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Pour Jacques Martinet

RESUME. Titre frangais : Congruences modulo £ entre facteurs e
des représentations cuspidales de GL(2)

Soient £ # p deux nombres premiers distincts, F' un corps local
non archimedien de caractéristique résiduelle p, Q, une cloture
algébrique du corps des nombres f-adiques, et F, le corps
résiduel de Q,. On conjecture que la correspondance locale de
Langlands pour GL(n, F) sur Q, respecte les congruences mod-
ulo £ entre les facteurs L et € de paires, et que la correspondance
locale de Langlands sur Fy est caractérisée par des identités entre
de nouveaux facteurs L et e. Nous allons le démontrer lorsque
n=2.

ABSTRACT. Let £ # p be two different prime numbers, let F' be
a local non archimedean field of residual characteristic p, and let
QZ,Zg,Fe be an algebraic closure of the field of ¢-adic numbers
Q, the ring of integers of Q,, the residual field of Z.. We proved
the existence and the unicity of a Langlands local correspondence
over F, for all n > 2, compatible with the reduction modulo £ in
[V5], without using L and ¢ factors of pairs.

We conjecture that the Langlands local correspondence over
Qg respects congruences modulo ¢ between L and ¢ factors of
pairs, and that the Langlands local correspondence over Fy is
characterized by identities between new L and ¢ factors. The aim
of this short paper is prove this when n = 2.

Introduction

The Langlands local correspondence is the unique bijection between all
irreductible Q,-representations of GL(n, F') and certain ¢-adic representa-
tions of an absolute Weil group Wr of dimension n, for all integers n > 1,
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which is induced by the reciprocity law of local class field theory
W ~ F*

when n = 1 (W is the biggest abelian Hausdorff quotient of W), and
which respects L and ¢ factors of pairs [LRS], [HT], [H2].

Let o : F — Z, be a non trivial character. We denote by Cuspp GL(n, F)
the set of isomorphism classes of irreducible cuspidal R-representations of
GL(n,F). When m € Cuspg, GL(n, F), Henniart [H1] showed that = is
characterized by the epsilon factors of pairs e(m,0) for all o €
Cuspg, GL(m,F) and for all m < n — 1 (note that L(w,0) = 1), using
the theory of Jacquet, Piatestski-Shapiro, and Shalika [JPS1].

Does this remain true for cuspidal irreductible F,-representations of
GL(n, F) 7 We need first to define the epsilon factors of pairs.

Let 7 € Cuspg, GL(n,F). It is known that the constants of the epsilon

factors of pairs e(m, o) belong to Z, for all o € Cusp@ GL(m, F) and for all
m < n— 1, and that the conductor does not change by reduction modulo £
(this is proved by Deligne [D] for the irreducible representations of the
Weil group, and by the local Langlands correspondence over Q, is true for
cuspidal representations).

Now let m € Cuspg, GL(n, F). Then r lifts to Cuspae GL(n,F) [V1,
I11.5.10]. By reduction modulo ¢, one can define epsilon factors of pairs
g(m,0) for all o € Cuspy, GL(m, F) and for all m < n — 1. Let g be
the order of the residual field of F. We expect that m is characterized
by the epsilon factors e(m, o) for all o, when the multiplicative order of ¢
modulo £ is > n — 1; otherwise, 7 should be characterized by less naive but
natural epsilon factors. The same should be true when 7 is replaced by an
Fy-irreducible representation of the Weil group Wr.

The existence [V4] of an integral Kirillov model for = € Cuspg, GL (n, F)
seems to be an adequate tool to solve the problem. The description of the
representation m on the Kirillov model is given by the central character w;
and by the action of the symmetric group Sy, (the Weyl group of GL(n, F)).
The action of S, is related with the e(m, o) for all o as above [GK, see the
end of paragraph 7]. When n = 2 Jacquet and Langlands [JL] described
the action of Sy on the Kirillov model in terms of (m, x) = (7 ® x) for all
Q-characters x of F*, using the Fourier transform on F*.

