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Families of modular forms

par KEVIN BUZZARD

RÉSUMÉ. Nous donnons une introduction terre à terre de la théo-
rie des familles de formes modulaires, et discutons des démonstra-
tions élémentaires de résultats suggérant que les formes modu-
laires apparaissent sous forme de familles.

ABSTRACT. We give a down-to-earth introduction to the theory
of families of modular forms, and discuss elementary proofs of
results suggesting that modular forms come in families.

1. What is a family?

Let r be the group SL2(Z), or more generally a congruence subgroup of
SL2(Z). 1 be an integer. A modular form of weight k for r is a
holomorphic function f on the upper half plane satisfying

, , ,

for all (~~) E r, and some boundedness conditions, which ensure that for
fixed k and r, the space of such forms is finite-dimensional. If r = rl (N)
for some positive integer N, then we say that f has weight k and level N.
Any enquiring mind seeing the precise definition for the first time would

surely wonder whether any non-constant modular forms exist at all. But
of course they do-and we shall begin our study of families with the forms
that are frequently the first non-trivial examples of modular forms given in
an introductory course, namely the Eisenstein series Ek . Here l~ &#x3E; 4 is an
even integer, and Ek is a modular form of weight and level 1 which has,
at least up to a constant, the following power series expansion:

As is standard, we use q to denote exp(27riz), and ad(n) to denote the sum
of the dth powers of the (positive) divisors of n.

Note that although these forms are constructed only for k &#x3E; 4 and even,
the coefficients of the power series above happen to make sense for any
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non-zero k E C. Indeed, if we were asked to come up with a natural way of
interpolating the Fourier coefficients of the Ek , then the choice given above
would surely be a natural one. Almost unwittingly, we have created our
first family of modular forms.

Actually, this article is really concerned with p-adic families of modular
forms, so before we continue, we shall modify the Ek slightly. For simplicity,
let us assume for the rest of this section that p is odd. Recall that there
is a p-adic analogue of the zeta function, so called because it (essentially)
p-adically interpolates the values of the zeta function at negative integers.
We say "essentially" because there are two caveats. The first is that one
has to restrict oneself to evaluating the zeta function at negative integers
congruent to 1 modulo p - 1. The second is that one has to drop an
Euler factor-the correct classical object to p-adically interpolate is ( 1 -
p-S)((s) = q-s)-l.

Similarly one has to drop an Euler factor when attempting to p-adically
interpolate the Eisenstein series Ek . For k &#x3E; 4 an even integer, define

where is the sum of the dth powers of the divisors of n that are prime
to p. Then is an oldform of level p, and it is these oldforms that will

interpolate beautifully, at least if we restrict to I~ in some fixed conjugacy
class modulo p - 1.

Let us for example consider the set ,S’ consisting of positive even integers
k which are at least 4 and are congruent to 0 mod p - 1. Then this set
is dense in Zp. It turns out that the Fourier expansions for are p-

adically continuous as k varies through S’, where now we think of ,S’ as

having the p-adic topology. In fact, one can show more. Consider the
functions

- - . , , -

Then we have the following well-known theorem.

Theorem 1. There are unique p-adic analytic functions An : Qp for
n &#x3E; 0, with Ao = 1, such that for all k in S we have the following equality
of formal sums:

D
This theorem is little more than the existence of the p-adic zeta function,

and the fact that it has no zeros. One thing which is not immediately
obvious, but comes out of a more general study of Eisenstein series, is that
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for all integers k &#x3E; 0, the power series is actually the Fourier
expansion of a modular form of level p and weight k.

Motivated by this theorem, we shall now give a definition of a p-adic
family of modular forms. Firstly, let Cp denote the completion of the
algebraic closure of Qp, and fix an isomorphism C ~ Cp. Our families will
live over p-adic discs in Zp, so let us define, for c E Zp and r E the
disc B(c, r) to be the set of elements 1~ E Zp cl  r.

Definition. Let N be an integer prime to p, and fix a disc B(c, r) as above.
A p-adic family of modular forms of level N is a formal power series

where each Fn : B(c, r) - Cp is a p-adic analytic function, and with the
property that for all sufficiently large (rational) integers k in B(c, r), the
formal sum ¿n is the Fourier expansion of a classical modular form
of weight k and level NP.

Note that the family of Eisenstein series that we have constructed is
indeed a family in the above sense. We also remark that the restriction to
p odd that we made a while ago is entirely unnecessary and that one can
still construct a family of Eisenstein series when p = 2. Henceforth, p will
be an arbitrary prime.

