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Cryptography based on number fields
with large regulator

par JOHANNES BUCHMANN, MARKUS MAURER
et BODO MÖLLER

RÉSUMÉ. Nous introduisons une variante du protocole de signa-
ture et d’identification de Fiat-Shamir, basée sur la difficulté pra-
tique qu’il y a à calculer des générateurs des idéaux principaux
dans les corps de nombres. Nous montrons en outre comment

utiliser les heuristiques de Cohen-Lenstra-Martinet pour les grou-
pes de classes dans le but de construire des corps de nombres dans

lesquels le calcul de générateurs des idéaux principaux est encore
hors d’atteinte.

ABSTRACT. We explain a variant of the Fiat-Shamir identification
and signature protocol that is based on the intractability of com-
puting generators of principal ideals in algebraic number fields.
We also show how to use the Cohen-Lenstra-Martinet heuristics
for class groups to construct number fields in which computing
generators of principal ideals is intractable.

1. Introduction

The security of public key cryptosystems is based on the intractability of
computational problems in mathematics and in particular in number the-
ory. Examples are the problems of factoring integers or computing discrete
logarithms in certain finite abelian groups (see [24]). However, there is
currently no such problem whose computational difficulty can be proved.
On the contrary: Experience with the factoring problem shows that unex-
pected breakthroughs are always possible. To guarantee that public key
cryptography is possible even if the currently used systems are broken, it is
necessary to identify alternative computational problems that can be used
as the basis of public key schemes.

In this paper, we consider the principal ideal problems (PIP): Let 0 be
an order of an algebraic number field F. Given a principal O-ideal I, find
a generator of that ideal, i.e. an element a E F such that I = a0. We
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show how to use the heuristics of Cohen, Lenstra, and Martinet ([13], [14],
[15], and [16]) for class groups of algebraic number fields to generate orders
for which PIP is intractable, and we present PIP-FS, a variant of the Fiat-
Shamir identification and signature scheme [17] whose security is based on
PIP. We describe an implementation of PIP-FS in real quadratic fields, we
discuss its security, and we present timings that show that PIP-FS has the
potential to become practical.
PIP is a special case of the number field discrete logarithm problem

(NFDL), which was introduced in [8]. There, it has been suggested to
develop cryptographic primitives based on NFDL. For number fields with
large class number, a new scheme has been presented in [2]; also some pre-
viously known cryptographic schemes such as [18] and [26] can be adopted
to the class group of a number field since they do not require knowledge
of the group order (cf. [2] and [19)). A bit commitment and an oblivious
transfer scheme for real-quadratic number fields have been described in [3].
Here, we present first identification and signature schemes for number fields
with large regulators. We show how to generate such fields that are suitable
for cryptographic applications.

This paper is organized as follows: In Section 2, we present a general
version of the Fiat-Shamir protocol (FS). In Section 3, we explain PIP-FS,
an FS variant based on PIP in number fields. A detailed description of
the implementation of PIP-FS in real quadratic number fields is given in
Section 4.

2. Fiat-Shamir identification

In this section, we present a fairly general version of the Fiat-Shamir
identification protocol (FS). (For generalizations of the original Fiat-Shamir
scheme [17], see also [12] and [11].)
The goal of the FS protocol is that one party, called the prover, convinces

the other party, called the verifier., of his knowledge of a private key without
revealing any relevant information concerning that private key. We will also
explain how a digital signature scheme can be obtained from this protocol.

In the setup phase of the protocol, the prover and the verifier agree on
two abelian groups G and H, on a homomorphism cp : G - H, and on a
positive integer k. The prover selects k group elements 9i E G, 1  i  k.
The sequence (gl, ..., gk) is his private key. He then computes hi = cp(gi),
1  i  k. The sequence (hl, ..., hk) is his public key.

(In the original Fiat-Shamir protocol, a key issuing center is responsible
for selecting G, H, and cp such that the center can efficiently invert cp

using certain additional information, which must be kept secret. Then the
components of any prover’s public key can be derived from a description
of the prover containing, for example, name and address information by
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applying a hash function; the key issuing center can compute an appropriate
private key and pass it to the prover. We note that our variant of the Fiat-
Shamir protocol does not have this property. Instead, public keys must be
explicitly given, as e.g. in Schnorr’s identification scheme [28].)
The FS identification protocol works as follows:

1. (Commitment and Witness) The prover randomly selects a commit-
ment g E G and computes the witness h = The prover sends

the witness h to the verifier.
2. (Challenge) The verifier selects a challenge e E 10, Ilk and sends it to

the prover.
3. (Response) The prover computes the response r = g giei z and

sends it to the verifier.
4. (Verification) The verifier checks whether = cp(r).

