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The cyclic subfield integer index

par BART DE SMIT

RÉSUMÉ. Dans cet article, nous nous intéressons à l’indice dans
l’anneau des entiers d’une extension abélienne d’un corps de nom-
bres K du sous-groupe engendré par les entiers contenus dans des
sous-corps cycliques sur K. Cet indice est fini et ne dépend que
du groupe de Galois et du degré de K. Nous en donnons une

expression combinatoire. Lorsqu’on considère plus généralement
des anneaux de Dedekind, des termes correctifs apparaissent, s’il
y a une extension inséparable du corps résiduel. Nous explicitons
ces termes dans le cas d’une extension abélienne de type (p,p).

ABSTRACT. In this note we consider the index in the ring of
integers of an abelian extension of a number field K of the addi-
tive subgroup generated by integers which lie in subfields that are
cyclic over K. This index is finite, it only depends on the Galois
group and the degree of K, and we give an explicit combinatorial
formula for it. When generalizing to more general Dedekind do-
mains, a correction term can be needed if there is an inseparable
extension of residue fields. We identify this correction term for
abelian extensions of type (p, p).

1. INTRODUCTION

We first give the main result in some special cases. Let A be the ring of
integers in an abelian extension of Q of type (p, p), where p is a prime
number. Then the additive subgroup generated by all integers in A with
degree p over Q has index pp(p-l)/2 in A. For p = 2 this seems to be well-
known, and for p = 3 this has been shown by Parry [11, Lemma 5]. It

was proved by A. Fajardo Mir6n [6] that for a Galois extension of Q with
abelian Galois group of order 2 k and exponent 2, the index in the ring of
integers of the subgroup generated by quadratic integers is 2~"~ *~.
In this paper we give such an explicit formula for any abelian extension
of number fields, and we consider generalizations to more general abelian
extensions of quotient fields of Dedekind domains.
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In order to state the full result, we first introduce some notation. Let G
be a finite abelian group of order n and let Z[G] be the group ring of G
with coefficients in Z. For any Z[G]-module M we let Mcyc be the additive
subgroup LH MH of M, where H ranges over all subgroups of G for which
G/H is cyclic, and MH denotes the set of H-invariants of M. We let c(G)
be the index

We will first compute this integer explicitly.

Theorem 1. Let n = the prime factorization of n and for d &#x3E; 1

let Od(G) be the number of elements of G of exact order d. Then the prime
factorization of c(G) is given by

It is easy to see that Cp = 0 if and only if the p-Sylow subgroup of G is
cyclic.. o

Let A be a Dedekind domain and let B be its integral closure in a finite
abelian extension of the quotient field of A with Galois group G. Then B
is a Dedekind domain as well [13, Ch. I, §4, Prop. 8, 9] and Bcyc is the
sub-A-module of B generated by all integers in B that generate a cyclic
extension of the quotient field of A.
The results and arguments will depend strongly on the following condi-

tion, which may or may not hold:

for all maximal ideals q of B the q-adic completion of B is gen-
(*) erated by a single element as a ring extension of the completion

of A.

The condition (*) seems to be the natural condition under which the tra-
ditional results of ramification theory [13, Ch. III, IV] hold. It is satisfied
if all residue field extensions of B over A are separable [13, Ch. III, §6,
Prop. 12]. In particular, (*) holds for rings of integers in number fields. It

also holds when G is cyclic of prime order. One can show in general that
condition (*) is equivalent to the condition that the module of differentials

which is a B-module of finite length, is cyclic as a B-module, i.e., it
can be generated as a B-module by a single element; see [3].

For an inclusion M C N of finitely generated modules over a Dedekind
domain A we let the A-index [N : M~A be the Fitting ideal of the A-
module N/M. If N/M has finite length as an A-module, then we can
write NIM A/al ~ ~ ~ ~ ~ A/at for non-zero ideals al, ... , at of A, and
[N : M~A is equal the A-ideal a1 ... at. If N/M does not have finite length



211

then [N : M~A = 0. Note that the usual index of M in N is given by
(N : M] = [A : [N : MIA]-
Theorem 2. Let A be a Dedekind domain and let B be its integral closure
in a finite Galois extension of the quotient field of A with an abelian Galois
group G. If condition (*) holds, then we have

In the number field case one can deduce Theorem 2 from the theorem
of Fr6hlich [7] that says that B is "factor equivalent" to the group ring
A~G~, and a characterization of factor equivalence by Burns [1, Prop. (1)].
Conversely, the proof of Theorem 2 given below gives rise to an alternative
approach to Eb6hlich’s result; see [4]. See [5] for applications in a slightly
different context.