In the case n = 2 and only in this case, we will prove that two integral
m,w € Cuspg, GL(2, F) have the same reduction modulo £ if and only if
their central characters have the same reduction modulo ¢ and the factors
e(r ® x), (' ® x) have the same reduction modulo ¢ for integral Q,-
characters x of F* when ¢ does not divide ¢ — 1. When ¢ divides q — 1
this remains true with new epsilon factors taking into account the natural
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congruences modulo £ satisfied by the e(r ® x) for all x. By reduction
modulo ¢, we get that the local Langlands F-correspondence for n = 2 is
characterized by the equality on L and new ¢ factors of pairs. The field F,
can be replaced by any algebraically closed field R of characteristic £.

The case n = 3 could be treated probably, but the general case n > 4
remains an open and interesting question.

1. Integral Kirillov model

The definition of the L and e factors of pairs [JPS1] uses the Whittaker
model, or what is equivalent the Kirillov model. We showed [V4] that these
models are compatible with the reduction modulo 4.

We denote by O the ring of integers of F'. Let R be an algebraically
closed field of characteristic # p, and let ¢ : I — R* be a character
such that Op is the biggest ideal on which % is trivial. We extend ¢
to a R-character of the group N of strictly upper triangular matrices of
G = GL(n, F) by ¥(n) = ¥(3>_niiy1) for n = (n; ;) € N. The mirabolic
subgroup P of G is the semi-direct product of the group GL(n — 1, F)
embedded in GL(n, F) by

=0 )
01

and of the group F™~! embedded in GL(n, F) by

w_)lx
0 1/)°

The representation 7g := indp y 9 of the mirabolic subgroup P (compact
induction) is called mirabolic. It is irreducible (this is a corollary of [V4
prop.1]), but it is not admissible when n > 2.

Lemma. Endgrp 7 ~ R.

Proof. This is a general fact: the representation 7z is absolutely irreducible
[V1, 1.6.10], hence Endgp7r ~ R. From the Schur’s lemma [V1, 1.6.9]
Endrp 7R ~ R when the cardinal of R is strictly bigger than dimpg g
(countable dimension). There exists an algebraically closed field R’ which
contains R and of uncountable cardinal. Two RP-endomorphisms of 75
which are proportional over R’ are proportional over R. O

Theorem. An irreducible R-representation w of G is cuspidal if and only
if extends the mirabolic representation Tg.

Proof. This results from [BZ] and [V1]. Suppose that = is cuspidal. Then
7|p is the mirabolic representation: when R = Q, ~ C see [BZ, 5.13 &
5.20], when R = Fy, r lifts to Q, [V1, II1.5.10] where it is true then reduce.
Conversely, suppose 7|p = 7g and R = Q, or F,. Then 7 is cuspidal [V1,
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II1.1.8]. The case of a general R is deduced from this two cases by the next
lemma. O

Let G be the group of rational points of a reductive connected group
over F. We denote by Irrg G the set of isomorphism classes of irreducible
R-representations of G.

Lemma. (1) A non zero homomorphism of algebraically closed fields f :
R — R' gives a natural injective map m — fu(7) : Irrg G — Irrgr G which
respects cuspidality.

(2) Let ' € Cuspgs G. Then there exists an unramified character x of
G such that ' ® x = f«(w) with m € Cuspg G.

Proof. This results from [V1].

(1) f« respects irreducibility [V1, II.4.5], and commutes with the para-
bolic restriction. Hence it respects cuspidality. The linear independence of
characters [V1, 1.6.13] shows that if m, 7’ € Irrg G are not isomorphic then
fsm, fem’ are not isomorphic.

