \left(1 - \frac{2}{\pi} - \left(3 - \frac{8}{\pi}\right) \frac{j}{d}\right) \log|\alpha_j| > \left(\frac{8}{\pi^2} - \varepsilon\right) \delta(d).$$

We can replace in the inequality above $\log |\alpha_j|$ by $|\alpha_j|-1$, and so Theorem 1 yields the following Corollary.

Corollary 2. For every $\varepsilon > 0$ there exists $d_2(\varepsilon)$ such that for $d > d_2(\varepsilon)$ we have

$$\sum_{j=1}^{d/2} \tau_j |\alpha_j| > 1 + \left(\frac{64}{\pi^2} - \varepsilon\right) \frac{\delta(d)}{d},$$

where

$$\tau_j = \left(1 - \frac{2}{\pi}\right) \frac{8}{d} - \left(3 - \frac{8}{\pi}\right) \frac{8j - 4}{d^2}.$$

Corollary 2 implies the inequality (2), since $\sum_{j=1}^{d/2} \tau_j = 1$. The following theorem fills the gap between (3) and (4).

Theorem 2. Let $1 and <math>\varepsilon > 0$. Then there is $d_3(\varepsilon)$ such that for $d > d_3(\varepsilon)$ we have

$$dM_p(\alpha) > (b_p - \varepsilon)\delta(d),$$

where the constant b_p is given by

(2.9)
$$b_p = \frac{2}{L} \left(\frac{(2p-1)J}{(p-1)(I^{(2p-1)/(p-1)} - (I-J)^{(2p-1)/(p-1)})} \right)^{1-1/p}.$$

We are not solving the problem of computing the maximum in (9) for a fixed p from the interval $(1; \infty)$. However, notice that if $G(x) = (1-x)^{1.7}$ and p = 2 then by (5)-(7) and (9) we get $b_2 > 6.2679$.

Corollary 3. There is $d_4 > 0$ such that for $d > d_4$ we have

$$dM_2(\alpha) > 6.2679\delta(d).$$

Theorem 3. If α is an algebraic integer which is not a root of unity, then for every p > 0 there exists $d_5(p)$ such that for $d > d_5(p)$ we have

$$\left(m_p(\alpha)\right)^p > 1 + 19.64 \left(p\,\delta(d)/d\right)^2.$$

In particular,

$$m_1(\alpha) = \frac{|\alpha_1| + \dots + |\alpha_d|}{d} > 1 + 19.64 \left(\frac{\delta(d)}{d}\right)^2.$$

Proof of Theorem 1. Let f(x) be a continuous non-negative function in [0;1] such that $\int_{0}^{1} f(x)dx = 1$, and let $G(x) = \int_{x}^{1} f(y)dy$. Put

$$s = \left[\frac{L}{2} \left(\frac{\log d}{\log \log d}\right)^{2}\right],$$

$$k_{0} = \left[\frac{s^{2} \log s}{\log d}\right],$$

$$k_{r} = \left[s f\left(\frac{r}{s}\right)\right], \quad 1 \le r \le s.$$

Define

$$h_0(z) = h(z) = \left(1, z, z^2, \dots, z^{N-1}\right)^t,$$

$$h_k(z) = \frac{z^k}{k!} \frac{d^k h(z)}{d^k z} = \left(0, \dots, \binom{N-2}{k} z^{N-2}, \binom{N-1}{k} z^{N-1}\right)^t.$$

Consider the determinant

$$D = det \bigg| \bigg| h_{u_r} \big(\alpha_j^{p_r} \big) \bigg| \bigg|,$$

where the matrix consists of $N = (k_0 + k_1 + \cdots + k_s)d$ columns, $u_r = 0, 1, \ldots, k_r - 1, j = 1, 2, \ldots, d$. Here p_r is the r-th prime number $(p_0 = 1, p_1 = 2, p_2 = 3, \ldots)$. Recall that α is reciprocal and $\alpha_{2m} = 1/\alpha_1, \ldots, \alpha_{m+1} = 1/\alpha_m$. Then see ([3], [5], [9], [10], [19]) the determinant D is given by

$$D = \pm \prod \left(\alpha_i^{p_u} - \alpha_j^{p_v} \right)^{k_u k_v} \left(\alpha_i^{-p_u} - \alpha_j^{-p_v} \right)^{k_u k_v} \prod \left(\alpha_i^{p_u} - \alpha_j^{-p_v} \right)^{k_u k_v}$$

where the first product is taken over i, j = 1, 2, ..., m and $0 \le u \le v \le s$ (if u = v, then i < j). The second product is taken over all i, j = 1, 2, ..., m; u, v = 0, 1, 2, ..., s. Let us denote these products by P_1 and P_2 respectively.