Clearly, a prover who knows the private key can convince the verifier of
his identity.
Assume that cp has the following one way property: Without knowledge

of the private key, it is intractable to compute, given ( fl, ..., fk) E 10, ±Ilk
where at least one f i is not 0, an s with p(s) = IT1 We show that the

probability to detect that a prover does not know the private key is at least
1-1/2 k. To increase the probability, the basic protocol can be repeated
several times.

If the prover is able to give the correct answer for two different chal-
lenges and (el, ... , e’), then he knows r, r’ E G such thatk
cp(r) = hii and cp(r’) = h;i. This implies that he can com-
pute s = r’r-1 such that p(s) = he’-ei . Note that e’ - ei E f 0, :l:1}.
By assumption, computing s without the knowledge of the private key is
intractable. Therefore, a cheating prover cannot know the correct answer
for two different challenges, and the probability for him to be detected is
at least I - 1/2 k
When we explain our variant PIP-FS in Section 3, we will also show

that the verifier or an observer are not able to derive the private key from
information transmitted during the protocol.
The FS identification protocol is efficient if multiplication in the groups

G and H can be performed efficiently and if the homomorphism cp can be
computed efficiently.

In the following way, the FS identification protocol can be transformed
into a signature protocol. Suppose a document d is to be signed. The

signer selects a commitment g and computes the witness h as in the above
protocol. To generate the challenge, the signer uses a cryptographic hash
function f (see [24]). He computes f (d o h) where o is concatenation and
d, h are identified with the bit strings by which they are represented. The
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challenge is the sequence of the first k bits of the hash value. The signa-
ture consists of the witness and the response. The verifier computes the

challenge from the witness and the document and proceeds as in the FS
protocol.

3. PIP-FS

We explain PIP-FS, our FS variant that is based on the intractability of
solving the principal ideal problem in number fields. Let F be an algebraic
number field and let 0 be an order of F. In the Fiat-Shamir protocol, we use
the multiplicative group F* of all non-zero elements in F, the multiplicative
group

of principal fractional 0-ideals, and the homomorphism

With this choice of G, H, and cp, the general Fiat-Shamir protocol described
in the previous section can be implemented. We call the resulting protocol
PIP-FS.

In order for PIP-FS to be secure, inverting cp must be intractable. Invert-
ing p means solving the principal ideal problem for 0-ideals. We discuss
the difficulty of this PIP. The two most efficient methods known for solv-
ing the principal ideal problem are the babystep-giantstep algorithm [7] [1]
and the index calculus method [29] [6]. The running time of the babystep-
giantstep algorithm is where n is the degree of F, A is
the discriminant of 0, and R is the regulator of 0. More precisely, the
following is true. Let I be a principal 0-ideal. Let a be a generator of
I such that the euclidean length of the logarithmic embedding of a (see
[4]) is minimal, and let a be that length. Then a can be computed in
time no(n) minla, The running time of the index calculus
algorithm is Thus, in order for the
principal ideal problem to be intractable, the discriminant, the regulator,
and the minimal logarithmic length of the generators must be sufficiently
large. We note that no Pohlig-Hellman attack (see [24]) is known for PIP.
Therefore, no further condition for the order 0 appears to be necessary.

For the appropriate choice of the order 0, we use the analytic class
number formula [4] and the heuristics of Cohen, Lenstra, and Martinet
([13], [14], [15], [16]). The analytic class number formula tells us that the
product of the class number h and the regulator R of the algebraic number
field F is asymptotically proportional to    where 0 is the discriminant
of F. The heuristics of Cohen, Lenstra, and Martinet predict when the
class number is small with very high probability. Thus, if we choose the
number field F
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1. with sufficiently large discriminant in order to make index calculus
attack infeasible and

2. with small class number (using the heuristics of Cohen, Lenstra, and
Martinet),

then the principal ideal problem appears to be intractable.
Next, we must answer the question how the keys, commitment, witness,

challenge, and response are selected or computed. The idea is to use reduced
principal 0-ideals and their generators. We will explain this in detail for the
case of real quadratic orders. The methods explained for these orders can
be generalized to general orders. This will be explained in a forthcoming
paper.