2. Forms live in families.

Given what we know, it is now not too difficult to show that any modular
form of level Np lives in a family of level can just multiply the
form in question by the family of Eisenstein series already constructed
(which fortuitously goes through the constant modular form 1 when k = 0).
A much more challenging question is:

(auestion. Let c be a rational integer, and let f be a classical eigenform
of level Np and weight c. Does f live in a p-adic family of eigenforms?

By a p-adic family of eigenforms, we simply mean a family of forms
whose specialisations to weight k, for all sufficiently large rational integers
k E B(c, r), is an eigenform. We remark that the family of Eisenstein series
is a family of eigenforms. However, the trick of multiplying an arbitrary
eigenform f by this family will not produce a family of eigenforms, because
the product of two eigenforms is not necessarily still an eigenform (and
indeed frequently will not be).

Before we continue, we introduce one more piece of notation. If f is a
classical eigenform of level Np, then in particular it is an eigenvector for
the Up operator. We say that the slope of f is the p-adic valuation of the
corresponding eigenvalue. Note that it is a classical result that eigenforms of
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level Np always have finite slope. We say that a p-adic family of eigenforms
has constant slope s if, for all sufficiently large rational integers k E B(c, r),
the corresponding weight k eigenform has slope s.

The question stated above has in fact been answered affirmatiely by
Coleman, in the paper [C]. Inspired by this work, Coleman and Mazur
constructed in [CM] a geometric object, the so-called "Eigencurve" , whose
very existence implies that eigenforms come in families! Points on the

eigencurve correspond to certain p-adic eigenforms. So assuming that the
eigencurve exists, the points in a small open disc on this curve will corre-
spond to a family of eigenforms.

The existence of the eigencurve also explains more conceptually what is
going on when one specialises a p-adic family of forms at a point where the
resulting q-expansion is not that of a classical modular form-although we
shall not go into the details here. But one thing that it did not initially
shed light on was the question of how big one could expect the radius r
of the family to be-or equivalently, how big a disc could you fit round a
point in the eigencurve?

Understanding the nature of the radius has in fact turned out to be a
tricky problem. In [GM], Gouvea and Mazur make some precise conjectures
about what r might be expected to be, at least when the level of the forms
in question is ro(Np), and the optimist can easily extend these conjectures
to cover the case of These conjectures were based on a lot of
numerical examples computed by Mestre. What seemed to be going on
in Mestre’s computations was that the radius of a family passing through
an eigenform f of level Np and slope s was, broadly speaking, p-’. The
reader who wants to know the precise form of the conjecture (which is in
fact rather easy to explain) is referred to [GM].

As well as this computational evidence, the paper [W] showed, using
Coleman’s work, that an eigenform f of slope s should live in a family of
eigenforms with radius where t = 0(s2). Unfortunately, no-one has so
far been able to "close the gap", with the result that we still seem to be
unsure whether Mestre’s computational results are misleading or whether
Wan’s work can be strengthened.
The fact that eigenforms should come in families has classical conse-

quences. For example, the results above imply that there should be a lower
bound on the Newton Polygon of Up acting on the space of modular forms
of level Np and weight k, and that this bound should be uniform in k. This
question was raised explicitly by Ulmer in [U], who produced a number
of interesting results in this direction. We should perhaps remark at this
stage that Coleman’s work used a lot of machinery from the theory of rigid-
analytic geometry, and Ulmer’s ideas appealed a lot to crystalline methods.
However, in the unpublished [T], Richard Taylor noted that in fact a more
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elementary approach could perhaps be used to attack these problems. In-
spired by these ideas, we shall here present a completely elementary proof
of

Theorem 2. The Newton Polygon of Up acting on the space of classical
modular forms of weight k and level Np is bounded below by an explicit
quadratic lower bound which is independent of k.

As a corollary, we get explicit bounds for the number of forms of slope a,
weight k and level Np, and moreover these bounds are independent of k.
We shall state and prove a precise version of the theorem, and its corol-

laries, in the next section. As far as the author knows, the first proof of
this theorem was given in [W] and made essential use of Coleman’s rigid-
analytic methods. The proof we present uses nothing more than group
cohomology.