We first consider P_1 . We have:

$$\begin{split} P_1 &= \pm \prod \left(\alpha_i^{p_u} - \alpha_j^{p_v}\right)^{2k_u k_v} \prod \alpha_i^{-p_u k_u k_v} \alpha_j^{-p_v k_u k_v} \\ &= \pm \prod \left(\alpha_i^{p_u} - \alpha_j^{p_v}\right)^{2k_u k_v} \prod_{i,j;u < v} \alpha_i^{-p_u k_u k_v} \prod_{i,j;u < v} \alpha_j^{-p_v k_u k_v} \\ &\times \prod_{i < j;u} \left(\alpha_i \alpha_j\right)^{-p_u k_u^2} \\ &= \pm M(\alpha)^{-m \left(\sum_{u < v} p_u k_u k_v + \sum_{u > v} p_u k_u k_v\right) - (m-1) \sum p_u k_u^2} \\ &\times \prod \left(\alpha_i^{p_u} - \alpha_j^{p_v}\right)^{2k_u k_v} \\ &= \pm \prod \left(\alpha_i^{p_u} - \alpha_j^{p_v}\right)^{2k_u k_v} M(\alpha)^{-m \sum p_u k_u \sum k_v + \sum p_u k_u^2}. \end{split}$$

Next, we have for the product P_2

$$P_{2} = \prod \left(1 - \alpha_{i}^{-p_{u}} \alpha_{j}^{-p_{v}}\right)^{k_{u} k_{v}} \prod \alpha_{i}^{p_{u} k_{u} k_{v}}$$
$$= \prod \left(1 - \alpha_{i}^{-p_{u}} \alpha_{j}^{-p_{v}}\right)^{k_{u} k_{v}} M(\alpha)^{m \sum p_{u} k_{u} \sum k_{v}}$$

Combining these results we find

$$D = \pm \prod \left(\alpha_i^{p_u} - \alpha_j^{p_v}\right)^{2k_u k_v} \prod \left(1 - \alpha_i^{-p_u} \alpha_j^{-p_v}\right)^{k_u k_v} M(\alpha)^{\sum p_u k_u^2}.$$

Now from each term $\alpha_i^{p_u} - \alpha_j^{p_v}$ in the first product we take

- 1. $\alpha_i^{p_u}$, if u = v, i < j
- 2. $\alpha_j^{p_v}$, if $u < v, j \le i$
- 3. $\alpha_i^{p_u} \alpha_j^{p_v p_u}$, if u < v, i < j.

This is the key point of our argument. Write the determinant D as follows

$$D = \pm \prod_{i} \alpha_{i}^{2p_{u}k_{u}^{2}} \left(1 - (\alpha_{j}/\alpha_{i})^{p_{u}}\right)^{2k_{u}^{2}} \prod_{i} \alpha_{j}^{2p_{v}k_{u}k_{v}} \left(\alpha_{i}^{p_{u}}\alpha_{j}^{-p_{v}} - 1\right)^{2k_{u}k_{v}}$$

$$\times \prod_{i} \alpha_{i}^{2p_{u}k_{u}k_{v}} \alpha_{j}^{2(p_{v}-p_{u})k_{u}k_{v}} \left(\alpha_{j}^{p_{u}-p_{v}} - (\alpha_{j}/\alpha_{i})^{p_{u}}\right)^{2k_{u}k_{v}}$$

$$\times \prod_{i} \left(1 - \alpha_{i}^{-p_{u}}\alpha_{j}^{-p_{v}}\right)^{k_{u}k_{v}} M(\alpha)^{\sum_{i} p_{u}k_{u}^{2}}$$

Denote $y_1 = \alpha_2/\alpha_1$, $y_2 = \alpha_3/\alpha_2, \ldots, y_{m-1} = \alpha_m/\alpha_{m-1}$, $y_m = 1/\alpha_m$. Then D can be expressed in the form

$$D = \pm M(\alpha) \quad p_{u}k_{u}^{2} \prod_{i} \alpha_{i}^{2p_{u}k_{u}^{2}} \prod_{i} \alpha_{j}^{2p_{v}k_{u}k_{v}} \prod_{i} \alpha_{i}^{2p_{u}k_{u}k_{v}} \alpha_{j}^{2(p_{v}-p_{u})k_{u}k_{v}} \times p(y_{1}, y_{2}, \dots, y_{m})$$

$$= \prod_{j=1}^{m} \alpha_{j}^{s_{j}} \times p(y_{1}, y_{2}, \dots, y_{m})$$

where $p(y_1, \ldots, y_m)$ is a polynomial in y_1, y_2, \ldots, y_m . The power s_j is given by

