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Davenport-Hasse relations and an explicit
Langlands correspondence, II: twisting

conjectures

par COLIN J. BUSHNELL et GUY HENNIART

To Jacques Martinet on his retirement

RÉSUMÉ. Soit F une extension finie de La correspondance de
Langlands donne une bijection canonique entre l’ensemble 
des classes d’isomorphisme de représentations irréductibles de di-
mension n du groupe de Weil de F, et l’ensemble des

classes d’isomorphisme de représentations irréductibles supercus-
pidales de GLn (F) . Nous regardons le cas où n est une puissance
de p, n = pm. Dans un travail antérieur, nous avons construit une
bijection 03C0 de sur grâce à la construction d’un
changement de base modéré (non nécessairement galoisien). Si
le changement de base satisfait certaines relations conjecturales,
dites de Davenport-Hasse, et si l’on admet l’existence d’une cor-
respondance de Langlands en degré pm, alors cette correspon-
dance n’est autre que 03C0. Dans ce papier, nous ne supposons pas a
priori l’existence d’une correspondance de Langlands, mais nous
voulons prouver directement, en supposant vérifiées les conjec-
tures de Davenport-Hasse, que 03C0 est une telle correspondance.
Nous réduisons le problème à des propriétés élémentaires des con-
stantes locales 03B5(03C01 x pour ~ (qui peuvent
d’ailleurs se déduire de l’existence de la correspondance de Lang-
lands et de propriétés analogues du côté galoisien). Au cours de
cet article, nous obtenons de nouvelles propriétés inconditionnelles
pour 03C0, et décrivons complètement les propriétés de rationalité des
fonctions L et des constantes locales de paires pour GLn(F).

ABSTRACT. Let F/Qp be a finite field extension. The Langlands
correspondence gives a canonical bijection between the set 
of equivalence classes of irreducible n-dimensional representations
of the Weil group of F and the set of equivalence
classes of irreducible supercuspidal representations of 
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This paper is concerned with the case where n = pm. In earlier
work, the authors constructed an explicit bijection 03C0 : 

using a non-Galois tame base change map. If this tame
base change satisfies a certain conjectured automorphic Davenport-
Hasse relation, and there exists a Langlands correspondence in
p-power degree, then 03C0 is the Langlands correspondence. This

paper is concerned with the problem of showing, without assum-
ing a priori the existence of the Langlands correspondence, that
(on the Davenport-Hasse conjecture) 03C0 preserves local constants
of pairs, and so is a Langlands correspondence. The principal ob-
struction is the lack of knowledge of certain elementary properties
of the local constant 03B5(03C01 for ~ We state
these properties as conjectures (which are certainly true, as con-
sequences of the existence of the Langlands correspondence and
analogous properties of the Langlands-Deligne local constant) and
show that they imply the desired result: 03C0 is a Langlands corre-
spondence. In the process, we prove several new unconditional
results concerning 03C0, and give a complete account of the ratio-
nality properties of L-functions and local constants of pairs for
GLn(F).

Introduction

Let p be a prime number. We fix an algebraic closure Qp/Qp of the p-
adic number field Qp, and consider a finite field extension F/Qp contained
in We write 1NF for the Weil group of We use the standard
notation oF for the discrete valuation ring in F, pF for the maximal ideal of
oF, Ul - 1+pF for the group of principal units, and vF for the normalized
valuation Z.

The Langlands Conjecture for GLn(F) has been proved, for all n &#x3E; 1, in
[16] and [20]. The methods of these two papers are different, but they both
rely on constructions from [14], [15]. Their approach is global in nature,
with a significant geometric component; they can therefore say nothing
explicit about the local Langlands correspondence whose existence they
establish. To get an explicit correspondence, once has to work in a local
framework, using the classification of representations from [11]. This paper
is concerned with the problem of obtaining a local proof of the existence of
the correspondence in these terms. We deal only with a special case, but
one which is particularly subtle and basic to the overall picture.

1. To specify this case, we take an integer m &#x3E; 0 and write for
the set of equivalence classes of irreducible continuous representations a of
’WF such that dim Q = p’"’~ and which are totally ramified in the sense that
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a 0 X ’;p a for any unramified quasicharacter X =11 of ’WF. There is a cor-
responding notion on the other side: we write for the set of equiv-
alence classes of irreducible supercuspidal representations 7r of 

such that X7r r. 7r for any unramified quasicharacter x # 1 of FX. (Here
and throughout X7r denotes the representation g H x(det g)7r(g) .) A spe-
cial case of the Langlands Conjecture for GLn(F) predicts the existence of
a bijection

which preserves local constants of pairs:

for oi E and 7ri = (ai), i = 1, 2. Here, the first E is the lo-
cal constant of Langlands-Deligne [13] and the second that of Jacquet,
Piatetskii-Shapiro and Shalika [22], [26], attached to a complex variable
s and a non-trivial character OF of the additive group of F. The family

has several other formal properties; together with (1), these specify
it uniquely.

2. In [5], we constructed a bijection

using the description of the elements of implied by [11] and group-
theoretic constructions which are, at least in spirit, elementary and straight-
forward. The family has many of the properties demanded of a Lang-
lands correspondence (see especially [5, §2]). One also knows from [6] that,
for 7 we have

where xa is an unramified character of F~ of finite order strictly dividing
pm. However, we do not know at this stage whether enjoys the critical
property of preserving local constants of pairs.
The construction of the correspondence is based on that of a certain

tame base change map. If this tame base change satisfies the automorphic
Davenport-Hasse relation (recalled below as Conjecture A) then indeed
7r~ = ~ for all m and F, ~6~ .

3. In this paper, we are more concerned with how one could proceed with-
out assuming a priori the existence of the Langlands correspondence. In

particular, we consider the problem of showing directly that the correspon-
dence (7r§) preserves local constants of pairs.
From now on, we make no use of the existence of the Langlands corre-

spondence ~,Gm~. Indeed, we shall not mention it again except in asides.
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As we shall see, the principal obstruction to carrying out this programme
is our present ignorance of the structure and significance of the local con-
stant 6(-xl x ir2, 8,’OF) - In this paper, we list as conjectures some basic
properties of the function (7ri , 7r2) - e (7ri x 2, (the "twisting conjec-
tures" ) and investigate their consequences. We show that they imply many
cases of the Davenport-Hasse relation. If we assume the full Davenport-
Hasse relation, they imply that the family (7r§) preserves local constants
of pairs up to sign (if p is odd) or exactly (if p = 2). To eliminate the

sign ambiguity, we have to assume a rather deeper conjecture (Conjecture
B below) concerning the local constant. This conjecture implies that 17r’ I
has all the properties demanded of a Langlands correspondence.

4. We now give an abbreviated account of these conjectures. They are all
suggested by analogous properties of the Langlands-Deligne local constant
~(~1 ® ~2~ s~ ~F)~ oi E 

Temporarily let 1I’"i be an irreducible smooth representation of GLni (F),
fori=1,2. We have

where x ~r2, OF) is an integer and q = qF is the size of the residue field
oF/pF of F. An immediate consequence of the definition [22] of the local
constant is that

for any unramified quasicharacter X of FX and any c E FX with VF(C) =
~2, ~F)~ Our first conjecture is a refinement of this property.

Let K/F be a finite tame extension, and let

be the tame base change ( "tame lifting" ) map defined in ~5) . We write vr
for the contragredient of 7r.

Twisting properties conjecture. Let 7ri e ~4~.(~)~ i = 1, 2, and sup-
pose that 7ri ~ X*2 for any ramified quasicharacter x of FX.

(i) There exists c = c(7ri x FX, determined modulo
such that

for any tamely ramified quasicharacter X of FX.
(ii) Let K/F be a finite tame extension, and put ’ØK = OF o TrK/F.

Suppose that ~rK ~ for any tamely ramified quasicharacter X of KX.
Then 

-- -- -
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For the definitive statement of this conjecture, see §2 below.

Remark. This conjecture is certainly true, as a consequence of results in
[8] and the existence of the Langlands correspondence. Direct proofs are
known for many cases, but we do not consider the matter here.

