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Rank 1 forms, closed zones and laminae

par MICHEL DEZA et VIATCHESLAV GRISHUKHIN

RÉSUMÉ. Étant donné un réseau, nous construisons une équiva-
lence entre des zônes fermées du polytope de Voronoï correspon-
dant, des sections hyperplanes convenables de la partition de De-
launay, et des formes quadratiques de rang 1 qui sont des rayons
extrêmes pour les domaines de type L correspondants.

ABSTRACT. For a given lattice, we establish an equivalence be-
tween closed zones for the corresponding Voronoi polytope, suit-
able hyperplane sections of the corresponding Delaunay partition,
and rank 1 quadratic forms which are extreme rays for the corre-
sponding L-type domain.

In this paper we prove a theorem that establishes an equivalence between
several notions that play an important role in the theory of quadratic forms
and the corresponding lattices. For a quadratic form f and the correspond-
ing lattice L( f ), this theorem links:

1) a rank 1 extreme ray of the L-type domain to that the form f belongs;
2) a closed zone of parallel edges of the Voronoi polytope Pv of L( f );
3) a family of parallel laminar planes of the Delaunay tiling of L( f ) which

do not intersect Delaunay polytopes of the tiling.
We prove that if the lattice L ( f ) has one of these properties, then it has

all three and any extension of L ( f ) along edges of the closed zone does not
change its L-type.

G.Voronoi defined in §§85-86 of his famous last paper [6] a domain of
quadratic forms of the same L-type (or an L-type domain) as a set of
forms having a given system of posztive regulators. In a sense, a regulator
characterizes "length" of edges of a zone of the Voronoi polytope Pv . When
a regulator goes to zero, then some edges of the corresponding zone vanish
and two Delaunay polytopes glue into one Delaunay polytope. In other

words, the Delaunay tiling changes.
According to the above correspondence of a closed zone to a rank 1

extreme ray, the contraction of a closed zone to an open zone relates to a

Manuscrit regu le 9 octobre 2000.
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transition from an L-type domain with a rank 1 form as an extreme ray to
one of its faces not containing this ray of rank 1 as an extreme ray.

In his work ~2~, B. Delaunay used the method of projection along zones
for to obtain a classification of four-dimensional Voronoi polytopes.
The partition into Delaunay polytopes is one of two normal partitions

of the n space Rn into polytopes that an n-dimensional lattice determines.
The other is the Voronoi partition. These partitions are dual, i.e. a k-
dimensional face of one partition is orthogonal to an (n - k)-dimensional
face of the other partition. Besides, a vertex of one partition is the center
of a polytope of the other partition.
The Voronoi partition consists of Voronoi polytopes with its centers in

lattice points. Moreover, any polytope of the Voronoi partition is obtained
by a translation of the Voronoi polytope with the center in the origin (i.e.
the zero lattice point). Call this polytope the Voronoi polytope. It consists
of those points of Rn that are at least as closed to 0 as to any other lattice
point.
The Delaunay partition consists of Delaunay polytopes which are, in

general, not congruent. The set of all Delaunay polytopes having 0 as a
vertex is called the star of Delaunay polytopes. Each Delaunay polytope is
the convex hull of all lattice points lying on an empty sphere. This sphere
is called empty, since no lattice point is an interior point of the sphere.
The Voronoi polytope and the Delaunay polytopes of the star are tightly

related to minimal vectors of cosets 2L in L. A coset Q is called simple if
it contains, up to sign, only one minimal vector.