3. The proofs.
Some notation.

Recall that N is a positive integer, and p is a prime not dividing N.
Let R = Zp[~] denote the polynomial ring in one variable over Zp. Let

L be a finite free Zp-module of rank t, equipped with a Zp-linear endo-
morphism with non-zero determinant. Then L can be regarded as a Zp[]-
module, where e acts via this endomorphism.
We recall the definition of the Newton Polygon of ~ acting on L. Write

the characteristic polynomial of ~ on L 0 Qp as ct-iX 2. Then let vp
denote the usual valuation on Zp, and plot the points (i, in ]R2, for
0  i  t, ignoring the i for which ci = 0. Let Z denote the convex hull of
these points. The Newton Polygon of ~ on L is the lower faces of Z, that
is the union of the sides forming the lower of the two routes from (0, ) to
(t, vp(ct)) on the boundary of Z. It is well-known that this graph encodes
the p-adic valuations of the eigenvalues of ~. In fact, if the Newton Polygon
has a side of slope a and whose projection onto the x axis has length n,
then there are precisely n eigenvectors of ~ with p-adic valuation equal to a.

It is our intention to say something about this polygon when ~ is the
operator U~ acting on a certain lattice in a space of modular forms. As a
result we shall recover results about the p-adic valuations of the eigenvalues
of Up. We shall first establish a general result, after setting up some more
notation.

Let L be as above, and let K be a sub-R-module of L such that the
quotient Q = L / K is a finite p-group. Say
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with
Now assume that there exists a non-negative integer n, greater than or

equal to all the ai, and such that g(K) C pnL. Write bi = n-ai for 1  i  t
and
Lemma 1. The Newton Polygon of ~ orc L lies on or above the points
(.?a ~(j)) for 0  j  t.

Proof. The proof is very easy, and we shall just sketch it. First choose a Zp-
basis for L such that is a Zp-basis for K. With respect
to this basis, let ~ : L --~ L be represented by the matrix (uj,j) . One sees
that the assumption ~(K) C pnL implies that pbj divides Then, from
the definition of the characteristic polynomial as ~) = E 
and from the fact that the bi are increasing, we see that divides cj for

0  j  t. Using once more that the bi are increasing, the lemma follows
easily. D

We now show how to apply this in the case of classical modular forms.
Write r for and for k &#x3E; 2 an integer, let denote the space
of classical cusp forms of weight k and level Np. Note that if Np &#x3E; 5
then r is torsion-free and hence free. In fact, if Np &#x3E; 5 then r is free on
2g(X(r)) +c-1 generators, where is the genus of the compactified
modular curve associated to r, and c is the number of cusps added to make
the compactification. For general Np, we let m(r) denote the minimal
number of generators of r as a group. Hence m(r) = 2g(X(r)) + c -1 if
Np &#x3E; 5, and m(r) can easily be worked out explicitly in the other cases.

Let g = k - 2. For a commutative ring A, let Vg(A) = A9+1, considered
as column matrices of length g + 1. Let M denote the monoid consisting of
two by two matrices with integer entries and positive determinant. There
is a unique left action of M on with the following property: for all
y, z E Z, we have

where the superscript T denotes transpose. In fact, this action can be con-
structed explicitly thus: Consider elements of 7~2 as row vectors. Then there
is a natural right action of M on 7~2 and hence on its symmetric
gth power. The left action we are interested in is the natural induced left
action of M on the Z-dual of Sg (7~2) .

Define an action of M on Vg (A) for any commutative ring A by extending
the action on A-linearly. Note that r C M and hence Vg (A) has the
structure of a left r-module.
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There is a well-known isomorphism (see Theorem 8.4 of (S ) due to Eich-
ler and Shimura:

ES : Sk (F) - 

where HP denotes parabolic cohomology. Composing ES with the natural
inclusion Hp(r, V9(IEg)) - Hl(r, V9(IE8)) gives us an inclusion ES : 
H1(r, 
The Hecke operator Up acts (C-linearly) on Sk (r), and we shall now

recall the definition of an operator on that extends Up.
Let A be any ring, and define ~ : Hl(T, V9(A)) ~ Hl(r, V9(A)), an

A-linear map, thus. Firstly note that

and write ai for 1 Z . For q in F and 0  i  - 1 there exists a

unique 0  j  p -1 and 7i E IF such that ai7 = yiaj. First we shall define
the map ~ on 1-cocycles. If u : F - V9 is a 1-cocycle, define by

One can check that v is a 1-cocycle and moreover that the association u - v
induces a map from H1(r, Vg) to itself, which we define to be ~.

Lemma 2. The diagram

commutes.