5. We recall from [6] the automorphic Davenport-Hasse relation. We take
an odd prime number £ =I p and a totally ramified extension K/F of degree
~. We need the Adams operation 7r H -xt on defined in [6, §3] or
[5, §10], and also the unramified character zl = L1t,m of Fx defined by

is the Legendre symbol. The Davenport-Hasse relation is then

Conjecture A. Let 7ri E = 1, 2, and suppose that 
for any unramified quasicharacter x of KX. Then

This conjecture is known when ml or m2 is 0 [6, Proposition 4.1]. In all
other cases, we have = 1, so the relation then reduces to

Remark. Conjecture A is a test of the "correctness" of the definition of

lK/P. The Langlands correspondence ~,Gm~ gives a map 
~4~(7~) corresponding to the restriction map 9~(~) 2013~ ~m (I~); this sat-
isfies the analogue of Conjecture A [6, Theorem 2.2~ .
6. The final entry in our list of conjectures is more overtly arithmetic in
nature. For this, we need the normalized classical Gauss sum 
x E F~, defined in [18] and recalled in 3.3, 3.4 below.

Conjecture B. Let E i = 1, 2, and let w2 denote the cen-
tral quasicharacter Suppose that 7rl ~ X7r2, for any ramified
quasicharacter x of px. Then

where Ap. denotes the group of all p-power roots of unity in cC and
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Remark. In the case of ml or m2 being zero, Conjecture B is proved in [5,
1.4); the general case follows from [8] via the correspondence 
7. We give a summary of our results. In ~ 1, we extend the domain of defini-
tion of the correspondence to a larger set, using unramified automor-
phic induction [21] and the Langlands-Zelevinsky classification. The point
is that this set is stable under the operations of base change (in the sense of
[1]) in arbitrary degree and automorphic induction in p-power degree. We
show that the extended correspondence commutes with such operations, up
to twisting with unramified characters of finite p-power order. The results
of 31 are completely unconditional, depending on no conjecture. Thus they
have some independent interest, and they also form the first step in the
proofs of our later results.

In §2, we give the definitive statement of the twisting properties conjec-
ture. From this, we deduce in §3 some rationality properties of the numbers
e(7rl x 7T2, - OF). Here we employ a result (Theorem 3.2) describing the ac-
tion of the group Aut(C) of all (not necessarily continuous) automorphisms
of C on L-functions and local constants of pairs. This again depends on no
conjecture, and is proved in §6.

These rationality properties have interesting consequences. Always as-
suming the twisting properties conjecture, we get:

Theorem 1. Suppose that K/F is totally ramified of prime degree f and
that the normal closure of K/F has odd degree prime to p. Then Conjecture
A holds for K/F.

Further:

Theorem 2.

(a) Conjecture B holds when p = 2.
(b) When p is odd, Conjecture B holds up to sign.

8. Our main result, of which the following is only an approximate state-
ment, is given in §5:

Theorem 3. Assume Conjecture A and the twisting properties conjecture.
Then:

(a) The corresporcdence compatible with tame base change in p-
prime degree, with cyclic base change in arbitrary degree, and automorphic
induction in p-power degree.

(b) If p = 2, the correspondence local constants of pairs,

for oi E 9" (F) and ~ri = 
(c) If p is odd, formula (*) holds up to sign. It holds exactly if Conjecture

B is true.
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Thus our conjectures imply the Langlands Conjecture in p-power dimen-
sion, via a proof in the spirit of [23] (the case pl = 2) and [17] (p’"‘ = 3).
We also note that the properties listed in Theorem 3 determine the corre-
spondence just as in [6].

1. Explicit wild correspondences

In this introductory section, we first recall from [5] the construction of
the bijections

There is a natural way to extend the definition of 7r~ to give a bijection, at
the level of equivalence classes, between irreducible representations of ’1~F
of dimension p"2 and irreducible supercuspidal representations of GLp. (F),
for each and m &#x3E; 0. We extend the definition further, to a set which
is stable under certain operations of base change, automorphic induction
and tame lifting. The main point of the section is to show that this extended
correspondence is compatible with these operations, up to twisting by an
unramified character of finite p-power order.

All of the arguments and results of this section are completely uncondi-
tonal. However, they also form an important first step in the proof of the
more precise, but conditional, results below.

1.1. Let K/ F be a finite, tamely ramified field extension. In [5], we con-
structed a canonical map

The main properties of this "tame base change" map are listed in [5, §1].
We recall, in particular, that is transitive in the field extension K/F,
and natural with respect to isomorphisms of the extension K/F.

If K/F is a tame cyclic extension, base change in the sense of Arthur-
Clozel [1] likewise gives us a map

We have (see [5, 1.8]):

Proposition. (i) Let K/F be a finite cyclic extension [K:F]. Then
bK/F(7r) = for E m &#x3E; 0.

(ii) If K/F is unramified of degree p and 7r E A;7(F), there exists an
unramified quasicharacter X1r of KX, of finite order strictly dividing pm,
such that = X1r 

The precise relation between bK~F and LK/F, when K/F is unramified
of degree p, remains unknown. This, however, will not trouble us.
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1.2. We recall the definition of For each m ~ 0, we define a subset
of as follows. A representation a E ~m (F) lies in 

if there is a tower of fields F = Fo C Fl C " - C Fm, with each 
cyclic and totally ramified of degree p, together with a quasicharacter x of
Fm, such (Here and throughout we write IndK/F to
mean where K / F is a finite field extension.)

There is an analogous subset of a representation 7r E
r(F) liesinAc(F) if there is a tower of fields F = Fo C Fl C ’" C Fm,
with each cyclic and totally ramified of degree p, together with a
quasicharacter x of Fm, such that

where i denotes the operation of automorphic induction, in the sense of
~21~. ..
We know from [19] that there is a canonical bijection

as follows. If Q E is given by the tower of fields and the

quasicharacter X as above, we set

Remark. The definition we have used for ’7r is not apparently that of [19].
However, the two versions are equivalent, as follows from [10, 2.6~.
1.3. We fix a e we view a as a homomorphism WF - GLn(C) ,
where n = pm. Composing with the canonical projection, we get a projec-
tive representation 3 : ’WF -3 PGLn (C) with finite image. We may identify
this image with Gal(E/F), for some finite Galois extension E/F. Let P

denote the inverse image in W F of some p-Sylow subgroup of the image of
3, and let K C E be the fixed field of P. Thus p t [K:F] and P = WK.
The restriction = (J 1 ’WK is effectively an irreducible representation
of a central extension of a finite p-group and so a K E In this

situation, the representation 7r§(a) is defined to be the unique element
7r E .~4mr(F) such that:

where, as usual, W7r denotes the central quasicharacter of 7r. For a full
account of this definition, and of the properties of the maps 7r~, see [5,
especially §2].
The tame field extension K/ F constructed here is determined up to F-

isomorphism ; we refer to it as a defect field for a. The defect of a is the
degree ~K: F~ .



317

It will be useful to record the behaviour of the defect field under various

change of base field operations.

Proposition. Let a E ’.,‘;(F) have defect field E/F, and let K/F be
tamely ramified of prime degree.

(i) If the field extensions K/F, E/F are linearly disjoint, then QK has
defect field KE/K.

(ii) Otherwise, (T has a defect field E/F which contains K, and then
E / K is a defect field for aK .

Proof. The argument of [5, 2.7] adapts easily to the present case, so we
omit the details. D

1.4. For an integer 1, we denote by ~F(n) the set of equivalence classes
of irreducible continuous representations of ’WF of dimension n. Likewise,
let be the set of equivalence classes of irreducible supercuspidal
representations of GLn(F).