$$\begin{split} s_j &= \sum p_u k_u^2 + 2(m-j) \sum p_u k_u^2 + 2(m-j+1) \sum_{u < v} p_v k_u k_v \\ &+ 2(m-j) \sum_{u < v} p_u k_u k_v + 2(j-1) \sum_{u < v} (p_v - p_u) k_u k_v \\ &= (2m-2j+1) \sum p_u k_u^2 + 2m \sum_{u < v} p_v k_u k_v + (2m-4j+2) \sum_{u < v} p_u k_u k_v \\ &= (2m-2j+1) \sum p_u k_u^2 + 2m \sum_{u < v} p_v k_u k_v \\ &+ (2m-4j+2) \Big(\sum p_u k_u \sum k_v - \sum p_u k_u^2 - \sum_{v < u} p_u k_u k_v \Big) \\ &= (d-4j+2) \sum p_u k_u \sum k_v + (4j-2) \sum_{v < u} p_u k_u k_v + (2j-1) \sum p_u k_u^2 \\ &= (d-4j+2) \sum p_u k_u \sum k_v + (4j-2) \sum_{v < u} p_u k_u k_v - (2j-1) \sum p_u k_u^2 \end{split}$$

Using the maximum modulus principle and the inequalities $|y_j| \leq 1$, j = 1, 2, ..., m, we have

$$\left|p(y_1,y_2,\ldots,y_m)\right| \leq \left|p(y_1^0,y_2^0,\ldots,y_m^0)\right|,$$

where $|y_1^0| = |y_2^0| = \cdots = |y_m^0| = 1$. Now by Hadamard's inequality we find (see [5])

$$\log |D| \le \frac{1}{2} d \log \left(d \sum_{v=0}^{s} k_v \right) \sum_{v=0}^{s} k_v^2 + \sum_{j=1}^{d/2} s_j \log |\alpha_j|.$$

On the other hand (see [9]),

$$\log |D| \ge k_0 d \sum_{v=1}^s k_v \log p_v.$$

For d tending to infinity the following asymptotic formulas hold:

$$\sum_{v=1}^{s} k_{v} \log p_{v} \sim \sum_{v} s f\left(\frac{v}{s}\right) \log v \sim s^{2} \log s \int_{0}^{s} f(x) dx \sim s^{2} \log s \sim$$

$$\sim \frac{L^{2}}{2} \frac{(\log d)^{4}}{(\log \log d)^{3}} ,$$

$$k_{0} \sim \frac{L^{2}}{2} \left(\frac{\log d}{\log \log d}\right)^{3} ,$$

$$\sum_{v=0}^{s} k_{v}^{2} \sim k_{0}^{2} + \sum_{v=1}^{s} s^{2} f^{2} \left(\frac{v}{s}\right) \sim k_{0}^{2} + s^{3} \int_{0}^{1} f^{2}(x) dx \sim \frac{3}{8} L^{4} \left(\frac{\log d}{\log \log d}\right)^{6} .$$
Similarly,
$$s_{j} \sim (d - 4j) s^{5} \log s \int_{0}^{1} f(x) x dx + 4j s^{5} \log s \int_{0}^{1} f(x) x \left(\int_{0}^{s} f(y) dy\right) dx .$$
Since
$$\int_{0}^{1} f(x) x dx = -\int_{0}^{1} G'(x) x dx = \int_{0}^{1} G(x) dx = I$$
and
$$\int_{0}^{1} f(x) x \left(\int_{0}^{s} f(y) dy\right) dx = \int_{0}^{1} f(x) x \left(1 - G(x)\right) dx$$

$$= I - \int_{0}^{1} f(x) x G(x) dx = I + \int_{0}^{1} G'(x) G(x) x dx$$

we have

$$s_j \sim s^5 \log s \Big((d-4j)I + 4j(I - \frac{12}{J}) \Big)$$

 $\sim (dI - 2jJ) \frac{L^5}{16} \frac{(\log d)^{10}}{(\log \log d)^9}.$

 $= I + \frac{1}{2} \int \left(G^2(x) \right)' x \, dx$

 $= I - \frac{1}{2} \int G^2(x) dx = I - \frac{1}{2} J,$

For a sufficiently large d we have

$$\sum_{j=1}^{d/2} (dI - 2jJ) \log |\alpha_j|$$
> $(1 - \varepsilon) \frac{16(\log \log d)^9}{L^5(\log d)^{10}} \left(\frac{dL^4(\log d)^7}{4(\log \log d)^6} - \frac{3dL^4(\log d)^7}{16(\log \log d)^6} \right)$
= $(1 - \varepsilon) \frac{d}{L} \left(\frac{\log \log d}{\log d} \right)^3$.