For a Delaunay polytope PD, the lattice vector between any two vertices
of PD is a minimal vector of a coset of L/2L. A lattice vector is an edge
of a Delaunay polytope of the star (and then, by duality, it defines a facet
of the Voronoi polytope) if and only if it is the minimal vector of a simple
coset of L/2L. All minimal vectors of a non-simple coset are diagonals of
a centrally symmetric face of a Delaunay polytope of the star.
The set of all faces of all dimensions of a polytope P is partially

ordered by inclusion. Call it face poset of P. If we reverse the order of

P(Pv), we obtain the poset of those faces of Delaunay polytopes of the
star that contain the point 0. The face poset of the Voronoi polytope Pv
of a lattice L determines uniquely the combinatorial structure of Pv and
the L-type of the Voronoi and Delaunay partitions. One says that a lattice
L belongs to or is of an L-type if its Voronoi and Delaunay partitions have
this L-type. In other words, two lattices (and their Voronoi and Delaunay
partitions) belong to the same L-type if the corresponding partitions are
combinatorially and topologically equivalent. The affine structure of the
Delaunay tiling determines uniquely its combinatorial structure. In fact,
if two lattices have afhnely equivalent Delaunay partitions, then there are
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affinely equivalent bases of these lattices such that the integer coordinates
of vertices of equivalent Delaunay polytopes are the same.

There is a small perturbation of a basis of L such that the corresponding
form does not go out of its L-type domain (this perturbation is only scaling
if the dimension of the L-type is one. Suppose that a perturbation of the
basis changes the L-type. Then the Delaunay partition changes, some
Delaunay polytopes glue. This means that the spheres of glued Delaunay
polytopes coincide. In other words, there is an empty sphere such that a
lattice point either leaves or comes onto the sphere.

There is the following simple but important test of emptiness of a sphere.
Let S C R’ be an (n - l)-dimensional sphere with the origin point 0 on
it. Let ..., vn be n linearly independent vectors with endpoints on S.
Let u E R~ be an arbitrary vector and u = zivi. (We denote by (p, q)
the scalar product of vectors p and q, and set p2 = (p, p)).
Lemma 1. (Proposition 4 of [1]). The endpoint of u is not an interior
point of S if and only if the following inequality holds

The endpoint of u lies on S if and only if equality holds in (1).

Proof. Let c be the center of ~S’. Since the endpoint of Vi lies on 8, we have
(Vi - c)2 = c2, 1 ~ i  n, i.e. vZ = 2(~,c). Multiplying this equality by Zi,
summing over i and taking in attention that u = £ zivi, we obtain

Since the endpoint of u is not an interior point of S, (u - c)2 &#x3E; c~, i.e.
~2 &#x3E; 2(u, c). Using the above equality, we obtain (1). It is easy to see that
if equality holds in (1) if and only if the inequality u2 &#x3E; 2(u, c) holds as
equality, i.e. if and only if the endpoint of u lies on S. 0

Any basis 13 = {bi,1  i  n} of an n-dimensional lattice L determines
uniquely a positive definite quadratic form

The symmetric matrix a2~ of the coefficients of this form is the Gram matrix
of the basis ~3, i.e. aij = The matrix az~ can be considered as a

point of an N-dimensional space, where N = (’~21) . In this space, all

positive definite forms form an open cone. The closure of this cone is the
cone Pn of all positive semi-definite quadratic forms of order n.
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One says that a quadratic form belongs to or is of an L-type if its lat-
tice belongs to this L-type. Hence the cone ~n is partitioned into L-type
domains of forms (i.e. sub-cones of the cone Pn) of the same L-type. Of
course, the cone ’~n has many domains of the same L-type corresponding
to distinct choices of a basis. Voronoi proved that each L-type domain is
an open polyhedral cone of dimension k, 1  k  N. An N-dimensional

L-type domain is called general, Domains of other dimensions are called
special. Any face of the closure of a general L-type domain is the closure
of a special L-type domain. One-dimensional L-type domains are extreme
rays of the closure of a general L-type domain.