Let a E (p)? and let d &#x3E; 1 denote the number of unramified charac-
ters X of Fx’’’ such that X 0 (T. Then d = pr, where 0  r x m. If E/F
is unramified of degree d, there is a representation T E ~~Ly.(~)? uniquely
determined up to the action of Gal(E/F), such that a = We
define

Then, in support of a claim made in the introduction to [5], we have:

Proposition. Let a E and put 7r = ~r,~(Q).
(i) We have 7r E and induces a bijection

which is natural with respect to automorphisms of the base field F.
(ii) We have 7r~(a) = 7r and W7r = det a. Moreover, for a quasicharacter

X of F’ and or E !90 (pm), we have

Proof. Write a = IndE/F(r), T E!9’m’-r(E) and E/F unramified of degree
pr as above. Set p = As ’Y ranges over Gal(E/F), the represen-
tations 7’ are distinct. Since is injective on and natural
with respect to automorphisms of E, we deduce that the representations

E are also pairwise distinct. It follows that is super-

cuspidal (cf. [10, 2.6] and so C 

We can construct a map 90 (pm) as follows. For 7r E A9F (pm),
let d be the number of unramified quasicharacters X of F" such that x7r l3£ 7r.
Then d = pr, for some r x m. Let E/F be unramified of degree d. There is
then p E such that 7r = i E / F (p), and p is determined uniquely up
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to the action of Ga,l(E/F). We may write p = ~r~_T(T), r E ~~ r(E). The
representation Q = is irreducible, and 7r~(a) = 1r, by definition.
This process 1r - a is then inverse to 7r~, which is therefore bijective, as
required.
The remaining assertions of the proposition are straightforward. D

1.5. Now let 9F(n) denote the set of equivalence classes of q&#x3E;-semisimple
representations of the Weil-Deligne group of F. We define a subset QF((p))
of as follows: a representation p lies in this subset if, when
viewed as a representation of ’WF, every composition factor of p has p-
power dimension.

Similarly, let AF(n) denote the set of equivalence classes of irreducible
smooth representations of There is an analogous subset AF((p))
of representation lies in this subset if its supercuspidal
support consists of elements of for various r &#x3E; 0.
We briefly recall a classical idea [19], [25], [28]. Suppose given, for each

n ~ 1, a bijection Ao : !90 (n) --+ A9F(n), which takes determinants to
central quasicharacters and is compatible with twisting by quasicharacters
of FX. There is then a standard way of extending the family (Ag) to a
family of bijections An : ,A,F(n), n ~ 1. This technique enables
us to extend the family to a family of bijections

Remark. Thus we have 7rF(pm) I 7r~. From now on, we omit
the adornments F etc from the notation, at least when there is no fear of
confusion.

We will only need to know this bijection explicitly in one case. We
take Q E 9F((p)) n 9F(n), and we assume that a is in fact a semisimple
representation of ’WF. Thus or = (B Qt, with Qi E for
various integers mi ~ 0. Set 1ri = and let 1f be the representation
of GLn(F) parabolically induced by 7ri Q9 ... Q9 1ft. One then gets easily:
Lemma. Suppose that the representation 7r is irreducible. Then 
7r.

If K/F is cyclic, then restriction induces a ~K((p)). If

K~F is cyclic of degree p, induction gives a map ~K ( (P) ) ~ ~F ( (p~ ) . We
show that a similar phenomenon occurs on the other side.

Proposition. (i) Let 7 E AF((p)), and let K/F be cyclic. Then bK/F(1f)
lies in ,A.K((p)).

(ii) Let K/F be cyclic of degree p, and let 7r E AK((p)). Then E

AF ((P)) .
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Proof. In (i), it is enough to treat the case where K / F is of prime de-
gree and, since base change respects supercuspidal support, we may take
7r E for some m. If bK/F(7r) is supercuspidal, there is nothing to
prove. Otherwise, b K / F (7r) is irreducibly parabolically induced from a rep-
resentation of the form @’T’ p, where p is supercuspidal and 7 ranges over
Gal(K/F) [10, 2.6]. Further, the factors are distinct. Thus [K:Fl = p
and pry E It follows that AF((p)), as required.

In (ii), we may again take 7r E If iK/F(7r) is supercuspidal,
there is nothing to prove. Otherwise, iK/F(1r) is irreducibly parabolically
induced from a representation ~x Xr, where T E and X ranges
over the group of characters of Fx trivial on norms from K (see [10, 2.6]
again). This surely lies in AF((p)). D

1.6. We are now in a position to formulate and prove the main result of
this section.

Theorem. (i) Let a E and put 1f = 7r~((j). Let KIF be a finite
cyclic extension. There is an unramified character X, of KX, of finite order
dividing p’’n, such that

If p ~’ [K:F], then X, = 1.
(ii) Let a E and put 1r = 7r~(a). Let K/F be a finite tame

extension. There is an unrarnified character X, of KX, of finite order
dividing p’n, such that

(iii) Let K/F be cyclic of degree p, let T E and put p = 7r;ae(T).
There is an unramified character X, of px, of finite order dividing 
such that 

-

The character xa is trivial when K/F is unramified.

Proof. In both (i) and (ii), by transitivity it is enough to treat the case
where K/F has prime degree ~.
Step 1. In (ii), if K/ F is cyclic, the result is given by Proposition 1.1,
[5, 2.3], and [6, 1.8.1]. We therefore prove (ii) under the assumption that
K/ F is not cyclic. Thus the prime i = [K:F] is odd. Let L/F be the
normal closure of K / F, and E/F the maximal unramified subextension of
L~F. Thus L~E, E/F are cyclic and, by the first case, = Xl1r(aL),
for Xi unramified. Thus, since L/K is unramified, there is an unramified
character x2 of K" such that X21r(aK), lK/F(1r) have the same image under
lL/K. By [5, Theorem 1.3], this means that = X31r(aK), with X3
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unramified. The representations have the same central

quasicharacter det QK, so XP3m = 1, as required.
Step 2. We now prove (i) in the case (1 E If p ~’ [K : F], the result is
given by [5, Th. 2.3(vi)~. If K/F is unramified of degree p, it is given by Step
1. We therefore need only consider the case where K/F is totally ramified
of degree p. If we in fact have (1 E then ~19~.
In general, let E/F be the normal closure of a defect field for (1. Then E/F
is tame Galois, and (1E E The metacyclic base change operations
bE/p, bKE/F etc. are well-defined (cf. [4, 16.4, 16.6]) with the obvious
transitivity properties. Thus, using the tame case (ii),

with X, unramified. Since we have

and this, by the tame case again, is X2bKE/K(7r(aK)), where X2 is unram-
ified. In other words, there is an unramified character x3 of KX such that

7 have the same base change to KE/K. When UK is
irreducible (that is, 7r(aK) is supercuspidal), it follows from [5, Theorem
1.3] that the representations differ by a tame character
of .K~. That is, bK/F(1f) = Q7r(aK), for some tame character a of KX.
Comparing central quasicharacters, we get = 1, whence a is unramified
and the assertion follows.
We therefore assume that QK is not irreducible. Thus there is a rep-

resentation T E such that a K = 7’)’, with, ranging over

Gal(K/F) (and the 7’)’ are pairwise inequivalent). Thus 7r(aK) is paraboli-
cally induced from ~,~ p~, where p = 7r(7). Similarly, by [10, 2.6], bK/F(7r)
is parabolically induced by (&#x26;7 p~ly , for some pi E A;:"-1 (K). By choosing
pi properly within its Gal(K/F)-orbit, we get bKE/x(pl) = bxE/x(P), and
we are reduced to the supercuspidal case, which has already been settled.
Step 3. We now treat (i) for general Q E Thus we have an
unramified extension E/F of degree pr, r ~ 1, and T E gwr (E) such that
Q = IndE/F(T). If we put p = 7r(T), then 7r = iEIF(P)- Suppose first
that K/F is not unramified of degree p. Then a K = IndKE/K(7KE) and

= iKE/KbKE/E(P). The result now follows from the case of Step
2 and the definition of 7r. If K/F is unramified of degree p, the result is
immediate.

Step 4. In (iii), the case of K/F unramified is straightforward. We there-
fore assume that K/F is totally ramified. We set Q = IndK/F(T), 7r =

iKIF(P)- We assume first that a is irreducible, whence 1r is supercuspidal,
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7r E We write 7r = 7r(al). The representation is irre-

ducibly parabolically induced from with distinct factors p~7 and q
ranging over Gal(K/F). By part (i), is an unramified twist of this

representation. Therefore some unramified twist of ~1 contains T on W K.
Therefore X17a, where X is unramified and 77 is a character of F’
vanishing on norms from K. Since a is induced from K, we have 17a = ~,
and the result follows in this case.