(2) Let Z be the center of G. The group of rational characters X (Z)
is a subgroup of finite index in the group X(G). This implies that there
exists an unramified character x of G such that the quotient Z/Z, of Z by
the kernel Z, of the central character w of n’ ® x is profinite. Hence the
values of w are roots of unity. We deduce that 7’ ® x has a model on R
[V1, I1.4.9]. a

Let m € Cuspr GL(n, F) of central character w. The realisation of 7 on
the mirabolic representation 7g is called the Kirillov model K (7) of 7. It is
sometimes useful to use the Whittaker model instead of the Kirillov model.
By adjonction and the theorem Hompgg(7,Indg N %) =~ R (the unicity of
the Whittaker model); the Whittaker model W () is the unique realisation
of m in Indg n ¥. By definition

W(g) = (m(g9)W)(1)

for all g € G and for all Whittaker functions W € W (w). We denote by
I'(j) the subgroup of matrices k € GL(n,OF) of the form

k= (Z Z), aeGL(n—l,OF),dGO},cep%OF

for any integer j > 0. The smallest j > 0 such that = contains a non-zero
vector transforming under I'(j) according to the one dimensional character

w;j(k) = w(d)
for k € I'(j) as above, is called the conductor of m and denoted f.
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Theorem. Let m € Cuspr GL(n, F') of central character w = w and con-

ductor f.
(1) The restriction from G to P induces a G-equivariant isomorphism

W - W|p:W(r) ~ K(r)

from the Whittaker model to the Kirillov model.
(2) Let ' € Cuspr GL(n, F). There is a natural isomorphism W — W' :
W (r) — W(n') of R-vector spaces defined by the condition W|p = W'|p.
(3) There is unique function Wr € W(r) such that

WrleL(n-1,F) = laL(n-1,0F)-

The function Wy is called the new vector of m and generates the space of
vectors of w transforming under I'(f) according to wy.
(4) W(mr) is contained in the compactly induced representation

indg, Nz ¥ ® wr.

Proof. (1) There exists W € W(x) with W(1) # 0, and f : W — Wp is a
non zero P-equivariant map from 7 to Indﬁ 1. The map f is injective of
image indk; ¢, because Endr 7 =~ R. We get also (2).

(3) The space of g is isomorphic by restriction to G’ = GL(n — 1, F),
to the space of indy/ ¢/ 9 where N’ = NN G'. As ¢ is trivial on Op,
the characteristic function of GL(n — 1,0r) belongs to ind$§, ¢. For the
conductor [JPS2].

(4) Let W € W (xr). The function £ — W (zg) on the parabolic standard
subgroup PZ is locally constant of compact support modulo NZ for all
g € G. As G = PZGL(n,OF), the function W is of compact support
modulo NZ. O

Letm € Irrg, G. Let £ / Qe be an extension contained in a finite extension
of the maximal unramified extension of Q,. Example: the extension F/Q,
generated by the values of ¢. The ring of integers Op is principal. An Og-
free module L with an action of G such that L is a finite type OgG-module
and such that ﬁe ®og L ~ 7 is called an Og-integral structure of 7. If such
an L is exists, 7 is called integral, the representation r,L = L ®o, Fy is of
finite length. One calls Z, ®oy L an integral structure of 7. When L, L/
are two integral structures of m, then the semi-simplifications of r,L,r,L’
are isomorphic (see [V1, I1.5.11.b] when E/Q; is finite, and [Vig4, proof
of theorem 2, page 416] in general). When 7 € Cuspae G is integral,
L = L ®og F, is irreducible; the isomorphism class rym of ryL is called
the reduction of 7; any irreducible cuspidal Fy-representation of G is the

reduction of an integral irreducible cuspidal Q,-representation of G. For
all these facts see [V1, II1.5.10].



576 Marie-France VIGNERAS

__ A function with values in Q, is called integral, when its values belong to
Zy . We denote by K(m,Z;), resp. W(m,Z;), the set of integral functions
in the Kirillov model, resp. Whittaker model, of m € CuspQ-[ G. Let A be
the maximal ideal of Z;. The reduction modulo £ of an integral function f
is the fonction ryf with values in Z;/A ~ F; deduced from f.

Theorem. (A) Let 7 € Cusp—dtG with central character wy. Then the
following properties are equivalent:

(A.1) wy is integral.

(A.2) 7 is integral.

(A.3) K(m,Zy) is a Z¢-structure of m, called the integral Kirillov model.