Proof. This is Proposition 8.5 of [S]. D

Let a(X) denote the characteristic polynomial of Up acting on the com-
plex vector space Sk(r). It is the roots of this polynomial that we ultimately
wish to study. Note first that the coefficients of a are rational. Hence a2
is the characteristic polynomial of UP on Sk (r), considered as a real vector
space, and so if ~3(X) is the characteristic polynomial of ~ acting on the
real vector space H1(r, then we see that a2 divides {3, as ES is an
injection. Note that {3 is also the characteristic polynomial of ~ acting on
the K-vector space space for any field K of characteristic 0.
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We now pass to the case K = Qp. Firstly note that, although the group
may have some torsion, its image in is a lat-

tice. It is this lattice that we shall use for our L.
Let Ei E denote the column vector with 1 in its ith row and zeros

elsewhere, and let Wg (Zp) denote the Zp-subspace of generated by
the vectors

- no

It is easily checked that Wg (Zp) is preserved by r. Let I denote the quotient
Vg(Zp)/Wg(Zp) with its induced r-action. Taking the long exact sequence
in group cohomology associated to the short exact sequence

gives us an exact sequence of finitely-generated Zp-modules

where the first and last terms in this sequence are finite. It follows that
there is an exact sequence

where Q is some subquotient of and the superscript TF denotes
the maximal torsion-free quotient. In particular Q is finite (it would be good
to have a more explicit description of Q). Now write L for H’ (IF 
and K for H1(r, Wg(Zp))TF. The action of ~ on induces an
action of ~ on L and hence on K. Now we have

Lemma 3. ~(K) C p9L.

Proof. Let r, : F - Wg (Zp) be a 1-cocycle. It suffices to prove that the

cocycle gK is divisible by p9. From the definition of 6n, this will follow if we
can show that 

, ,/ ’ B

" ,

for 0  i  p - 1. But in fact one can check that

for any ( a d) ) E M such that p divides both a and c, and we are( c d )
home. D

We are now in a position to apply Lemma 1, with n = g. The lemma will
give us an explicit lower bound for the Newton polygon of ~ on L, which
encodes the slopes of the eigenvalues of the polynomial ,Q. But we remarked
above that a2 divides,3 and so we are also getting explicit lower bounds
for the Newton Polygon UP on Sk(r).
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First of all we make some easy observations. Because L is a quotient of
the group of cocycles c : r --~ we see that the rank t of L is at most

(g+1)m. We do not know Q explicitly, but we know that it is a subquotient
of I), which is itself a quotient of the group of 1-cocycles from r to I.
This group of cocycles is non-canonically isomorphic to a subgroup of 1m,
where we recall that m = m(r) is the minimal number of generators of r.
Moreover, I itself is isomorphic to 

If x E R, write for the largest integer which is at most x, and fxl for
the smallest integer which is at least x. The arguments above show that if
we write Q = with ai decreasing, then r  mg. Set ai = 0
for r  i  t. Then we can deduce that ai  Ln + 1 - for 1  i  t
and hence bi = n - ai 2:: L(i - (with notation as before Lemma 1.)
A simple application of Lemma 1 then gives:

Proposition 1. The Newton polygon of ~ acting on L is bounded below by
the function which goes through (0, 0), has slope 0 for 0  x  m, slope 1
for m  x  2m, slope 2 for 2m  x  3m, and so on.

D

Note that this bound depends only on m and in particular only on N
and p. Because of the relationship between and H1(r, ex-

plained above, we deduce

Theorem 3. The Newton polygon of Up acting on Sk(r) is bounded below
by the function which goes through (0, 0), has slope 0 for 0  x  m/2, slope
1 m, and in general has slope r for mr/2  x  (mr-~m)/2.

D
This is, of course, a more precise form of the theorem that we were aiming

for. An easy consequence is

Corollary 1. If a E Q, the space of cusp forms of slope a, weight k and
level Np has dimension at most [a + 1/2~m, independent of k.

We remind the reader that m is the minimal number of generators of
r = r1(Np) as a group. As concrete examples, we could perhaps mention
that If N = 1 and p &#x3E; 5 then m can be taken to be 12 . In general,
m is about O((NP)2). Moreover, it is not difficult to show that in fact m
can be taken to be any integer such that rl (Np) has a subgroup of finite
index prime to p which is generated by m elements. We remark also that
our analysis can easily be generalised to other congruence subgroups F of
the form rOnr1(p) or ro fl ro(p), where ro is any congruence subgroup of
level prime to p. Finally, we should mention that for explicit values of N
and p (typically N = 1 and p  3), more precise results have been obtained
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by Coleman, Stevens, Teitelbaum, and Emerton and Smithline using rigid-
analytic methods. It would be interesting to know whether there were more
down-to-earth techniques that could establish their results.
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