This leaves the case where is not irreducible. We have T = 71 for

every q E Gal(K/ F). The representation p has the corresponding property
and 7r is irreducibly parabolically induced from ®x X7ro, for some 1ro E

with X ranging over the group of characters of F’ trivial on
norms from K. The representation 7ro satisfies bKIF(,7ro) = p; by part (i), it
is therefore of the form 1r0 = 1r ( aD), where o~o = T. The assertion therefore
follows in this case, with xa = 1. D

2. Local constants under twisting

We fix a non-trivial continuous character ’OF of the additive group of
F. As a matter of notation, if E/F is a finite extension, we put V)E =
OF o TrK~F.

In this section, we state some conjectural properties of the local constant
6 (7r, x 7r2, 8, OF), for 7rj E (F). These form the definitive version of the
twisting properties conjecture of the Introduction.

2.1. We first recall a simple consequence of the definition [22] of the local
constant:

Lemma. Let 7ri E .4;7 (F), f or i = l, 2. We have

for any unramified quasicharacter X of F’ and any element c E FX such
that v F ( c) = - f (7fl X 71’2, 
We need to refine this result. For this, it will be convenient to divide

into two cases.

Conjecture 1. Let 7r E There exists E Fx, well defined
modulo UF" such that

for all tame quasicharacters X 
Here and in the following l F denotes the trivial character of F~ (or of

WF) . We recall [7] that c( 7r x ~r, 2, ~F) = while f( 7r x 
is given by [9, Theorem 6.5~ .
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There is a complementary relation:

Conjecture 2. For i =1, 2, let 7ri E ,A~2 (F) . Assume that 7rl is not of the
form for any tame quasicharacter X of Fx. There is then an element

E Fx, well-defined modulo Up, such that

for all tame quasicharacters X of Fx.

Note. In both statements the element c depends on the choice of 1/JF. When
necessary we shall use the more precise notation c(7ri x 7r2, 

In (2.1.2) we obviously have

for all tame quasicharacters X of Fx. If on the contrary we have 71-1 = x*2
for a tame quasicharacter X of FX, we define

In both cases therefore, we have

(2.1.5) cX7rl X 7r2 = X 7r2 I for X tamely ramified.

2.2. We now consider how the element ~l X7r2 behaves under extension of
the base field.

Conjecture 3. Let K / F be a finite tame extension. For i = 1, 2 let 7ri E
~(F), and let 7rf = Then

The identity (2.2.1) still holds if we replace, for example, 1rf by 
for an unramified quasicharacter x of KX. Thus, if K / F is a cyclic tame
extension ( 2.2.1 ) implies

since and differ at most by an unramified character
(Proposition 1.1).
Remark. Let Q2 E = 1, 2. The arguments of [8] then yield an
element E Fx IUF’ with properties analogous to those above, relative
to the local constant ~(~l ® Q2, s, OF) - If 1ri = we then have 

since £ preserves local constants of pairs. Thus (2.1.1), (2.1.2)
follow from the Langlands Conjecture and [8, Corollaire 2.3, Th6or6me 1.3]
respectively. The analogue of (2.2.1) for follows from the defining
property of c and the inductivity of 6;; this implies (2.2.1) via the Langlands
correspondence. Of course, the point for us is to obtain direct proofs of
these results, without recourse to the existence of ~m.
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Known cases. A direct proof of Conjecture 1 is known. Likewise Conjec-
ture 2 in the case m2. Conjecture 3 is known for c(7r x fr,’ØF). (We
do not prove these assertions here.)

2.3. If we consider the correspondences ~~ (F) -~ recalled

in §1, we obtain: 
° °

Theorem. For i = 1, 2, let Ui E and put 7ri = Then, on
Conjectures 1-3, we have 

° °

Proof. If ði E i = 1, 2, then the assertion is immediate: the maps
’7r preserve local constants of pairs [19]. The general case then follows from
(2.2.1) and the definition of 7r~. D

2.4. For the moment, let ~r2 be an irreducible smooth representation of
for i = l, 2. We consider briefly the variation of £(7r1 x 7r2, 8, OF)

with the additive character OF-
Let 0’ F be some other non-trivial character of F; there is then a unique

a E Fx such that for x E F. We have

Write wi for the central character of 1rl and put Q = (,cJl 2 (,cJ21. We have:

Both identities follow readily from the definitions in [22].
As a consequence of these identities, we see that all of the conjectures

above are essentially independent of the choice of V)F: if they hold for one
choice, then they hold for all.

3. Values of local constants for pairs

In this section, we investigate the arithmetic properties of the value of
the local constant e(7ri x -X2, 1, V)F), for 1Ti E AZ, (F). We prove, on the
conjectures listed in §2, a slightly weakened version of Conjecture B (stated
as Theorem 2 in the introduction). This depends on knowledge of the action
of Aut(C) on the local constant. We give a general statement of the required
result in 3.2, and prove it in §6.

3.1. We proved in [7] that

We shall next explore the value e(7ri X ~r2, 2, OF) when7r2 is "distant from"
71-1. This result depends on the conjectures listed in §2.
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Proposition. For i = 1, 2, let 7ri E ~4~.(F)~ and assume:
(i) W1f i has finite order, and
(ii) 7ri is not of the form X7r2 for any tame quasicharacter x 
Then x 7r2, ~~F) ~ ~ root of unité.

Proof. We first show that the analogous statement is true for Weil group
representations. Indeed if, for i = 1, 2, O’i E has determinant of
finite order, then ~1 0 72 is in fact a representation of a finite Galois group.
If 0’1 is not of the form x~2 for any tame x then ~1 0 a2 has no tame
component hence 0 T2?0,~) is a real number times a root of unity
[13, Appendix]. 0 cr2, ~~p) is a complex number of modulus 1
and

with an integral exponent It follows that 
is indeed a root of unity.
We write 7ri = cr, E Suppose first that ~Z E 

for i = 1, 2. We then have ê( 7rl x 7r2~ ~) = ê( al 0 ~2, s, whence the
result in this case.

In general, we can find a finite, tame, Galois extension E/F containing
the defect fields of both In particular, af E (E), and (af) =
Xi for an unramified character Xi of EX of finite p-power order

(Theorem 1.6). From the first case we have

where q is a root of unity of p-power order, whence

is a root of unity.
The conclusion of the last paragraph still holds if we replace by

the Arthur-Clozel base change by Proposition 1.1.
Now let L/F be a finite cyclic extension and set 7rf = We then

have [1, I, Prop. 6.9]:

where AL/F is the Langlands constant

and X runs through the group of characters of FX trivial on 
One knows from, for example, the calculations in [3, §10], that AL/F is a
root of unity when L/F is tame. The right hand side in the relation 3.1.2 is
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then, by (2.1.2), a root of unity times e (7ri x 7r2, s, the situation

above, the extension E/F is of the form L D F, with L/F and E/L
both tame and cyclic; in fact L/F is unramified. The result will therefore
follow if we can prove that e(7rf x 7r~, ~~L) is a root of unity. We next
observe:

Lemma. In the situation above, 7rL is not of the form xirf for any tame
quasicharacter X of L~.

Proof. This is only an issue in the case ml = m2. The fact that vri is not a
tame twist of -k2 is equivalent to the simple characters in the 7rj not being
conjugate in GLP-I (F). This implies [5, 1.3] that the simple characters
underlying the representations 7rf are not conjugate in GLpml (L), and the
Lemma follows. 0

Because of this lemma, we can apply the above procedure twice to get
the proposition. D

3.2. We can in fact be a little more precise than in 3.1, by taking into
account the action of Aut(C) on local constants for pairs. We first state
a completely general result on this matter (which does not depend on any
conjectures) .
We write AF(n) for the set of equivalence classes of irreducible smooth

representations of GLn(F). As explained in [6, §7], Aut(C) acts on AF(n);
we write this action as (T, 7r) H r7r, for T E Aut(C), 7r E ,.4F(n). We extend
T E Aut(C) to an automorphism of the field of rational functions in

q-S by treating q-S as an indeterminate on which T acts trivially.