The situation is much more cumbersome if condition (*) does not hold.
It was shown in [3] that in the case that G is of type (~, p) there is a single
B-ideal c1 which can be used to extend some ramification theoretic results,
notably [13, Ch. IV, §1, Prop. 3, 4], to the case where (*) does not hold.
This ideal D measures the degree to which f2B/A is non-cyclic. It is given
by 1 = and it is the smallest B-ideal for which there exists a

B-module epimorphism 

Theorem 3. Let A be a Dedekind domain and let B be its integral closure
in a Galois extension of the quotient field of A with an abelian Galois group
G of type (p, p~ for some prime number p. Then we have

The proofs of the Theorems are given in Section 3. They use some gen-
eral properties of modules over abelian groups which are given in the next
section.

2. MODULES OVER ABELIAN GROUPS AND THE LEMMA OF DE
BRUIJN-REDEI

For a positive integer m we let E Z[X] be the mth cyclotomic polyno-
mial. We will need a basic lemma about these polynomials, which was first
stated by R6dei [12] and proved by De Bruijn [2]. Gillard [8] and Gras [9]
attribute it to Martinet. We include a different proof for completeness.
We first introduce some notation from [10, §2] that will be used through-

out the paper. If C is a cyclic group of order m, then the Q-algebra Q(C)
will be the quotient of the group ring Q[C] by the ideal generated by 
with g a generator of C. Note that this ideal does not depend on the choice
of g and that Q(C) is isomorphic to the field of mth roots of unity.
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Lemma 4 (De Bruijn-Redei). Let n &#x3E; 1 be an integer,. The ideal of Z[X]
generated by the podynomials (X’~ - 1)/(Xn/p - 1), where p ranges over the
prime factors of n, is the principal ideal generated by 

Proof. Note that 7G~X~/(Xn -1) is the group ring Z [Cn] of the cyclic group
Cn of order n generated by the image of X. Let In be the image in Z [Cn] of
the ideal generated by the polynomials (Xn - 1)/(Xn/p - 1) where p ranges
over the prime factors of n.

For every m &#x3E; 1 we have ITdlm = 1, and since Q[X] is a

unique factorization domain this implies that is isomorphic
to the cyclotomic field It suffices to show that is a torsion
free abelian group because it then follows that In is the kernel of the map
Z

If n is a prime power then this is trivial. We proceed by induction
on the number of prime factors of n. Suppose n = mk with m and
k coprime and smaller than n. We have and un-
der this isomorphism In maps to + It follows that

which is torsion free, because by the in-
duction hypothesis it is a tensor product of torsion free abelian groups. D

Let G be a finite abelian group, and let C be the set of cyclic quotients
of G. The canonical maps Q(p) for p E G give rise to a canonical
isomorphism of Q-algebras:

See [10, §2] for a short proof. It follows that every Q[G]-module V decom-
poses as a product V = where V(P) = 

For any Z[G]-module M and p = G/H E C we let Mp = MH be the
submodule of H-invariants of M. For a Q[G]-module V we have Vp =

V(’), where the partial order on C is defined by G/H’  G/H ~
H C H’. Note that for v E V we have v E V(P) if and only if v E Vp and

= 0 for some generator g of p.
Now let M be a Z [G]-module which is torsion free as an abelian group.

Viewing M as a subgroup of the Q[G]-module we

let M(P) be the image of Mp under the projection on the factor 

Lemma 5. The kernel of the projection 

Proof. Note that Ker(x) = The inclusion Mu C
Ker(Tr) is clear. Suppose g is a generator of p and let m = #p. Put

Since (M0zQ)(u) is annihilated by
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By the previous lemma, the polynomials Pp = 1), with p a
prime divisor of m, generate the unit ideal in Z[X]. By writing 1 = Lplm Qp
in Z [X] with Qp E we see that every x E Ker(7r) can be written as
x = Lplm xp with xp = Qp(g) . x E Mp. Using that wm(g)x = 0 one sees
that g"’rp fixes zp, so that x E MeT. D

In the next lemma we follow an argument that Gillard [8, §4] gives in the
context of cyclotomic units.