This inequality implies (8).

Proof of Theorem 2. If α is not reciprocal, then by Smyth's result [16] $dM_1(\alpha) \geq 2 \log \theta$, and the theorem follows from $M_p(\alpha) \geq M_1(\alpha)$. Let α be reciprocal. Then by (8) and by Hölder's inequality we have

$$1 - \frac{\varepsilon}{L}\delta(d) < \sum_{j=1}^{d/2} \left(I - \frac{2j}{d}J\right) \log|\alpha_j|$$

$$\leq \left(\sum_{j=1}^{d/2} \left(\log|\alpha_j|\right)^p\right)^{1/p} \left(\sum_{j=1}^{d/2} \left(I - \frac{2j}{d}J\right)^q\right)^{1/q}$$

where 1/p + 1/q = 1.

Note first that for a reciprocal α

$$\left(\sum_{j=1}^{d/2} \left(\log |\alpha_j|\right)^p\right)^{1/p} = (d/2)^{1/p} M_p(\alpha).$$

For d tending to infinity we have

$$\sum_{j=1}^{d/2} \left(I - \frac{2j}{d} J \right)^q \sim \frac{d}{2} \int_0^1 \left(I - J x \right)^q dx$$
$$= \frac{d \left(I^{q+1} - \left(I - J \right)^{q+1} \right)}{2J(q+1)}.$$

Hence

$$1 - \frac{\varepsilon_1}{L}\delta(d) < \frac{d}{2}M_p(\alpha)\left(\frac{I^{q+1} - \left(I - J\right)^{q+1}}{J(q+1)}\right)^{1/q},$$

and Theorem 2, where the constant b_p is given by (9), follows.

Proof of Theorem 3. We have

$$(m_p(\alpha))^p = \frac{1}{d} \sum_{i=1}^d |\alpha_i|^p$$

$$= \frac{1}{d} \sum_{i=1}^d \exp(p \log |\alpha_i|)$$

$$= \frac{1}{d} \sum_{i=1}^d \sum_{j=0}^\infty \frac{(p \log |\alpha_i|)^j}{j!}$$

$$= \frac{1}{d} \sum_{i=0}^\infty \frac{p^j}{j!} \sum_{i=1}^d \left(\log |\alpha_i|\right)^j.$$

If α is reciprocal, then the inner sum equals $d(M_j(\alpha))^j$ for even j and zero for odd j. Hence

$$(m_p(\alpha))^p = 1 + \sum_{k=1}^{\infty} \frac{p^{2k}}{(2k)!} (M_{2k}(\alpha))^{2k} > 1 + \frac{p^2}{2} (M_2(\alpha))^2.$$

Utilizing Corollary 3 we have

$$\left(M_2(lpha)
ight)^2 > 39.28 \left(rac{\delta(d)}{d}
ight)^2,$$

if d is large enough and the statement of Theorem 3 follows.

Suppose now that α is not reciprocal. If

$$|a_0| = \prod_{i=1}^d |\alpha_i| \ge 2$$

then

$$(m_p(\alpha))^p = \frac{|\alpha_1|^p + \dots + |\alpha_d|^p}{d} \ge \prod_{i=1}^d |\alpha_i|^{p/d} \ge 2^{p/d} > 1 + \frac{p \log 2}{d}$$

$$> 1 + 19.64 \left(\frac{p\delta(d)}{d}\right)^2$$

for $d > d_5(p)$. Hence it is sufficient to consider the case when $|a_0| = 1$. Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be the conjugates of α lying strictly outside the unit circle. Put

$$\Lambda = \prod_{i=1}^r |\alpha_i|.$$

Then

$$(m_p(\alpha))^p = \frac{|\alpha_1|^p + \dots + |\alpha_d|^p}{d}$$

$$\geq \frac{r}{d} (|\alpha_1| \dots |\alpha_r|)^{p/r} + \frac{d-r}{d} (|\alpha_{r+1}| \dots |\alpha_d|)^{p/(d-r)}$$

$$= \frac{r}{d} \Lambda^{p/r} + \frac{d-r}{d} \Lambda^{-p/(d-r)}.$$

We shall show now that the last expression is greater than

$$1 + \frac{(\log \theta)^2}{2} \left(\frac{p}{d}\right)^2$$

where $\theta = 1.32471...$ Indeed, if

$$h(\Lambda) = \frac{r}{d} \Lambda^{p/r} + \frac{d-r}{d} a \Lambda^{-p/(d-r)}$$

then

$$h'(\Lambda) = \frac{p}{d} \Lambda^{p/r-1} - \frac{p}{d} \Lambda^{-p/(d-r)-1}$$
$$= \frac{p}{\Lambda d} \left(\Lambda^{p/r} - \Lambda^{-p/(d-r)} \right).$$