Theorem. For i = 1, 2, let 71~ E AF(ni). Then

where

and

The proof will be given in §6.
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3.3. We are now ready to investigate Conjecture B. When some m2 - 0,
the conjecture is proved in [5, Theorem 1.4~, so we can assume throughout
that 0.
We write for the group of pr-th roots of unity in C and ppao = Ur 
We first recall that, when p = 2, the function GF of [18] is identically 1.

Theorem. Let p = 2. For i = 1, 2, let 7ri E .r~Z (F) . Assume that 7ri is

not of the form for any tame quasicharacter x of FX. Then, on the
conjectures of §2, we have

In particular, Conjecture B holds when p = 2.

Proof. Assume first that and W1r2 are of finite 2-power order. Then
the central type of = 1, 2, factorizes through a finite 2-group hence is
definable over for any sufficiently large integer r. The same is true
of 7r2. If T E Aut(C) acts trivially on it2- it also acts trivially on Jq and
7/J F and we have

by Theorem 3.2. Since we know that 6(7rl x 7r2, l,’OF) is a root of unity
(Proposition 3.1), it follows that it is a root of unity in some cyclotomic
field Q(¡¿2r ), hence a root of unity in In the general case, there are
tame quasicharacters x2, i = 1, 2, such that r2 = xj7r§ with i 

of finite

2-power order. As = the theorem follows from the special71 i

case and (2.1.2), noting that x 2 =C7r/ 1 X7r’ . D

3.4. Suppose in this paragraph that p is odd. The map GF : is

defined as follows. Set a = as in 3.2, and take x E Fx . There are
two cases. First, we set

Otherwise, we choose a prime element zu of oF and let b be the integer for
which P’-l - We then define

In particular,
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Theorem. Let p be odd. For i = 1, 2, let 7ri E .~4,~~ (F). Assume that 7ri
is not of the form for any tame quasicharacter X of FX. Then, on the
Conjectures of §2, we have

That is, Conjecture B holds up to sign.

Proof. As above we reduce (using the twisting properties) to the case where
the W7ri have finite p-power order. We can also assume that the mi are non-

zero.

We remark that if T E Aut(C) acts trivially on and lq then it
also acts trivially on x ~r2, 2, ~F) (Theorem 3.2). More precisely if

( ql) = 1 then if T E Aut(C) acts trivially on it also fixes Vq and
then e (7ri x 7T2, ~ 1/JF) is a root of unity belonging to for large enough
r. This implies +e(7ri x 1l"2,!, ’ØF) E and hence, arguing as in 3.3, we
get the result.

Let now (~l) = -1. The exponent of q-’ in e(7ri x 7r2, s, OF) is f =
and we deduce from Theorem 3.2 that if T E Aut(C) acts

trivially on we have

But from (3.4.1) above we have

for x E F with Since T acts trivially on we have (-) =
T V"- 1; SO E (-Xl X 7r2, 1, V)F) and GF (Cr, X lr2 )p""1+1"2 have the q; so x and have the same

behaviour under T. Their quotient belongs to for r sufficiently large
and the square of the quotient belongs to D

3.5. We add some more consequences of Theorem 3.2, to be used in the
next section.

Proposition. For i = 1, 2, let 7ri E ~4~(F). Then for any T E Aut(C) we
have 

°

This is an immediate consequence of Theorem 3.2 and the defining prop-
erties of c(7ri x ~r2, 

Next, we need the Adams operation 7r ~ 7rt on see, for example,
[6, 33.3] for the definition.
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Corollary. Lett be a prime number, f ~ p. Then

Proof. Let T E Aut(C) have restriction ( ~ (~ to p. Then = 1/J~
and by construction [5] differs from T7ri by a tame quasicharacter. The
corollary now follows from (2.1.3), (2.1.4) and the proposition. D

4. Davenport-Hasse relations

In this section, we prove some weak versions of Conjecture A, including
that stated as Theorem 1 in the Introduction. Most results in this section

depend on the conjectures of §2.

4.1. We let K/ F be a totally ramified extension of odd prime p.
As usual, we abbreviate 7r K = for 7r E 

Lemma. For i = 1, 2, let 7ri E Suppose that 7rl ~ for any
tamely ramified quasi character X of FX. Then 7rÍ (resp. 7rf X*2K)
f or any tamel y rami fied quasicharacters X of Fx (resp. KX).
Proof. The hypothesis means that the simple characters (in the sense of
[11]) attached to 7ri and ir2 in G = GLpm (F) are not conjugate. It follows

that the simple characters attached to 1T"Í and ir are not conjugate either,
and hence that Jrf ~ for any tame quasicharacter X of FX. Similarly by
[5, Theorem 1.3] the simple characters attached to 7rF and -k Kin GL mj (K)
are not conjugate. Thus 7rF §# for any tame quasicharacter X of
K" . D

4.2. Conjecture A can be proved by taking the values of the local constants
at any given s E C, for example s = ~, because of:
Proposition. In the setting of Conjectures A we have

The absolute values o f the two sides o f f ormula (*) in Conjecture A are
equal. 

’

Proof. Remembering that 7rf is not an unramified twist of ~r2, the second
formula follows from [5, Theorem 1.7~ . To get the first formula, we apply
the procedures of [9, §6]. It is immediate that a best common approxima-
tion to the simple characters 0j underlying the 7ri is also a best common

approximation to the simple characters 01. Since the conductor depends
only on this best common approximation, the result follows. D

Remark. If we admit the conjectures listed in §2, the second formula of the
proposition is immediate and the first a consequence of Theorem 3.2.
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4.3. Let us assume now that Tri = q*2 for some tame quasicharacter q
of Fx; this relation determines q uniquely. We have 1rf = so the

condition 7r~ ~ for X unramified means that ?/ is not unramified. We
now prove Conjecture A for (7ri,7r2) in this situation.

Theorem. For i = 1, 2, let 1ri E and assume that 7r2 = ""1rl for
somme tame quasicharacter"., of Fx such not unramified. Then

(on the conjectures of §2) Conjecture A 

Proof. We can assume m &#x3E; 0 (since otherwise we know the conjecture is
true [6, 4.1]). Also, the assertion is independent of the choice of additive
character (2.4), so (to simplify calculations) we take = 1, in the
notation of 3.2.
We have (by (2.1.1) )

Taking values at .1, we get

where

This is obtained as follows. First, = (and does not
depend on s), while ê(lF, f/2, is equal to q(1-t)/2 . Next,

by 3.5. Thirdly,
Finally,

by [7, Th6or6me 1].

by [9, Theorem 6.5].
Similarly, with qK = q o NK/F, we get

Moreover,
-- -- -
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where

The formula (*) in Conjecture A therefore holds at s = 2, then for all s by
Proposition 4.2. D

Remark. Conjecture A holds when rrzl or m2 is zero [6, 4.1]. In light of
the foregoing therefore, when considering further cases of the conjecture we
can assume that ml, m2 &#x3E; 0 and 7ri is not of the form for any tame

quasicharacter of F~.

Remark. If 7y7T2 with qt unramified, the conjecture does not hold, but
it is easy to compute both sides using [7] and the twisting properties of §2.
4.4. As the next step in the proof of Theorem 1, we recall from (3.1.2):

Proposition. Let K/F be a cyclic extension. For i = 1, 2 let 7ri E ,~4mi (F)
and put 7rr = Then

where X ranges through the characters of Fx trivial on NKIF(Kx)-
Here, A K/ F is the Langlands constant, as in (3.1.3). Combining this with

(2.1.2), we get

Corollary. Assume moreover that K/F is tame of and 1rl is not

of the form X1f2 for any tame quasichaTacter X of Then

where

with X ranging through the characters of F’ trivial on NK/P(KX).
4.5. We can now deal with a special case of Theorem I.