(A.4) W (m,Zy) is a Zy-structure of m, called the integral Whittaker model.
(B) When 7 is integral, we have

(B.1) The restriction to P from W (w,Zy) to K(m,Zy) is an isomorphism.

(B.2) The integral Kirillov model is ZyP- generated by any function f
with f(1) = 1. The integral Whittaker model W (m,Zy) is ZyG generated by
the new vector.

(B.3) F, ®z, K (m,Z¢) = K(rem,Fy) is the Kirillov model, and F, ®7z,
W (m,Zy) = W (rem,Fy) is the Whittaker model of rer.
Proof. The equivalence of (A1) (A2) [V1, I1.4.12]; for the rest [V4 th.2] and
the last theorem. a
Corollary. Let 7,7’ € Cuspal G integral, with central character wyp,wy.
Then rew = ror’ if and only if

(*) rewr = o, Tem(w)(f) = ren’ (w)(f)
for all w € Sy, and for all f in the integral Kirillov model.
Proof. Use (B.3) and Endg, 7, ~ Fy. O

Questions. Can one define an integral Kirillov or Whittaker model for
T E Irr@ G integral and not cuspidal ? What is the action of S,, in the
Kirillov model ?

2. The case n =2

We can go further in the case n = 2. Let 7 € Cusp@ G where G =
GL(2,F). The restriction of GL(2, F) to GL(1, F) = F* gives an isomor-
phism from K () to the space C°(F*,Q,) of locally constant functions
F* — Qe with compact support, which respects the natural Z,-structures
K(m,Zy) ~ C®(F*,Z;). The unique non trivial element of S, is repre-

sented by
0 1
o= (5 1).
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The action of m(w) on the Kirillov model was described by Jacquet and
Langlands [JL, Prop. 2.10 p.46], using Fourier transform for complex rep-
resentations.

We choose a Qg-Haar measure dxr on F*. The Fourier transform of
f € CP(F*,Q,) with respect to dz is

foo = [ e

for any character x : F* — 6;.

We choose a uniformizing parameter pr of F. A function f € C°(F*, Q,)
is determined by the set of functions f, € C°(O%, Q,) defined by f,(z) :=
f(pz"z) for all n € Z. The functions f, depend on the choice of pr. Exten-
sion by zero allows to consider C°(O%, Q) as a subspace of C°(F*, Q,),
because O% is open in F*. We have

f(X) an X(pF

For a given character x, the sum is finite. The functions fn(x) depend only
on the restriction of x to O}. Set O% := Hom(O%,Q,). One introduces
the formal series

f(z, X) an(x f(XaX) = an(X)Xn

n€eZ neZ

for all z € O% and for all x € O%.
Jacquet and Langlands [JL Prop. 2.10 page 46] proved that the action
of m(w) on the Kirillov model is given by:

(m(w)f)a"(x) = e(m@x™") frm(x'wr?)
for all x € O}, all integers n € Z, where m = —n — f(r ® x!), for some

constant ¢(?) € Q, and some integer f(?) € Z. The formula and ¢(7® x™1)
are independent of the choice of dxz. The formula is equivalent to

(r(w) )" (6X) = e(rax ) fx  w, X7
for all Q,-characters x of OF, where the epsilon factor is

e(r@x 1Y) = c(r @ x 1) XX,

On calls ¢() the constant and f() the conductor of the epsilon factor ().
They both depend on the choice of the non trivial character ¢ : F — ZZ
which was fixed, but not on the choice of dx or on pr. Jacquet and Lang-
lands used complex representations but their method is valid when the field
of complex numbers is replaced by Q,, because one uses only integrals of lo-
cally constant functions on compact sets. There is no problem of vanishing
because we work on Q,.
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We suppose that dr is a Zy-Haar measure on F™* wich is not divisible by

£. Let
L = the Fourier transform of C°(O%, Zy).