4. PIP-FS in real quadratic fields

In this section, we show how to implement PIP-FS using a real quadratic
order in which the principal ideal problem is intractable. In particular, we
explain

1. how the order 0 is selected,
2. how the private key and the commitment are selected and represented,
3. how the public key, the witness, and the response are computed and

represented, and
4. how the verification is performed.
We let 0 be a real quadratic order of discriminant A, class number h,

and regulator R. By F we denote the field of fractions of 0.

4.1. The order. As explained in Section 3, we have to choose the order
0 such that both the index calculus algorithm and the babystep-giantstep
algorithm cannot be used to solve the principal ideal problem in 0. We
will, in fact, choose 0 as a maximal order.
The most efficient variant of the index calculus algorithm that is cur-

rently known is due to Jacobson [21]. Extrapolating experiments with
Jacobson’s algorithm, Hamdy [19] found that the difhculty of applying the
index calculus algorithm in an order with a 687 bit discriminant is the same
as the difficulty of factoring a 1024 bit number with the number field sieve.
Therefore, we require that

Further comparisons can be found in Table 1.
To make the babystep-giantstep attack impossible, we choose the order

such that

where 160 is a security parameter. The reason for this choice is given
in Section 4.5.
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TABLE 1. Comparison of factoring with the number field
sieve and solving PIP-FS with index calculus.

To satisfy requirement (2), we choose A to be the product of two random
primes 3 mod 4. We will show below that, assuming the Cohen-
Lenstra heuristics [13] and the extended Riemann hypothesis, condition (2)
is satisfied with probability 1 - 2-~2 , N, if

For example, if kl + k2 = 240, we obtain that A &#x3E; 25°9 is sufficient. So if
(1) holds, then (2) is satisfied. Choosing A to be the product of two primes
has additional appeal when these primes are not disclosed. Being able to
solve PIP for arbitrary reduced principal ideals implies being able to factor
the discriminant ([9], [27]). Thus in this case PIP is provably at least as
hard as breaking cryptosystems such as RSA that rely on the assumption
that factoring integers of this form is intractable.

So let us explain why it suffices to choose A according to (3). Since
A is square-free, 0 is a maximal order. We can relate the regulator R to
the class number h by using the analytic class number formula [4]: We
have 2hR = ~ ~ where L(1, X) _ flp prime (l - is the

value at 1 of the Dedekind L-series for the Kronecker symbol X = (~).
So our initial condition (2) translates to &#x3E; *

Assuming the ERH, we have, by a result of Littlewood [23], that L(1, x) &#x3E;

(1 -I- 
1 

where q = . 0.5772... is Euler’s constant

(cf. [25], where it is also discussed how 1 + o(l) can be replaced by explicit
bounds). As 12e~/~r2  4, certainly L(I, X) &#x3E; 4(1 + and
from this we obtain the new condition

We now examine the class number h in more detail. For the even part of h,
we can use well-known theorems from genus theory [20]: Since A is the

product of two primes pi , P2 = 3 (mod 4), the class number h is always odd.
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For estimating the odd part of the class number, we apply the heuristics
of Cohen and Lenstra [13] with the assumption that our restriction on the
choice of A does not affect the statistical behaviour of the odd part of the
class number. Then the probability that h &#x3E; x is asymptotic to 1 / (2x)
(cf. [13], § 9, (C12) a). With probability at least 1- 2-~2, we have h  2*~2 .
By substituting this into (4), we obtain the condition

Assuming that A is large enough such that 1 + o(l) can be omitted, we
arrive at (3).

4.2. Reduced 0-ideals. To implement PIP-FS in 0, we use reduced 0-
ideals, which we describe in this section. For more details on reduced ideals,
we refer to [27] and [30].

Every fractional 0-ideal I has a representation

where q is a positive rational number, a is a positive integer, and b is an
integer. The numbers q and a are uniquely determined. The integer b is
unique modulo 2a. For a &#x3E; ae, we choose b such that -a  b  a; for
a  B/A, we choose b such that J3 - 2a  b  ae. We represent I by
(q, a, b, c) where c = (b2 - A)/(4a) E Z. If q = 1, then we write I = (a, b, c).
The 0-ideal I = (a, b, c) is called reduced if IVK - 2al I  b  U1. If

I = (a, b, c) is a reduced 0-ideal, then lal + Icl  01. This implies that
the number of reduced 0-ideals is finite. For example, the order 0 itself is
a reduced principal 0-ideal.
We explain the reduction operator p, which is the basic algorithmic prim-

itive in reduction theory of 0-ideals. If I = (q, a, b, c) is an 0-ideal, then

with

We can also write this as

If I is not reduced, then a reduced ideal J that is equivalent to I and an
element ’1 E F* with J = ’1 I can be computed as follows.
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1. Set -y = 1 and J = I.
2. While J is not reduced, replace y by and J by p(J).