Proposition. Let K/F be a cyclic, totally ramified extension of odd prime
degree f =1= p. For i = 1, 2, let 7ri E .~4,~i(F) and put 7rf = Then

(on the conjectures of § 2) we have

and Conjectures A is true for K/F.
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Proof. As in 4.3 Remark 1, we can assume that rrcl, m2 &#x3E; 0 and that

7ri §f r¡fc2 for any tame quasicharacter q.
Since K/F has degree prime to p, we know that = bKIF(7ri)

(Proposition 1.1). Also, since K/F is cyclic of degree ~, we have

and the first formula follows from Corollary 4.4.
To deduce Conjecture A, we follow the same lines as in [6, §2]. It is

actually enough to prove it when s = 2. By twisting 7r1 and 7T2 by tame
quasicharacters (which does not affect the identity to be proved), we can
in fact assume that 7rl and 7r2 are defined over for a large enough
integer r. Moreover, and pm2 have the same parity. Then

and it is enough to prove that

Consider an automorphism T of C whose restriction to roots of unity of
order prime to £ is given by T( () = (~. Then

and so

by Theorem 3.2. Further,

since é( 1rl x 7T2, ~ ~p) is a root of unity of order prime to ~. This proves
Proposition 4.5. 0

4.6. We prove Theorem 1 of the Introduction.

Theorem. Let K/F be a totally ramified extension of odd prime degree
~ ~ p. For i = l, 2 let 7ri E and put 1rf = Assume that
the Galois closure E / F of K/F is of odd degree prime to p. Then (on the
conjectures of §2) we have

and Conjecture A is true K/F.
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Proof. In view of Proposition 4.5, we can assume that K / F is not cyclic, i.e.,
t { q-1. Further, we can assume that 7rl çp for any tame quasicharacter
x of F" (4.3).

Let E/F be the Galois closure of K/F and L/F the maximal unramified
sub-extension of E/F. Then L/F is generated by the .~-th roots of unity
and E/L is totally ramified and cyclic of degree.e. Put d = (L:F]. By
assumption d is odd and prime to p.
By Proposition 4.5 applied to E/L we have

By Corollary 4.4 applied to L/F we get

By Corollary 4.4 again but applied to E/K we get

This shows that

We can twist 7ri by a tame quasicharacter to ensure that W7ri is of finite

p-power order, i =1, 2. This does not change the identity to be proved (by
(2.1.2) and Corollary 3.5), but it does imply via 3.4 that E(7ri x ’l/JK)
and e(7ri x 7r2, !, ’l/J F) are roots of unity in Since d is odd and prime
to p, it follows that

and, by 4.2, equality holds for any s instead of .1
To finish the proof, we proceed as in 4.5, noting that d is the order of q

mod t and, since d is odd, q is a square mod £. Thus

as required. D

5. Davenport-Hasse relations and the Langlands correspondence

5.1. In this section, we state and prove our main result, the exact version
of Theorem 3 of the introduction. We use the extended correspondences
~rF : 1 ~~ ( ( p) ) -~ constructed in ~ 1. Throughout, we assume the
conjectures of §2. In that context, the theorem exhibits the consequences
of the deeper conjectures A and B.
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Theorem. Assume the conjectures of §2 and Conjecture A. Then:
(i) Let (T e and let K/F be a finite field extension of degree

prime to p. Then

(ii) Let K/F be cyclic of degree p and let a E Then

(iii) Let KIF be cyclic of degree p and let T E g7«pm). Then

Let (1i E and put 7rj = 1f"F((1i), i = 1, 2. Then:

(iv) If ~1 or ~2 has odd defect, then

while, in general,

(v) If Conjecture B holds, then

Remarks. 1. We observe first that, when p = 2, every cr E gwr (F) has odd
defect so (v) is contained in (iv) in this case. For p odd, (iv) implies
(v) via Conjecture B and Theorem 2.3.

2. In the context of (iv), we know that = f(7rl x 7r2,’l/JP)
(by [5, Theorem 2.3]). It is therefore enough to verify the E-relations
of (iv) at the point s = ) .- 

2’
3. In (iv), if we twist the ai with tame quasicharacters, the identities to

be proven do not change, because of the twisting properties of local
constants (and [5, Theorem 2.3]). Therefore, when convenient, we can
assume that the det oi have finite p-power order.

4. Using (iv) and [8], we now see that Conjecture A implies the truth of
Conjecture B in the case where or ~r-1(~r2) has odd defect.

Before proving the theorem, we observe that (i) can be extended slightly.

Corollary. Let a E go (pm) and let K / F be a finite cyclic extension. Then

Proof. It is enough to treat the case where K/F has prime degree ~. If
~ = p, the assertion is given by part (ii) of the theorem, so p. The
result is then Theorem 1.6(i). D
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5.2. Let us consider (iv) first in the case where ~1 = x 0 ~2 for a tame
quasicharacter X of px. Then, by (2.1.1), we have

and

by the Galois analogue [8, Corollaire 2.3]. But by Theorem 2.3,

and by [7, Th6or6me 2, Th6or6me 1~,

This proves (iv) of the theorem in the present case. D

Remark. In proving the equality of local constants in the remaining part of
Theorem 5.1 we can henceforward assume that Ql is not of the form X 0 ~2
for any tame x.

5.3. We prove Theorem 5.1 by induction. We first observe that all state-
ments are easy when m = ml = m2 = 0. Indeed, the identity in (v) holds,
independent of Conjecture B, when either ml or m2 is zero, by [5, Theorem
2.3(v)].

Inductive hypothesis. We fix an integer m &#x3E; 1; we assume that (iv) holds
whenever ml, m2  m, and that the analogues of (i), (ii) hold for all a’ E

(for (i)) or (for (ii)) and all m’  m. We also assume that

the analogue of (iii) holds for T’ E when m’ + 1  m.

SteP 1. We prove the e-identities for a E with m’  m.

We suppose first that a E gc’(F). In particular, there is a cyclic extension
E/F of degree p and T E such that Q = IndE/p(r). Further,
7r(a) = i E / F7r(T), and both Q, T have defect 1. We have (using [10, 2.6(c)]
and omitting the obvious variables from the notation)

by induction, abbreviating -X(U,)E = The last term here is

equal to x ~(Q’)) = ~r(~~)), as required.
We now take a general Q E and work by induction on the defect

of a. We choose a defect field E/F for Q, and a subfield K/F of E with
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[K:F~ _ ~ prime. Assume first that t is odd. If K/F happens to be cyclic,
we have

. I

with q ranging over the characters of px which are trivial on norms from

KX, and this expression reduces to A§Q9°’ Q9 a’)l. The defect of axI/F
has the same parity as that of , and likewise for a’ (1.3), so by induction
and Theorem 1.6(i),

where 7r = 7r (a) etc. The minus sign can occur only if both and ~’ have
even defect.
On the other hand, by Corollary 4.4,

Therefore

and the desired equality é( a 0 Q~) _ x now follows from Theo-
rem 3.4.
We next assume that K/F is not cyclic. We can assume m’ ~ 1, since

otherwise the result is given by [5, Theorem 2.3]. Conjecture A and its
Galois analogue [6, Theorem 2.2], together with induction, then give

At this point, we assume (as we may - see 5.1 Remark 3) that det a, det a’
have finite p-power order. There is then T E Aut(C) such that (1£ = Ta,

= T7r and similarly for ~’, Applying r-1, the desired result follows
from Theorem 3.2.

This leaves us with the case f = 2. In particular, has even defect.
We follow the argument for £ odd and K/F cyclic, paying no attention to
the defect of we come to the conclusion (corresponding to (5.3.2)) that
£( a 0 cr’)2 = :f:£( 1f X 1f’)2. Theorem 3.4 then yields 0 a’) = :f:£( 1f x 7r’),
as desired. To eliminate the sign ambiguity when a’ has odd defect, we
proceed by induction on the defect of a’. This repeats again the first part
of the argument with the roles of o, and ’ interchanged.

