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The hyperbola xy = N

par JAVIER CILLERUELO et JORGE JIMÉNEZ-URROZ

RÉSUMÉ. On montre plusieurs résultats à propos de la longueur
minimale d’un arc de l’hyperbole xy = N contenant k points
entiers.

ABSTRACT We include several results providing bounds for an
interval on the hyperbola xy = N containing k lattice points.

1. INTRODUCTION

Consider the hyperbola xy = N, for We are interested in finding
bounds for the length of an arc of the hyperbola having certain number of
lattice points. Clearly, any lattice point on xy - N gives a divisor of N.
We will use this arithmetic interpretation to get the results.

In [2] the authors proved a lower bound, depending on the curvature.
Namely

Theorem. On the hyperbola xy = N there are at most k lattice points
such that N’Y  x1  ...  Xk 

where

In [3] the authors proved that this lower bound is best possible whenever
1/k  q  1/(k - 1). However, it does not seems to be the case for other
~y. Here we include some results which tell us that in general is far
from the real bound.

For k = 2,3 and any -y we found in [3] examples as good as possible with
polynomial growth, in arcs of length For k = 4 we already proved
there that it is not possible to find such kind of examples. However in this
case we still can get four points in an arc of lenght E4(1/2). In other words,
let us fix an integer k and 0  7  1. We define

= liminf{6- « al  ... al + NII,
where aiin for a,ll 1 G i  k, i.e. the minimum e such that for infinitely
many N there exist k lattice points (ai, bi), ai ~ on an arc of length
~ of the hyperbola = N. We can prove
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Theorem 1. = E4(1/2).
We give an example which grows exponentially.

For other -y we can give partial results by a convexity theorem

Theorem 2. There exists E (1/k, -y) such that, for any 1/k  g  gk,7
we have

This result, and the symmetry restricts our interest to q = 1/2. By
generalizing Theorem 1 we get

Theorem 3. There exist a constant c such that

This theorem should be compared with the trivial ek(1/2)  1/2-c/ki/2.
Even in y = 1/2, the exact center of the hyperbola (ae, J5) , turns out

to be of special interest. In this particular case, it is more convenient to
reformulate the problem as follows:

Question. Given a  1/2, how many lattice points (~, y) of the hyperbola
xy = N verify N1/2  x  1V1/z + Na~

By a geometric argument we see that for two lattice points we already
need a &#x3E; 1/4. This is notably bigger than our best exponent E4(1/2) = 1/6.

There is a conjecture apparently of I. Ruzsa which goes even further:

Conjecture. For all e &#x3E; 0 there exists an integer k such that only for a
finite number of values of N there can be more than k lattice points on
xy = N verifying

We prove that the conjecture is true on average, in the following sense;
Let us define

Theorem 4.

Theorem 4 was suggested by a similar result about points on circles stud-
ied in [1].
We will use f(z) = in the standard way, and f(z) = 

will mean both f (x) = 0(g(x)) and g(x) = O( f (x)), ~al, ~ ~ ~ , ak] and
(at, ... , ak) will be the least common multiple and greatest common di-
visor of al, ~ ~ ~ , ak respectively.
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2. PROOF OF THEOREMS

Let us consider k = 2 for a moment. The least common multiple, M, of
two integers aI, a2 with greatest common divisor (al, a2) = d verify

and equality happens only when d = al - a2. In order to find good bounds
for the length, in terms of the least common multiple, we need to find
integers so that their differences will be comparable with their greatest
common divisors.

Proof of Theorems 1 and 3. For k = 4, consider pn /qn the convergents
of V5 in its continuos fraction. Let

It is well known that for i fixed we have

Hence, for any fixed i, j , q.+i pm and

We deduce then that numerators and denominators of close convergents
are almost coprimes and so, for 1  i  j  4 (ai, aj ) ~ ~ al - Moreover

M = p6 , and aj = p 3 , which give us the result since
E4(1/2) = 1/6 and êk(¡) ~ by definition.

In general, to prove Theorem 3 we construct our integers as follows; Let
I, J a disjoint partition of (1, 2, ... , 2/} such that = 2n, we call

and
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We have , integers. Moreover, :
then

Hence aI - a I, ) « by the triangle inequality we get I ai - ao I 
and so ah - aI21 « for any II, I2 as above.

Furthermore, the least common multiple M of these k integers verifies

Z=1

hence, L  CM1 /2-1/Zt for some constant depending on 1 which proves the
thoeorem, since 1  c log k.

Proof of Theorem 2. By hypothesis, we know that there exist infinitely
many integers M and a1  a2  ...  ak such that (al, ~ ~ ~ , ak] = M,
M7 « a1  a2  ...  ak and ak - a1 C 

Consider the integers Ai = where .

and T is an integer T ~ for ,Q = 1)/(kg - 1).
This selection is possible whenever &#x3E; 1. However since D  Ma

for some fix 6 independent of M, we can find such T whenever Q - 1 - 8 &#x3E; 0,

Moreover Aj = Hence,

and on the other hand
which give us the result.

Remark 1. In order to get a better value of 9k,’Y we have to minimize
D, being the best possible 9k,’Y = 1/(J~ - kq + 1) when the differences are
comparable with the greatest common divisors or, in other words when
D  C for some constant C. In Theorem 1 we have aj 1,
hence D  C for some constant C and so

in the range 1/4  g  1/3, and this is the best result since E4(g) =
(4g -1/6) in this range. As we mentioned this fact is already proved in [3].
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Proof of Theorem 4. First of all we note that

since this sum counts exactly the lattice points in the square Q = I x I.
We will say that the lattice points (a, b), (b, a) are symmetric, and we will

call two lattice points on ay = n onto Q non-symmetric representations of
n if they are not symmetric. Define

S(n) = {non-symmetric representations of n}.
Suppose we have da (n) &#x3E; 2. Then, there exist at least two elements of

S(n), say ab = n = cd where a, b, c, d E I and a ~ c, d.
Let us consider 7n1 = (a, c) and write a = mill, c = mll2. Then there

is an integer m2 such that b = rra2l2 and d = M211. Now, a, c E I so

Ic - al  lVa. Hence, if we call

then

We now give an upper bound for We define a dilation of the interval I

by DI = (DN, D(N + N-)]. Then

since rrz 1, m2 , l1, l2  NO. and

for any
Suppose da(n) = j. Then, 18(n)1 ] = j(j - 2)/4 if j is even and 18(n)1 =

(j-1)2/4 if j is odd and in any case for j &#x3E; 3 we have S(n) I &#x3E; cj2 = c4 (n)
for some constant c. If we define Cj = = jl, then

and we have just seen that

.1 =-.-

On the other hand C1 = 0 (Na) since it counts the integers with only one
representation in the diagonal, and by (2.1) and (2.3) we have
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Hence

which give us the result in Theorem 4 by 2.2.

Remark 2. Theorem 4 cannot be extended to a = 1. This is the analogous
to e = 0 in the conjecture of Ruzsa, which is trivially false in this case.
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