
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX
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The mean values of logarithms of algebraic
integers

par ART016ARAS DUBICKAS

RÉSUMÉ. Soit 03B11 = 03B1, 03B12,..., 03B1d l’ensemble des conjugués d’un
entier algébrique 03B1 de degré d, n’étant pas une racine de l’unité.
Dans cet article on propose de minorer

$$Mp(03B1)=p~1 d03A3i=1|log|03B1i||p
où p&#x3E; 1.

ABSTRACT. Let 03B1 be an algebraic integer of degree d with conju-
gates 03B11 = 03B1, 03B12, ..., 03B1d. In the paper we give a lower bound for
the mean value

$$Mp(03B1)=p~1 d/d03A3i=1|log|03B1i||p
when 03B1 is not a root of unity and p &#x3E; 1.

1. INTRODUCTION.

Let a be an algebraic number of degree d &#x3E; 2 with

as its minimal polynomial over Z and ad positive. Following Mahler, the
Mahler measure of a is defined by

The house of an algebraic number is the maximum of the modulus of its
conjugates: 

- - -

Put also

Manuscrit regu le 29 novembre 1996.
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for the "symmetric deviation" of conjugates from the unit circle. Denote
for p &#x3E; 0

Our main concern here is the lower bound for this mean value when a is
an algebraic integer (ad = 1) which is not a root of unity.

In 1933, D.H. Lehmer [8] asked whether it is true that for every positive
e there exists an algebraic number a for which 1  M(a)  1 + c. In its

strong form Lehmer’s problem has been reformulated as whether it is true
that if a is not a root unity then M(a) &#x3E; ao = 1.1762808... where cxo is
the root of the polynomial

In 1971, C.J. Smyth [16] proved that if a is a non-reciprocal algebraic
integer then M(a) &#x3E; 8 = 1.32471... where 0 is the real root of the poly-

1. This result reduces Lehmer’s problem to the case
of reciprocal algebraic integers (those with minimal polynomial satisfying
the identity P(x) - xdP(1/x)). P.E. Blanksby and H.L.Montgomery [2]
used Fourier analysis to prove that M(a) &#x3E; 1 + 1/52d log(6d). In 1978,
C.L. Stewart [18] proved that M(a) &#x3E; 1 + 1/104d logd. Although this
result is weaker than the previous one, the method used has become very
important and led to further improvements. Recently M. Mignotte and
M. Waldschmidt [12] obtained Stewart’s result via the interpolation deter-
minant.

In 1979, E. Dobrowolski [4] obtained a remarkable improvement of these
results showing that for each £ &#x3E; 0, there exists an effective d(é) such that
for d &#x3E; d(~)

D.C. Cantor and E.G. Straus [3] in 1982 introduced the interpolation
determinant to simplify Dobrowolski’s proof and to replace the constant
1 - ê by 2 - ê. Finally, R. Louboutin [9] was able to improve this constant
to 9/4 - E. M. Meyer [11] obtained Louboutin’s result using a version of
Siegel’s lemma due to Bombieri and Vaaler. Recently P. Voutier [19] showed
that inequality (1) holds for all d &#x3E; 2 with the weaker constant 1/4 instead
of 1- E.

In 1965, A. Schinzel and H. Zassenhaus [13] conjectured that there exists
an absolute positive constant -y such that ïar &#x3E; 1 + ~y/d whenever a is not a
root of unity. The best known result on this problem is due to the author [5]:



303

we have

where d &#x3E; In fact, both inequalities (1), (2) and the respective con-
jectures can be considered in terms of the lower bound for Mp(a). Indeed,
notice that

Therefore, for lao I 2:: 2,

If laol = 1, then

Louboutin’s result can be written as follows

Taking p = oo, we can write the inequality (2) in the following form

The function p --~ Mp(a) is nondecreasing. Hence the inequality
cp where 1  p  oo and cp &#x3E; 0 lies between the conjecture

of Lehmer p = 1 and the "symmetric" form of the conjecture of Schinzel
and Zassenhaus p = oo (see also [1] for a problem which lies between
these two conjectures). We have noticed above that the conjectural value
for ci is 2 log aa. It would be of interest to find out whether it is true
that d(a) &#x3E; The equality holds for the polynomial 2. We

conjecture that the answer to the above question is affirmative, so that
Coo = log 2. In this paper, we take up the interpolation determinant again
(see [3],[5],[9],[10], [19]) and fill the gap between inequalities (3) and (4)
(Theorem 2). One can also consider the mean value of conjugates of an
algebraic integer

-

and the mean value of the differences
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The lower bound for ml (a) where a is a totally positive integer was consi-
dered by I. Schur [14], C.L. Siegel [15], C.J. Smyth [17]. In 1988,
M. Langevin [7] solved Favard’s problem proving that t(a) := maxi,j lai-
aj I &#x3E; 2 - c for an algebraic integer of a sufhciently large degree. The author
[6] proved that t2 (a) &#x3E; 4 e - c. The problem of finding an upper bound
for :=1/ aj ) is known as a separation problem. In this
article, we apply the lower bound for M2 (a) to estimate rrLp (a) from below
(Theorem 3).