So far, we have proved:

for a E (7’ E G§%5 (F) with m’  m, and 7f = 7r(a), 7r’ = 7r((T’). The
minus sign can only occur when a~ and a~’ have even defect.
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Step 2. The next step is to prove (ii) when K/F is unramified. Immediately,
it is enough to treat the case Q E ~m (F). We set 1f = 1r(a) and, using [6,
Theorem 6.1~, we find 7r’ E ,.4;zr (F), m’  m, such that p f f(1r x 1f’, ’ØF).
We put 7r’ = 7r(a’) and 7r K = bK/F(7r), etc. It follows (4.2) that p f

x 1f,K,’ØK). On the other hand, 1fK = X1r(aK), for some unramified
character X of K" of finite p-power order (1.6). Applying the e-identities
established in Step 1, we get

(the minus sign only occurring when p is odd) while

witch 17 ranging over the characters of F’ trivial on norms from The

right hand sides of these two equations are the same (up to sign if p is odd);
we conclude that X = 1, as required.

.Remark. It is now straightforward to show that the E-identities hold for

Step 3. Now we prove (i) for 0, E The only case to be considered,
because of 1.1 and 1.6, is that where K/F is of prime degree f and not
Galois. In particular, f is odd. We use the same procedure as before:
we set 7r = ~r(Q) and choose 1r’ = ~r(Q ) E with m’  m and

p ~’ f(7r x By 1.6, we have 7r K = for some unramified

character X of finite P-power order. (Here we abbreviate 7rK = 

etc.) By 4.2, we have p { x and, by induction, = 

The result then follows from Conjecture A and 3.2.
Step l~. We next prove the .6-identities for Q, Q’ E Compatibility
with unramified base change reduces us straightaway to the case a, a’ E
~,~ (F). If both Q and lie in the result is immediate. In

general, (i) allows us to work by induction on the sum of the defects and
use Conjecture A along with 3.2.
Step 5. We now turn to (ii), (iii), when K/F is ramified. (When K/F is
unramified, (iii) is part of the definition and (ii) has been done in Step 2.)
We start with (iii). We first take T E gw’ 1 (K), put p = 7r(r), and show
that

It will now be more convenient to use abbreviated notation like:
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If Ind T is reducible, the result has been proved in the course of the proof
of Theorem 1.6 (final remark in Step 4 of that proof). We therefore assume
that Ind T is irreducible. Thus 7r = is supercuspidal. Assume first
that it lies in We choose 1r’ = x(a’) E with m’  m
and p f f(7r x 1r’,’ØF). We know from 1.6 that 7r = X7r (Indr), where X is
unramified of finite p-power order. Then

it follows that = 1, whence X is trivial as required.
Now we have the case where Ind T is irreducible, but induced from a

degree p unramified extension E/F. The representations 1r(IndT), 1r(T)F
are distinguished by their base change to E. We have

by the compatibility of 7r with unramified base change. On the other hand,

by the compatibility of base change and automorphic induction [10, 2.6].
Since KE/K is unramified, this reduces to 1r(rKE)E. However, TKE is
invariant under Gal(KE/E), so

by the first case. This gives the desired relation.
We now treat the general case of T E GK(pn’’-1); thus there is an un-

ramified extension E/K of degree p’ say, and IL E such that

T = K. Let L/F be unramified of degree pr, so that E = KL and E/L
is totally ramified cyclic of degree p. Thus TF = pF = We have

which, by definition, is the same as Since

J-t E 9’,-,(E), we have (by the first case) 7rE (A)L; it follows
that

by the transitivity of automorphic induction. By definition, =

7rK(r), whence as required.
Step 6. We finally have to check (ii) in the case of K/F ramified. We reduce
as usual to Q E If QK is reducible, then Q is induced from ’WK, and
we use (iii). We therefore assume QK is irreducible. If QK E we

can use the e-identities as before. We therefore assume that QK is induced
from an extension KE/K, with E/F unramified of degree p. This means
that a is induced from W L, where L/F is cyclic of degree p with L C KE.
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Of course, L is neither K nor E. We put
Thus

and

whereas

since KE/K is unramified. This completes the proof. D

6. Complex automorphisms

In this section, we prove Theorem 3.2. Our treatment is written as a
continuation of [6, §7], where we discussed in detail the action of Aut(C)
on smooth representations of groups like GLn (F), and on various associated
constructions.

6.1. For convenience, we start by recalling the identities to be proved. It
will now be simpler to write just 0 =’OF and put a = a (,0).

For iri E i = 1,2, and T E Aut(C) , we have to prove that

Note. In fact, what is important is the parity of nl+n2 rather than its
exact value. Indeed, the L- and 6-factors are functions of q-s and Aut(C)
acts on the coefficients of these functions, fixing q-s. It follows that we

only need prove the identities above for s + 1~/2 replacing s + (nl + n2)/2,
where k is an integer with k - nl + n2 (mod 2).
The method of proof is to return to the definitions of the L- and e-

factors in [22], and follow step by step the action of Aut(C). The functions
L(7ri x 7r2, s) and e(7ri x 7r2, s, are there initially defined for generic rep-
resentations 7r,, 7r2, so the first step is to analyse the action of Aut(C) on
generic representations.

6.2. We first recall some facts from [22]. We abbreviate Gn = GLn (F) and
write Nn for the subgroup of upper triangular unipotent matrices in Gn.
On Nn we define a character 0 = Bn~,~ by the formula

An irreducible smooth representation (,7r, V) of Gn is called generic if
there is a non-zero linear functional A (called a Whittaker functional) on
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V such that À(1r(u)v) = 0(u)A(v) for v E V and u E Nn. That condition
does not, in fact, depend on 0 since, if 1/;’ is another continuous additive
character of F, then the characters 0,,,,p, of Nn are conjugate in the
Gn-normalizer of Nn .
When (7r, V) is generic, the Whittaker functional A on V is unique up to

multiplication by a non-zero scalar, and consequently (7r, V) has a unique
model as a space W(7r; of locally constant functions W : Gn - C satis-
fying

the group Gn acts on this space by right translation of functions. The

space W(7r; ip) is called the Whittaker model of 7r. A Gn-isomorphism V -
W(1f; is given by associating to v E V the function g ~ À(1f(g)v). (We
refer to [24] for these basic facts concerning Whittaker models and generic
representations.)

Let 7r E be generic and let A be a Whittaker functional on the
space V of 7r. If T E Aut(C), we can form the representation (T7r,V) as
in [6, §7]. Strictly speaking, T7r acts on the space C 07" V, which is an
isomorphic copy of the underlying group of V, on which C acts via the
automorphisms T. We have

for v E V and u E Nn. Thus TA defines a -rO-Whittaker functional on
the space TV of Consequently the map f - T o f gives an additive
isomorphism W(7r; ~) ~ W(T7r; respecting the actions of Gn.

If 7r E AF(n) is generic, then * E ,r4.F (n) is also generic. In fact if we let
wn be the anti-diagonal matrix (6i,n+l-i) E CTn, then the map

gives a vector space isomorphism W( 7r; 1jJ) ~ W( *; if).
If T E Aut(C) then = r(7r) in AF(n) and, for W E W(7r;1jJ), we

have

6.3. We now recall the definitions of x 1r2, s) and E( 1rl x 1r2, 8,’0) when
the representations 7ri E ,A.F(ni) are both generic. We may assume n2 ~ nl,
as

Indeed, if nl =1= n2, this is part of the definition; in the case nl = n2, the
symmetry properties 6.3.1 are in [22, 2.12].
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6.4. We start with the case nl - n2 - n, and write for the space
of Schwartz-Bruhat functions on Fn. On this space we have the Fourier
transform

where the Haar measure dx on Fn is chosen to be self dual, so 
4D(-x), forxEFn and I&#x3E; ~ 
We put q = (0,..., 0,1) E Fn and we fix an invariant measure d~ on

Nn~Gn, such that the measure of any compact open set is rational.
For Wl E W(7ri; 1/;), W2 E W(7T2; ~), and &#x26; E we set

where the absolute value denotes the normalized absolute value on F.
Then [22, Theorem 2.7] each such integral converges absolutely for Re(s)

large enough and defines a rational function of q-S, for which we use the
same notation. When Wi, W2, 4~ vary, the rational functions BI1(s, Wi, W2, 4~)
span a fractional ideal of q-1] in (C(q-S). That ideal has a unique gen-
erator of the form P(q-S)-1, where P(X) E C[X] satisfies P(0) = 1. By
definition,

whereas the E-factor is determined by the functional equation

6.5. Let T E Aut(C) ; then I&#x3E; - gives a group automorphism 
However, this does not commute with Fourier transform: that is, in some
circumstances we have This is because the self-dual
measure dx need not be rational. Indeed, it is simple to check
that dx is times a Haar rational measure, so that

abbreviating a = a(o). On the other hand, for Wi E W2 E
W(1r2; ifi) and (D E we have
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because d~ is a rational measure. This already shows that

which yields

and consequently the functional equation yields

This proves Theorem 3.2 when nl = n2 = n and the ~r2 are generic.