Lemma 6. Let A be a Dedekind domain of characteristic 0, and let N C M
be an inclusions of finitely generated A[G]-modules, which are torsion free
as A-modules. If (M : NIA 0 0 then

Proo, f. For a subset D of C, denote 1:,CD Mo- by MD . We claim that for
every subset D of C, for which a E D whenever a  p and p E D, we have

Taking D = C the Lemma will follow. We prove this claim by induction
to #D. If D is empty, then there is nothing to prove. Assume D is non-
empty, choose a maximal element p E D, and put C = DBIpl. It is clear
that Mg is contained in which in turn lies in the kernel of the

projection map M-D 7r)(MOQ)(P). This implies that 7r(Mv) = 7r(Mp) =
M(P) . By Lemma 5 one sees that the kernel of 7r is equal to ME. By
applying the same argument to N one gets a diagram with exact rows in
which the vertical maps are injective:

By the snake lemma we get a short exact sequence of the cokernels of
the vertical maps. Over a Dedekind domain, taking the Fitting ideal of a
module of finite length is multiplicative over short exact sequences, so it
follows that

This completes the induction step.
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3. DISCRIMINANTS AND CONDUCTORS

Let A be a Dedekind domain and let B be a commutative A-algebra which
is finitely generated and free as an A-module, with basis wi , ... , wn. The
discriminant AB/A is the A-ideal generated by where

is the trace of the matrix with coefficients in A defined by
zwj = rj If B’ is a sub-A-algebra which is also free as an A-module
of rank ~, then ABI/A = (B : When A = Z we often identify
a Z-ideal such as a discriminant or an A-index with its unique positive
generator. By the discriminant 0(K) of a number field K one means
the discriminant of its ring of integers as a Z-algebra, and the absolute
discriminant of K is the real number where d is the degree of K.

Proof of Theorem 1. We identify Q[G] with flp Q(p), so that the ring N =
becomes a subring of the product M = of the rings of integers

in Q(p). We have c(G) = ~N : Ncyc] and M = Mcyc, so with Lemma 6 we
get

* 1/2

is generated as an abelian group by E G/H~, where Sx
is the formal sum of all elements in the coset x of G mod H. Under
the projection map, such a sum Sx is mapped to the element (#H)x of

= Z(p), so N(P) = (#H)M~P~. The Z-rank of M(P) is cp(#p), where cp
is the Euler phi-function. One deduces that [M(P) : N(P)] = 
so that

By duality of finite abelian groups, G has the same number of cyclic sub-
groups as cyclic quotients of each order. Using the fact that the mth
cyclotomic field has degree and that a cyclic subgroup of order m is
generated by exactly of its elements, we get

where ord(g) is the order of the cyclic group generated by g, and d(m)
denotes the absolute discriminant of the mth cyclotomic field.

Next, one remarks that for two abelian groups G1 and GZ of coprime
order n1 and n2 one has c(Gi x G2) = and that one has
the corresponding identity for the other side of the equality in Theorem 1.
We may therefore assume that n is a power of a prime number p. With the
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1

formula d(p"’) = pm- p- 1 for m &#x3E; 1 (see e.g. [14, Prop. 2.1) the formula in
Theorem 1 now follows easily. 0

Proof of Theorem 2. Let A and B be as in Theorem 2. Note first that
= A ~ which in turn implies that [A[G] : A[G]cyc]A =

c( G) . A.
Let us start with the easy case that A has positive characteristic p. If

p f c(G) then A[G] = A[G]cyc and B = A[G]cyc. B C Bcyc, so B = Bcyc and
we are done. Now suppose that p ~ c(G). By the normal basis theorem we
can choose an A[G]-module injection cp: A[G] e B. Let us also choose a
non-zero element x E A so that xB is contained in the image of cp. Then
we have inclusions

and since [A[G] : A[G]cyc]A = 0 it follows that ~B : xBcyc]A = 0. But we
have [Bcyc : XBcyc]A =1= 0, and therefore [B : Bcyc]A = ~ = c( G) . A.
Now assume that A has characteristic zero and let n be the A-rank of B.