Call a form an edge f orm if it belongs to a one-dimensional L-type do-
main. In ~1~, an edge form is called rigid f orm, since the only transformation
of the corresponding lattice that does not change its L-type is a scaling.
A typical edge form is the square of a linear form: f (x) _ (E:=lPiXi)2,
i.e. a rank 1 form, where the rank o f the f orm is the rank of its matrix
of coefficients. Note that there are no edge forms of rank 2 or 3. But, for
n &#x3E; 4, there are edge forms also of rank k  n, for every k &#x3E; 4.
A polyhedral domain of quadratic forms is called dicing domain if all

extreme rays of its closure are forms of rank 1 with the vectors p = lpi :
1  i  n} defining a dicing. Dicings were defined and studied by Erdahl
and Ryshkov ~4~. In [4], they give conditions when a dicing domain is an
L-type domain and prove the following theorem (Theorem 4.3 of [4]): An
L-type domain is a dicing domain i f and only if all the edge forms are rank
~ f orms.

Return to the Voronoi polytope Pv of an n-dimensional lattice L. The
Voronoi polytope Pv itself and its facets (i.e. faces of dimension n -1 ) are
centrally symmetric, as well as, of course, its vertices and edges. But faces
of other dimensions are, in general, not centrally symmetric.

The set of edges of Pv is partitioned into classes of mutually parallel
edges. These classes are called zones. There are two types of zones: closed
and open. A zone is called closed if every two-dimensional face contains
either two edges of the zone or none. Otherwise, the zone is called open. Al-
though B.Delaunay used the notion of a closed zone, the explicit definitions
of closed and open zones was introduced only by P.Engel in [3].
A closed zone has the following property. Let I be the minimal length of

edges of a closed zone Z. Let us shorten all edges of Z onto a value -  l.
If -  I, then Z remains closed, and the new polytope PQ (with shortened
edges) is a Voronoi polytope with the same face poset as Py. If E = l, then
Z transforms into an open zone, and Py has another face poset, since at
least one edge vanishes.

Since the Voronoi partition is dual to the Delaunay partition, each edge of
a Voronoi polytope is orthogonal to a facet of a Delaunay polytope. A facet
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F of a Delaunay polytope of a lattice L generates an affine hyperplane H in
R’~, namely the hyperplane, where F lies. Obviously, F contains n affinely
independent lattice points. Hence the intersection L fl H is an (n -1 )-
dimensional sub-lattice of L. The Delaunay partition of L generates a
partition of the hyperplane H into Delaunay polytopes of the lattice L n H.
It may be that all (n - l)-dimensional Delaunay polytopes of the partition
of H are facets of Delaunay polytopes of the original Delaunay partition of
L. In this case H is called a lamina of the lattice L.
The notion of lamina was introduced and extensively used by Ryshkov

and Baranovskii in [5] (see §9.4). If L belongs to a general L-type and if
a hyperplane H is not a lamina, then it intersects in an interior point an
edge of at least one Delaunay polytope PD of the star (Lemma 9.3 of [5]).
In other words, there are two vertices of PD that lie in distinct half-spaces
determined by H. We reformulate Lemma 9.3 of [5] for a lattice of an
arbitrary L-type.
Lemma 2. A hyperplane is a lamina if and only if it does not intersect
an y Delannay polytope of the star in an interior point.

Obviously, a lamina determines a family of parallel laminae that par-
titions the lattice L into parallel layers, each of them spanning a lamina.
Lemma 2 implies the following corollary.
Corollary. Every Delaunay polytope of a lattice with a laminae lies between
two neighboring laminae with vertices on these two laminae.

The main property of this partition of L into layers, spanning laminae,
is that the distances between layers may be changed without changing the
L-type of L.

Let H be a hyperplane spanning an (n -1)-dimensional sub-lattice of L.
Let e be a unit vector orthogonal to H. Then we can define an E-extension
along e of the space and of the lattice L as follows. Any vector v E R’ is
uniquely decomposed as v = Ve + where ve = (e, v)e and vH are the
projections of v onto e and H, respectively. An e-extension of Rn along e
transforms every vector v into the vector

Here the E-extension is, in fact, a contraction if E  0. In particular, for the
norm (= squared length) v’Z of the extended vector, we obtain the following
expression, where we set B =,e(2 + E):

Of course, an e-extension of RI along e transforms a lattice L c Rn into
an extended lattice L£.