6.6. Assume now that 7r2 are generic and that n2  nl.

Let j be an integer satisfying n2 - 1, and put k = nl -
n2 - 1 - j.

Let dg be a rational invariant measure on Nnl BGnl. We let 8 (Mj) be
the space of Schwartz-Bruhat functions on the space Mj = M(j x n2, F) of
j x n2 matrices over F. we then have the Fourier transform

where the Haar measure dx on Mj is chosen to be self-dual: 
-

For j, k as above, Wi E W(7Ti; W2 E 1N(~r2; ~), we let

(Here lj , for example, denotes the j x j identity matrix.) Then, [22, Theo-
rem 2.7~, the integral converges for Re(s) large enough and defines a ratio-
nal function of q-S . For j fixed, and when Wi and W2 vary, these rational
functions span a fractional ideal of C[q-S, qS] in C(q-S) which is indepen-
dent o f j . That ideal has a unique generator of the form where
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P(X) E C[X] satisfies P(0) = 1, and

The e-factor is determined by the functional equations (for any j, k as
above)

for Wi E W2 E and where

6.7. Let now T E Aut(C) and fix the integers j, k as in 6.6. The self-dual
Haar measure dx on Mj is Vqajn2 times a rational measure. Because, in
the definition the factor I occurs with exponent
s - n12n2, the rationality property of such integrals is:

which implies

and consequently also

Again = and

so that the functional equation yields

since (j + k)n2 = (nl - n2 - 1)n2 = nln2 (mod 2). This proves Theorem
3.2 when n2  nl and the 7ri are generic.
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6.8. We have now proved Theorem 3.2 in the case where the ~r2 are essen-
tially tempered: this is more than enough for the applications in the rest of
the paper. For completeness, we continue and prove it in the general case.
The definition of L- and e-factors for general pairs uses the Langlands

classification for GLn (see [12]; for proofs, see [2], [27]). For our purposes,
it is better to use the version of the Langlands classification which follows
from the investigations of Zelevinsky [28]. Our reference will be Rodier’s
Bourbaki report [25] on the subject.

Let 7r E AF(n). By Langlands’ classification there is a parabolic sub-
group P of Gn = GLn(F), a tempered irreducible smooth representation
p of the Levi quotient L of P, and a smooth homomorphism X : L -~ R’ I
positive with respect to P, such that 7r is the unique irreducible quotient
of the representation of Gn induced (via P) from X 0 p. The triple (P, p, x)
is unique up to conjugation in Gn .
When we try to investigate the action of Aut(C) on the Langlands clas-

sification, we run into two problems. The first is that parabolic induction,
being normalized to make unitary representations go to unitary represen-
tations, is not Aut(C)-equivariant. The second and more serious is that,
for T E Aut(C) and p tempered, the representation T p is not necessarily
tempered. Further, if x : L ~ R§ is as above, the quasicharacter Tx need
not be real-valued, let alone positive with respect to P. We now clarify
these matters.

6.9. We start with parabolic induction.
For i = l, 2, let ~r2 E Put n = nl -f-n2 and let p be the rep-

resentation of Gn parabolically induced by 7ri 07r2. Then p is obtained
by un-normalized induction from 0 ~2), where 62 is the modulus
character of the upper triangular parabolic subgroup P of Gn with diag-
onal blocks Gnl’ Gn2 . Consequently if T E Aut(C), then T p is obtained,
by un-normalized induction, from Tb p 1 (T~rl (9,T7r2): indeed, un-normalized
induction is clearly Aut(C) equivariant.

( ) 
f(T)

Let c : z - (L) v(x) , where V = vF . Thus E is a character of F x suchq

that E2 = 1. For (gl, g2) E Gn, x Gn2l one calculates that

Consequently, Tp is obtained, by parabolic induction, from the representa-
tion En2 T1Tl 0 En1 

If we use the notation 7r, o 7r2 instead of p, we get
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By transitivity of induction we get, for any positive integer r and 7ri E

where n = ni .

6.10. Let us now investigate the action of Aut(C) on the Langlands clas-
sification, using [25]. We put AF = ·’~.F = 0 (n).
For 7r E and s E C, we let 7r(s) be the class of the representation
9 ’- 11 det 
A segment of length r &#x3E; 1 is an r-tuple L1 = (p, p(1), ... , p(r -1)) where
p

Let L1 = (p, p( 1 ), ... , p(r - 1)) and zl’ = ( p’, ... , p’ (r’ - 1)) be two seg-
ments. We say that L1 precedes L1’ if p’ = p(m) for some integer m satisfying

1, m + r’ - 1 &#x3E; r - 1. (This is easily seen to be equivalent
to the conditions in [25, 4.1]). The Langlands classification theorem, as
completed by Bernstein and Zelevinsky, can then be stated as follows ([25,
Th6orbme 3]):
1. For each segment L1 = (p, ... , p(r-1) ), the representation 

has a unique irreducible quotient. Its class is denoted £(L1) and the map
L1 H £(L1) is a bijection from the set of segments to the set of classes
of essentially square-integrable elements in 

2. Let be segments. Assume that a2 does not precede L1j
whenever i  j . Then the representation 0 ...0 £(L1r) has a
unique irreducible quotient, the class of which is called .~ ( ~ 1, ... , 
If Q i , ... , L1~ are segments such that L1~ does not precede L1j when
i  j, then .~ ( ~ 1, ... , L1r) = .~ ( a i , ... , and only if the sequence
(Qi, ... , is a permutation of (L11,..., L1r).

3. For 1r E there exists a sequence (al, ... , L1r) of segments such that
L1i does not precede L1j when i  j and 7r = .~ ( ~ 1, ... , 

6.11. Let now T E Aut(C) . Let ~ _ ( p, ... , p(r - 1)) be a segment. Then
clearly T£(L1) is the class of the unique irreducible quotient of T(p o ... o
p(r - 1)). By 6.7, if p E then

so that with the obvious notation

and (x p, - .. , x p(r - 1)) for any quasicharacter X of F" .
Let s be a positive integer and, for i = 1, ... , s, let Ai = ( p2 , .. - , Pi(ri -

1)) be a segment, with p2 E Assume that, for i  j, L1i does
not precede zlj . Then obviously ... , L1s) is the class of the unique
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irreducible quotient of r(£(L11) o ... o 1(4is) ) . Putting n = ¿:=1 riti we
have that ~"~T~(Zli,..., Zig) is the class of the unique irreducible quotient
of 0 ... 0 i.e., of 0 ... 0 

If, for some i  j , precedes then necessarily t2 and

L1i precedes L1j which is impossible. Consequently

6.12. We are now ready to prove Theorem 3.2 in general. Let 7r E 
7r’ e ,A.F(n’). Write 7r = .~(dl, ... , 7r’ = .~(~i, ... , in the Lang-
lands classification as above. We put (p~,... 1)), with p2 E

and ( p" , ... , p (r -1 ) ) , with p" E Then by definition
[22, §9] 

~ ~ ~ ~ ~ 

(This definition is compatible with the cases where and 1f’ are generic.)
Let T E Aut(C). We then have by 6.11

We know that for each i and j

Now let a E C’ and r E Z; we have

Consequently

Taking the product over i and j we finally get
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as required for Theorem 3.2.
The proof for the e-factor is analogous. By 6.11 we have

and we know that for each i and j

which implies

Taking the product over i and j we get

as required. 0
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