Let K and L be the quotient fields of A and B. The relative discrimi-
nant AB/A can be defined as the A-ideal generated by all determinants

where ranges over all sequences of length n
in B. It is a non-zero ideal of A. By induction to the cardinality of p we
can define for each p E C an A-ideal f (p), called the conductor of p, such
that

We can write down this definition in one stroke by M6bius inversion:
I ........ ,

where p is the M6bius function. The conductor discriminant product for-
mula now says the following.

Lemma 7. If condition (*) holds, then

Proof. For g E G let ag be the A-ideal which is the norm of the B-ideal
generated by all x - gx with x in B. For any subgroup H of G Hilbert’s
formula and transitivity of the different imply that
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where denotes the trace of the action of an element x on a Q-vector
space V. For each p e C we deduce that

The lemma now follows from the Q[G]-module isomorphism Q[G] ££ fl Q(p).
0

We continue the proof of Theorem 2. Consider the tensor product N =
B~AB as a module over the commutative ring M = B[G] by letting B
act on the left factor and G on the right factor. For every subgroup H of
G we have NH = BQ?)A(BH) and MH = B~A(A[G]H). This implies that

= and Mcyc = so that [N : Ncyc]B = [B :
B and [M : Mcyc]B = c( G) . B. Since the canonical map from the

ideal group of A to the ideal group of B is injective, it suffices to show that
(N : (M : 
The advantage of this base change to B-coef&#x26;cients is that we now have

a canonical B[G]-linear map

For every subgroup H of G we claim that [MH : ABHIA B.
To see this, let p be a prime of A, let Ap be the p-adic completion of A,
put Bp = and choose a basis c~l, ... , wn of over Ap. The
Bp-linear map induced by cp is then given by the
matrix U = (oi(wj))ij, where ~Ql, ... , an) = G/H. On the one hand, it
follows that det(U) is the p-part of [MH : But on the other

hand, it is well known that det(U)2 is the p-part of the discriminant of BH
over A; see [13, Ch. III, §3, 4]. This proves the claim.

For each p E C we now get two product expansions of [Mp : one

from our definition (**) of the conductor and one from Lemma 6 applied
to the p-action on Mp. By induction to the size of p (or M6bius inversion)
it follows that (M~p~ : = f(p) ~ B for all p E C. By Lemma 6,
applied now to the G-action on M, we therefore have [Mcyc : =

IlPEc f(P)~ One can summarize this with the following commutative dia-
gram of injections of B-modules, where the labels of the arrows indicate
the square of the B-index of the image
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Now we use condition (*) in order to invoke Lemma 7. We obtain

Since ABIA 4 0 this implies that

Proof of Theorem 3. Note first that indeed c(G) = by Theorem
1, so that the second equality holds.
The case that A has positive characteristic is again easy: either p = 0 in

A, in which case we saw already that [B : vanishes, or 0 in A,
in which case B is tamely ramified over A so that condition (*) holds and
we have D = B.

Thus, we assume that A is of characteristic zero. For each maximal ideal
q of B we need to check that the q-parts of the two B-ideals are the same.
Let p be a maximal ideal of A. Suppose that condition (*) holds for the
primes q of B extending p. Then the q-part of l is trivial for these q,
and by localization and Theorem 2 we are done. The case that (*) fails

for some q extending p remains. Since (*) holds for extensions of degree
1 and p, this can only happen when the completion Bq has rank p 2 over
Ap, and p is the residue characteristic. For the remainder of the proof we
may therefore assume that A and B are complete discrete valuation rings
of residue characteristic p. For this case the results in [13, Ch. IV, §1~ have
been extended: by Theorem 2.2 of [3] and transitivity of the different we
have

Here 1J B/A denotes the different of B over A, and the ideal r, according
to Theorem 5.1 of [3], is given by t = c~p-1. Dividing by 1JB/A and raising
both sides to the power p, we deduce with definition (**) that

We now use the same diagram as in the previous proof and find

This proves Theorem 3. D

Example. Let us take p = 2 and let A be a complete discrete valuation ring
of characteristic zero, whose residue field is the field IF2 (x, y) with x and y
algebraically independent over F2 . Lifting x and y to elements x and g of
A, we now consider B = j4[B/~,~/~]. Then B is Dekekind with an action
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of an abelian Galois group G of type (2,2). We now have B = Bcyc and
c( G) . B = 2B = D 0 B.
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