There is the following relation between the above introduced notions of
a rank 1 form, a closed zone, a lamina and the extended lattice.
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Theorem 1. Let L be an n-dimensional lattice, H be a hyperplane span-
ning an sub-lattice of L, e be an n-dimensional unit
vector orthogonal to H. Let f (x) be the quadratic f orrrt corresponding to
a basis {ba : 1  i  n} of L and D( f ) be the L-type domain. of f. The

following assertions are equivalent:
(i) H is a lamina of the Delaurtay partition of L;
(ii) the Voronoi polytope Pv of L has a closed zone Ze of edges parallel

to the vector e;
~iii) the E-extended along e lattice L’ has the same L-type as L for all

f &#x3E; 0;
(iv) the rank 1 form (e, En bixi)2 lies on an extreme ray of the

closure o f D ( f ), i. e. f + a f e E D ( f ) for alI nonnegative A.

Proof. (i) ~ (ii) . Let H be a lamina partitioned into facets of Delaunay
polytopes of L. We can suppose that H contains the origin 0. Consider
the edges of the Voronoi polytope Pv that are orthogonal to the lying in H
facets of the star. Obviously these edges are parallel to e and form the zone
Ze. We show that Ze is closed. If not, there is a 2-face T of PY containing
exactly one edge ul E Ze. The edges of T form a polygon. Let ul, u2, ..., uk
be consecutive edges of this polygon. Let Fi be the facet of the star that
is orthogonal to the edge uz, 1  i  k. The set of facets :1  i  k}
has a common (n - 2)-dimensional face of the star that is orthogonal to T
and lies in the lamina H. Since, for 2  z  k, the edge ui is not parallel
to ul, the facet Fz does not lie in the lamina H. Hence there is an index
j such that the facets F~ and lie in distinct half-spaces separated by
H. Obviously, Fj and are facets of a same Delaunay polytope Pj of
the star, and H intersects P~ . This contradicts to definition of a lamina.
Hence Ze cannot be open.

(ii)~(i). Let ul E Ze. Consider the facet Fl of the star that is orthogonal
to u1 and contains 0 E L. F1 spans a hyperplane H that is orthogonal to e
and contains 0 E L. Let T¡ be a 2-face of Pv containing and u2 be the
second edge from Ze contained in Tl. Let FZ be the facet of the star that
is dual to u2. F2 intersects Fl by an (n - 2)-face that is dual to T1 and
contains 0. Hence F2 contains 0 and is orthogonal to e. This implies that
F2 lies in H. Similarly, for i = 3, 4, ..., we consider the 2-face Ti containing

E Zp, and prove that the facet Fz of the star dual to ua lies in H.
Since Pv is a polytope, it has a finite number of edges. Hence there is io
such that uio = u1. We obtain a set of facets of the star lying in H such
that the facet Fi intersects Fi-1 and Fi+1. Therefore the intersection of the
star with H consists of facets of the star. Since this is true for all Voronoi

polytopes having centers in H, the hyperplane H is partitioned into facets
of Delaunay polytopes. This means that H is lamina.
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(i)=::&#x3E;(iii). It is sufficient to prove that no lattice point comes onto or
leaves the empty sphere S of a Delaunay polytope PD. Without loss of

generality, we can suppose that PD belongs to the star. Let Vl, V2, ..., vn be
n linearly independent lattice vectors with endpoint in vertices of PD, i.e.
they lie on the sphere S. Let u be any lattice vector and let u = zivi

be its decomposition by vi, 1  i  n. According to (2), after an e-extension
of the space along e, u and vi are transformed into the vectors

By Lemma 1, it is sufficient to prove that the inequality u’2 &#x3E; is

strict or is an equality according to the inequality u2 &#x3E; ziv2 is strict
or is an equality.