2. STATEMENT OF THE RESULTS.

The notations are the following. Let G(x) be a real valued function in
[0; 1] such that G(O) = 1, G(l) = 0. Let also the derivative of G(x) be
continuous and negative in the interval (0; 1). Put

Put also for brevity

Let a be a reciprocal algebraic integer, i.e. d = 2m, m E N, a2m = 
a2m-1 = 1/2(X2, ... , am+1 - l/am where Ia2l &#x3E; ... &#x3E; laml ;2: 1.

Suppose also that a is not a root of unity. With these hypotheses, our
main result is the following:

Theorem 1. For every e &#x3E; 0 there exists such that we have

whenever d &#x3E; duo(£).
The constant do (e) and the constants d1 (e),d2 (e),d3 (e), d4, d5 (P) used

below are effective. Taking G(x) = (1 - X)2, we get I = 1/3, J = 1/5,
L = 4/3. Hence the following inequality holds:
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Corollary 1. For every &#x3E; 0 there exists d1 (c) such that

whenever d &#x3E; d1 (e).

This inequality obviously implies Louboutin’s result. On the other hand,
taking G(x) = 1 - we have I = 1 - 2/7r, J = 3/2 - 4/-7r, L =

7r2/ 8. Hence

We can replace in the inequality above log laj by laj 1-1, and so Theorem 1
yields the following Corollary.

Corollary 2. For every - &#x3E; 0 there exists d2(~) such that for d &#x3E; d2(e)
we have

where

Corollary 2 implies the inequality (2), since T~ = 1. The following
theorem fills the gap between (3) and (4).

Theorem 2. Let 1  p  oo and e &#x3E; 0. Then there is d3(E) such that for
d &#x3E; d3 (e) we have 

- -

where the constant bp is given by

We are not solving the problem of computing the maximum in (9) for a
fixed p from the interval (1; oo). However, notice that if G(x) _ (1 - x)u7
and p = 2 then by (5)-(7) and (9) we get b2 &#x3E; 6.2679.

Corollary 3. There is d4 &#x3E; 0 such that for d &#x3E; d4 we have
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Theorem 3. If a is an algebraic integer which is not a root of unity, then
for every p &#x3E; 0 there exists d5(p) such that for d &#x3E; d5(p) we have

In particular,

Proof of Theorem 1. Let f (x) be a continuous non-negative function in
i 

= 

1

[0; 1] such that j f(z)dz = 1, and let G(x) = f f (y)dy. Put
o x

Define

Consider the determinant

where the matrix consists of N - ~ko + l~1 + ... + ks) d columns,
u, = 0,1, ... , l~r -1, j - 1, 2, ... , d. Here pr is the r-th prime number
(po = l, pl - 2,p2 = 3,...). Recall that a is reciprocal and a2m -
1/al, ... , ~m+1 - l/am. Then see ([3], [5], [9], [10], [19]) the determinant
D is given by

where the first product is taken over i, j =1, 2, ... , m and 0  u  v  s (if
u = v, then i  j ~ . The second product is taken over all i, j = l, 2, ... , m;
u, v = 0, l, 2, ... , s. Let us denote these products by Pl and P2 respectively.



307

We first consider Pl. We have:

Next, we have for the product P2

Combining these results we find

Now from each term afu - in the first product we take

This is the key point of our argument. Write the determinant D as

follows
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Denote yl = y2 - ~3/~2?... ~m-1 = yrrt = 

Then D can be expressed in the form

where p ( y1, ... , ym ) is a polynomial in y2 , ... , The power sj is given
by

Using the maximum modulus principle and the inequalities 1,
j - 1,2,...,m, we have

where Iyrl = Iygl ] = ... = = 1. Now by Hadamard’s inequality we find
(see [5])

On the other hand (see [9]),

For d tending to infinity the following asymptotic formulas hold:
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Similarly,

Since

and

we have
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For a sufhciently large d we have

This inequality implies (8). D

Proof of Theorem 2. If a is not reciprocal, then by Smyth’s result [16]
2 log 0, and the theorem follows from Mp(a) 2:: M1(a). Let

a be reciprocal. Then by (8) and by Holder’s inequality we have

where 1/p + llq = 1.
Note first that for a reciprocal a

For d tending to infinity we have

Hence

and Theorem 2, where the constant bp is given by (9), follows.
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Proof of Theorem 3. We have

If a is reciprocal, then the inner sum equals for even j and zero
for odd j. Hence

Utilizing Corollary 3 we have

if d is large enough and the statement of Theorem 3 follows.

Suppose now that a is not reciprocal. If

then

for d &#x3E; d5 ~p) . Hence it is sufhcient to consider the case when I ao =1. Let
a1, a2, ... , ar be the conjugates of a lying strictly outside the unit circle.
Put
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Then

We shall show now that the last expression is greater than

where 0 =1.32471.... Indeed, if

then

Therefore, the function is increasing in the interval (1; oo) and by
Smyth’s theorem

Put for brevity p = zd and r = yd. We are going to prove that

for z &#x3E; 0 and 0  y  1. Indeed, g(0) = 0 and

Therefore, with our hypotheses

for d &#x3E; d5(p). This completes the proof of Theorem 3. D
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