This algorithm terminates with the correct result in quadratic time. We
write q = -y(I) and J = reduce(I).
The fact that reduction of O-ideals is possible in polynomial time implies

the following theorem, which shows that using only reduced O-idea,ls does
not harm the security of PIP-FS.

Theorem 4.1. There is a polynomials time reduction from PIP for D-ideals
to PIP for reduced O-ideals.

Proof. Let I be a fractional O-ideal. Instead of solving PIP for I, we solve
PIP for J = reduce(7) = If J is not principal, then I is not principal.
If J is principal and J = a0, then I is principal and I = D

Restricted to the set of reduced ideals in an equivalence class of O-ideals,
the reduction operator p is a transitive permutation. This implies that
there is a positive integer p such that the set of reduced principal ideals
is fpz (0) : 0  i  p} and p2(O) = if and only if i - j mod p. If
I = (a, b, c) is reduced, then

which can also be written as

We also have (see [27, Lemma 3.2]

and

for reduced I.
From (10) and (11), we obtain the following lemma, which is used in

the construction of the private and public key and the commitment and
witness.

Lemma 4.2. Let r be a real number,. Then there is a reduced O-ideal that
has a positive generator a with Ilna - r[  (In~)/4.

Proof. Let r &#x3E; 0. Set Io = 0, ao = 1, Ii+l = p(1i), ai+l = Then

Ii is a reduced O-ideal with generator cx2, cx2 &#x3E; 0, 0  In 0152i+l - In 0152i =

 (In A) /2 by (10), and limi,,,,,Inai = oo by (11). This implies
the assertion. For r  0, the proof is analogous and uses p-1. D
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4.3. Private key, commitment, public key, and witness. Assume
that A is chosen as described in Section 4.1.
The private key and the commitment are chosen such that the corre-

sponding principal ideal problems are difficult. We now explain how we
can choose them as generators of reduced principal ideals.

It follows from Theorem 4.1 that is is not harder to solve PIP for O-ideals
than for reduced O-ideals. Therefore, we may limit ourselves to generators
of reduced 0-ideals when choosing the private key and the commitment.
We denote the set of all reduced principal O-ideals by Po. The public key
and the witnesses are computed using the function

which is described in Section 4.6. Here, we use the following properties of
that function:

1. Given n E N, the value close(n) can be computed in polynomial time.
2. For every n E N, there is a positive generator a of close(n) with

can [  (lnA)/4 + 1, where c = ((ln 0)/2 + 21. It can be com-

puted in polynomial time.
3. The restriction of close to any interval of 2ki consecutive integers is

injective, where 160 is chosen as in Section 4.1.

To generate the private key, the prover randomly chooses k integers
nl, ..., nk in [0,2kl - 1]. The corresponding public key is (I1, ..., Ik) with
Ii = close(n2), 1  i  k. For the generation of the commitment, we
need two more security parameters N. The integer 1~2 is chosen
such that an event that happens with probability 1 /2~2 is considered prac-
tically impossible. Parameter 1~3 is chosen such that 2k3 is an upper bound
for the number of applications of the PIP-FS protocol with one key pair.
For example, k3 = 30 allows to use the same key pair every second for
more than 30 years. The commitment is a random integer n E [0,2£ - 1~,

-f-1~2 + k3 + 1. The witness is I = close(n) .

4.4. Response and verification. Let A and c be as in Section 4.3. Let
(nl, ..., nk ) be the private key and (h, ... , Ik ) the corresponding public key,
both chosen as in the previous section. Assume that n is a commitment,
I = close(n) is the corresponding witness, and (e1, ..., ek) E is the

challenge. Then the response is r = n + eini . Using r, the verifier
is able to verify that there is a generator of i that is close to cr.
This is explained in Section 4.7.