Therefore, the function $h(\Lambda)$ is increasing in the interval $(1; \infty)$ and by Smyth's theorem

$$h(\Lambda) \ge h(\theta) = \frac{r}{d} \theta^{p/r} + \frac{d-r}{d} \theta^{-p/(d-r)}.$$

Put for brevity p = zd and r = yd. We are going to prove that

$$g(z) = y\theta^{z/y} + (1-y)\theta^{-z/(1-y)} - 1 - \frac{(\log \theta)^2}{2}z^2 > 0$$

for z > 0 and 0 < y < 1. Indeed, g(0) = 0 and

$$g'(z) = \theta^{z/y} \log \theta - \theta^{-z/(1-y)} \log \theta - (\log \theta)^2 z$$

$$> \theta^{z/y} \log \theta - \log \theta - (\log \theta)^2 z$$

$$> \left(1 + \frac{z \log \theta}{y}\right) \log \theta - \log \theta - (\log \theta)^2 z$$

$$= z \left(\frac{1}{y} - 1\right) (\log \theta)^2 > 0.$$

Therefore, with our hypotheses

$$(m_p(\alpha))^p > 1 + \frac{(\log \theta)^2}{2} (\frac{p}{d})^2 > 1 + 19.64 (\frac{p\delta(d)}{d})^2$$

for $d > d_5(p)$. This completes the proof of Theorem 3.

REFERENCES

- [1] D. Bertrand, Duality on tori and multiplicative dependence relations. J. Austral. Math. Soc. (to appear).
- [2] P.E. Blanksby, H.L. Montgomery, Algebraic integers near the unit circle. Acta Arith. 18 (1971), 355-369.
- [3] D.C. Cantor, E.G. Straus, On a conjecture of D.H.Lehmer. Acta Arith. 42 (1982), 97-100.
- [4] E. Dobrowolski, On a question of Lehmer and the number of irreducibile factors of a polynomial. Acta Arith. 34 (1979), 391-401.
- [5] A. Dubickas, On a conjecture of Schinzel and Zassenhaus. Acta Arith. 63 (1993), 15-20.
- [6] A. Dubickas, On the average difference between two conjugates of an algebraic number. Liet. Matem. Rink. 35 (1995), 415-420.
- [7] M. Langevin, Solution des problèmes de Favard. Ann. Inst. Fourier 38 (1988), no. 2, 1-10.
- [8] D.H. Lehmer, Factorization of certain cyclotomic functions. Ann. of Math. 34 (1933), 461-479.
- [9] R. Louboutin, Sur la mesure de Mahler d'un nombre algébrique. C.R.Acad. Sci. Paris 296 (1983), 707-708.
- [10] E.M. Matveev, A connection between Mahler measure and the discriminant of algebraic numbers. Matem. Zametki 59 (1996), 415-420 (in Russian).
- [11] M. Meyer, Le problème de Lehmer: méthode de Dobrowolski et lemme de Siegel "à la Bombieri-Vaaler". Publ. Math. Univ. P. et M. Curie (Paris VI), 90, Problèmes Diophantiens (1988-89), No.5, 15 p.
- [12] M. Mignotte, M. Waldschmidt, On algebraic numbers of small height: linear forms in one logarithm. J. Number Theory 47 (1994), 43-62.
- [13] A. Schinzel, H. Zassenhaus, A refinement of two theorems of Kronecker. Michigan Math. J. 12 (1965), 81-85.
- [14] I. Schur, Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Zeitschrift 1 (1918), 377-402.
- [15] C.L. Siegel, The trace of totally positive and real algebraic integers. Ann. of Math. 46 (1945), 302-312.
- [16] C.J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer. Bull. London Math. Soc. 3 (1971), 169-175.
- [17] C.J. Smyth, The mean values of totally real algebraic integers. Math. Comp. 42 (1984), 663-681.
- [18] C.L. Stewart, Algebraic integers whose conjugates lie near the unit circle. Bull. Soc. Math. France 106 (1978), 169-176.
- [19] P. Voutier, An effective lower bound for the height of algebraic numbers. Acta Arith. 74 (1996), 81-95.

Artūras Dubickas
Department of Mathematics,
Vilnius University,
Naugarduko 24,
Vilnius 2006, Lithuania

E-mail: arturas.dubickas@maf.vu.lt