We have £ C C®(0%,Z) and £ = C®(0%, Zy) if and only if ¢ # 1 mod ¢
[V2]. In general, we separate the {-regular part X of O% from the /-part
Y of O} which is a cyclic group of order m = ¢*. The volume of X for
dz should be a unit in Ze’ We can suppose it is equal to 1. The group
of Q,-characters satisfy OF X x Y. A general character in O is now
written as xu where x € X and S Y, and a function v : OF — Qyis
thought as a function v : X — C(Y,Q,) with v(x)(k) = v(xw)-

The Z,-module £ consists of all functions v : X — L with compact
support, where

Lc Cgo (szl)

is the free Z,-module with basis the characters y : u — p(y~') of Y for all
yey.

We need some el?m_entary linear algebra. The Z,-module L is the set of
functions v € C°(Y, Q) such that

y<v,y>= Y] v(p)u(y)
pey

belongs to C(Y,Z,). The orthogonality formula of characters gives

v=) <vy>y

yey

for all v € C(?,Q'e). For the usual product, C® (Y’,QZ) is an algebra.

Lemma. Let v e CX(Y,Q,).

(i) The inclusion vL C L is equivalent to v € L.

(ii) The equality vL = L is equivalent tov € L andv(u) € Zy forallp € Y.
(i) The inclusion vL C AL is equivalent to < v,y >€E A forally €Y

(A is the mazimal ideal of Zy).

Proof. (i) The inclusion vL C L is equivalent to < vz, 2’ >=<v,z712' >€
7Z, for all z, 2’ € Y, which is equivalent to v € L.

(i) vL = L means that vz for z € Y is a basis of L. We have vz =
> wey <v,2 12 > 2/, hence vL = L means that

(<v,2712 >), . € SL(m, Zy).

The Dedekind determinant det(< v,z712’ >), s is equal to [] ey v(p) (see
[L] exercise 28 page 495).
(iii) see the proof of (i). O
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Let m € Cusp@ G integral. As m(w) is an isomorphism of the integral
Kirillov model, the function
(r@x): peY —c(r@xpu) €Q,

satisfies ¢(m ® x)L = L for all character x € X. We apply the lemma to
c(m ® x)- We define new epsilon factors

e(my) :=<c(r),y > XI™, <o(n),y>= V|71 e(r @ p)u(y),
pey
for all y € Y. As have f(r) > 2 for 7 € CUSPQ G, we have f(7) =

f(r@up) >2forall p €Y. When Y is trivial (i.e. ¢ # 1mod¥), they are
simply the usual ones.

Theorem. (1) Let € Cuspﬁl G integral. Then the constant of the epsilon

factor is a unit c(w) € Z, and the new constants < c(r),y >€ Zy are
integral, for ally €Y.

(2) Let m,n’ € Cuspae G integral with central characters wg,wy. Then
rem = 1o’ if and only if rewr = Towr and their new epsilon factors have
the same reduction modulo £: the conductors f(r®x) = f(n'®X) are equal,
and the new constants have the same reduction modulo £ :

re <c(m®x),y >=re < (' @ x),y >
for ally € Y, and all Qp-characters x € X.

Proof. With the last corollary of the paragraph (1), rem = ren’ if and only
if rpwr = rewy and

(*) (T @ x)fmx " wrt) = e’ ® X) fr (X 'w3')  modulo AL

for all f, € C’g"(O},Zg) and all n € Z. With the lemma, we deduce the
theorem. O

We apply now the theorem to representations over F,. Any 7 € CuspEZ G
lifts to Q, and we can define epsilon factors

e(r®x,y) =<c(r®x),y > x f(m®x)

for all y € Y and all x € Hom(O%,F;) = Hom(X,F,), by reduction
modulo £. They are not zero for any (y, X).

Corollary. n,n’ € Cuspﬁe G are isomorphic if and only if they have the
same central character and the same epsilon factors

e(mex,y) =e(r ®x,y)
forally € Y, and for all character x € Hom(O},Fz).
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Final remarks. a) When n > 2, the groups GL(m,Of)* form <n —1
replace OF.

b) Using the explicit description for the irreducible representations of di-
mension n of Wg [V3], one could try to prove a similar theorem for the
irreducible integral Q,-representations of Wz of dimension n. To my know-
ledge this is a known and harder problem, which is not solved in the complex

case.
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