4.5. Security. We explain why PIP-FS as described is secure. Let Pl -
Iclose(n) : n E [0,..., 2kl - 1]}. As close is injective on the interval
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[0, ..., 2kl - 1], it is impossible to tabulate the elements of Pi with gen-
erators or to guess a private key yielding the same public key. We ana-
lyze the time required to compute a generator of an element I of Pi. Let
I = close(n) with n E [0,2~ -1]. Since by (2) we have R &#x3E; c - 2 ki, it follows
that the logarithm of the smallest positive generator of I is approximately
cn. Therefore, the babystep-giantstep algorithm [1] for computing a gen-
erator of I takes 2~1 ~2 Do(1) bit operations. So it is impossible to compute
a generator of I this way. Also, by choice of A, determining a generator
of I by the index calculus algorithm is impossible. Hence, computing gen-
erators for elements of Pi is intractable. Similar arguments apply to close
restricted to any other interval [m,..., m + 2~1 - 1~, and hence to close on
intervals (o, ..., b~ where 
Now we show that knowledge of values of r, collected from up to 2 k3

executions of the protocol, with overwhelming probability does not allow
the verifier or an observer to deduce any sub-sum of the secrets nl, ..., n~.
For simplicity, assume that an attacker targets only which is most

easily done by always using the challenge ( 1, 0, ..., 0), so that r = n + nl .
As n E [0, 2~ - 1], this response r only reveals that nl E [r - 2~ -~-1, r]. It is

known beforehand that nl E [0,2~ - 1~, so r is helpful for determining nl
only if r - 2~ + 1 &#x3E; 0 or r  2ki - 1, which implies that n + 2 ki -2t &#x3E; 0

or n  2kl - 1, respectively. Thus, for uniformly chosen n E [0,2£ - 1],
the probability is less than 2 - Combined over 2 k3 iterations of the

protocol, the probability still is less than 1 - (1 - 2 - 2~1-~ ) 2k3 , i.e. under

2 ~ 2~1-~ ~ 2k3 = 2-~2 , which by choice of 1~2 is considered negligible.

4.6. The function close. Let k2, 1~3, .~, l~, 0, F, A, and R be as in
Section 4.3. We explain the implementation of a function

with the properties from Section 4.3 where Po is the set of all reduced

principal 0-ideals. We will show that this function restricted to any interval
of 2ki consecutive integers is injective, and that for any n E N the ideal
close(n) has a positive generator a with cn[  (lnA)/4 + 1 where

This function is used for the generation of the public key, the computation
of the witness, and in the verification.

Let n e N. The algorithm computes b = [1092 n] + 1, i.e. the binary
length of n, and t = cn/2b. Then it recursively computes, for 0  i  b,
reduced O-ideals Ii that have positive generators 0152i with

and returns Ib = close(n).
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To initialize the recursion, an 0-ideal 10 is computed that has a positive
generator ao with I In ao - t) I  (lnA)/4 + 1. This is done by the following
procedure:

1. Set Io = 0, 0:0 = 1.
2. While (In A) /4, set 0:0 = and Io = p(Io).

It follows from (10) and (11) that the algorithm terminates with the correct
result after 0(ln A) iterations of the while loop. Since the implementation
uses rational approximations to the logarithms, it can only guarantee that

 when the while-condition is found to be false. The
details are explained below.

Next we explain the recursion. When Ii has been found, i  b, then Ii+1
is computed as follows. First, the ideal Ii is determined. This is a principal
0-ideal with generator 0:;. Note that

So In a? is pretty close to 2i+lt, but (13) may not be satisfied. Also, the
ideal Ii is, in general, not reduced. To make I2 reduced, the reduction
algorithm explained above is applied. It yields a reduced principal 0-ideal
Ii+1 and an element 1’i+l E F* such that li+l = 1’i+lIl. If In 1’i+l is too

small, then we replace 1’i+l by 1’i+la(Ii+l) and by until (13)
holds for ai+1 = 1’i+ 1 aT . If is too large, then we replace 1’i+ 1 by

and Ii+l by until (13) holds for Note

that is a generator of the reduced principal ideal Ii+l.
As we can only work with approximations to the logarithms, things are

somewhat more difficult. We explain the details. To obtain (13), we ap-
proximate In a2 by a rational number a2 with

for 0  i  b, and each l’i+l is chosen such that

Then ai+l = satisfies (13).
To find such that (16) holds, we work with rational approximations

to the logarithms and modify the algorithm from above as follows: If, after
reduction, the approximation to the logarithm 1’i+l is too small, we start
with ,3o = 1’i+l and determine ideals by iterative application of
p, such that 2i+lt - 2ai is larger than or equal to the approximation of

but smaller than the approximation of If the logarithm of
is too large, we use p-1 instead. At the end, 1’i+l is replaced by 

or depending of which logarithm approximation is closer to 2i+1t - 2ai.
This is done by the following procedure.
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2. Set T = 2ai.
3. If bo  T, do the following: Set j = 0. While T, set Jj+l = 

flj+i = and compute with  1/4; replace
j

Otherwise: Set j = 1. While &#x3E; T, replace j by j - 1; set
jj-1 = = and compute with 

 1/4.
4. then set Ii+l = Jj-l and = Otherwise,

set Ii+l = Jj and = 

We prove that this procedure is correct.

Theorem 4.3. -yi+1 determined by the procedure satisfies (16).

Proof. Let T, bj be as in the procedure and let j be with the value at
the end of the procedure. It is

If T - T, set c = Otherwise, set c = bj.
First, we examine the case T  It is 

lc - Tj + 1/4  T~, lln,3j - T~} + 1/2. So, (10) implies
Iln1’i+l - TI  (In A)/4 + 1/2.
The second case is T . It is Iln1’i+1 - TI  c - T ~ + 1 /4  ~ 

- - - - - -

We can use the same arguments for the third case T  D

The initial value ao is computed by executing the procedure with i = -1,
I-1 = 0, and a-1 = 0. Then the procedure determines ,0, and we set
cxo = 70.

Finally, we remark that the approximations ai can be computed as fol-
lows. Each generator is of the form aj = . After 73 has been
computed by the procedure above, we approximate its logarithm by cj such
that lcj - ln7jl [  2-n+j-b-3. . We set ao = co and a2+1 = 2ai + Then

ai satisfies (15) for 0  i  b.

4.7. Implementing the verification. In the verification step, the veri-
fier knows the positive integer r, the principal O-ideals I, h, ..., Ik , and the
exponents el, ..., e~ E ~0,1~. He wants to verify that the principal O-ideal
1 n7=1 17i Z has a positive generator a such that In ct is close to cr, where c
is defined according to (12).
The verifier uses the reduction algorithm from Section 4.2 to compute

a reduced O-ideal J and 7 E F* with J = ~yI 17i. This is done as
follows:

1. Set 
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2. For i = 1, ...,1: If ei = 1, then replace q by and J by
reduce

If a is a generator of then aq is a generator of J. Since

I I1f=1 Ii has a positive generator whose logarithm is close to cr and since
In I is small, it follows that the reduced O-ideal J has a generator whose
logarithm is close to cr. The verifier can verify this by computing K =
close(r) and by searching for J in the neighborhood of K. More precisely,
he applies the following algorithm where n is chosen according to Theorem
4.4: .

1. Compute K = close(r). Set Kr = Ki = K and i = 0.
2. While i  n, J ~ KI and J ~ Kr replace i by i + 1, Kr by p(Kr), and

Ki by p-l(KI).
In the next theorem, we give an upper bound on the number of steps

that are necessary for the verification to succeed.

Theorem 4.4. If r is chosen according to the protocol, then the verification
succeeds a f ter at most n = + (In A) /4 + 1) /In 21 iterations, where

Proof. Let Ji-l denote the value of J before the i-th iteration of the for-
loop used in the reduction of III:==117i. Then In(32A)
holds for each i (see [30, Theorem 5.2~ ) . This implies

Assume that the response is correct, i.e., there exists a positive generator
a E F* with = aO and Ilna - cr~ [  ((1n0)/4+1)(1+~~ 1 ei).
It follows from (17) that there is a generator ~3 = aq of J with Iln /3 - cr 
x. By (13), we have ~close(cr) - cr) [  (lnA)/4 + 1. Since we apply p and
p 1 to find J and since by (11) the step width of two such applications is
at least In 2, we obtain the assertion. D

4.8. Timings. We have implemented the real quadratic order PIP-FS
identification protocol in C++. The running times given in this section has
been measured on a Pentium II, 300 MHz, 64 MB main memory, running
SuSe Linux 2.0.35, using the compiler egcs-2.91.57 with option -02, and
using the LiDIA-2.0 library [22] with libI as underlying kernel arithmetic.
All timings are given in seconds.
The setup is as follows. For each m E {687,968,1208,1665,2084}, we

choose several discriminants with m bits, run the protocol, including order
and key generation, and measure the average time per discriminant. We
have run the tests with k = 30, i.e., the probability that a cheating prover
is detected is at least 1- 1/230 As challenge, we choose a bit string with 15
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bits set to 1. Furthermore, the security parameters are chosen as 1~1 = 160,
1~2 = 80, and ~3 = 30 (see Section 4.3).
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