Recall that H contains an (n -1)-dimensional sub-lattice. Hence (v, e) =
k(v)a for any lattice vector v, where k(v) is an integer and a does not
depend on v. Let k = k(u) and ki = Multiplying the equality
u = zivi by e, we obtain the equality k = En 1 xiki. By Corollary
of Lemma 2, the vertices of PD lie on two neighboring laminae. Hence

Ikil = 0, 1. Without loss of generality we can suppose that 0, i.e.

ki = 0, 1 and therefore (vi, e)2 = = Hence, using (3), we have

Since = k, we obtain the equality

Suppose that u2 &#x3E; We show that  u‘2 - u2 +
a (u, e) 2 = u2 + Àa2k2. For an integer k, we have 1~  k2 with equality if
and only if k = 0,1. The above inequalities and the equality (4) imply

Now let u2 = E~ This means that u has the endpoint in a vertex of
Pp- Hence k = 0,1, i.e. k2 = k. Hence the equality (4) implies the equality

(iii):::}(iv). We prove in the implication that := E D( f )
for every e &#x3E; 0. Now we show that
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where A = e(2 + e). The basic vectors of the extended lattice L~ have the
form

Hence the coefficients a- of the quadratic form f E = are as follows

Hence we obtain

This means that the ray (X fe : .~ &#x3E; 0} belongs to the closure c1D( f ) of
D( f ). Since this ray is a one-dimensional L-type domain, it is an extreme
ray of c1D ( f ) .

(iv)#(iii). If fe lies on an extreme ray of c1D(f), then the quadratic
function f E = f + e(2 belongs to D( f ) for all e &#x3E; 0. The matrix a~ -
of/’is 

’

Hence If. is a quadratic form of the e-extended lattice L~. So, L~ has the
same L-type as L for all E &#x3E; 0.

(iii)=*(i). We show that if the extended along e lattice Lf. has the same
L-type as L for all E &#x3E; 0, then the hyperplane H which is orthogonal to
e is a lamina. Suppose H is not a lamina. Then H intersects a Delaunay
polytope PD of the star in an interior point. Hence there are two vectors
vl and v2 with endpoints in vertices of PD such that kl = 1 and

k2 = k (v2 )  -1. Consider the lattice vector

where the integer q is chosen such that the endpoint of u does not lie on the
empty sphere S circumscribing PD. Expand the pair of vectors v2 up to

a set of n independent vectors with endpoints in vertices of PD. Then the
above expression for u is the representation of u as a linear combination of
these n independent vectors. Since the endpoint of u does not lie on S, by
Lemma 1, 0 := u2 - q(klv2 - k2V2) &#x3E; 0.

Consider an E-extension of the space along e. Let u’, v1, v2 be the E-
extended vectors. Consider the difference A’ := ~c’2 - q(k1v22 - k2vi2).
Using (3), we obtain

Since (e, u) = ak(u) = 0, (e, vi) = aki, (e, V2) = ak2 and k2  0, we have
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Let p = + ~ I k2 1) &#x3E; 0. Then for A = ~, we obtain 0’ = 0.
Lemma 1 implies that, for this A, the endpoint of u lies on S. This means
that there is e &#x3E; 0 such that the e-extended lattice L f has the L-type
distinct from the L-type of L. We obtain a contradiction. 0

Remark 1. The rank 1 function (e, ~~ depends on the basis
corresponding to the function f (x). But this dependence is not essential
in the following sense. Recall that (e, bi) = ak(bi), where ki = k(bi) is
an integer. If we slightly move in the domain D( f ), then we slightly
change the basis B = 1  i  n} and the scalar products (e, bi) = aki.
But, since ki is an integer, it cannot change slightly. Hence only a slightly
changes. This implies that this movement of f (x) inside of the L-type
domain D(f) causes a movement of fe(x) = the ray

0}. The collections of the integers 1  i  n} is
an invariant of the L-type domain D( f ).

Remark 2. The equivalence (i)~(iv) of Theorem 1 is mentioned in the

paper [4]. After the proof of Theorem 4.3, the authors of [4] write:

The ideas used in this proof can be extended to cover the case in
which only a portion of the edge forms have rank 1. For such an
L-type domain each rank 1 edge form can be associated with a D-
family of parallel hyperplanes G, and the L-partitions S of lattices
on this domain are refinement of the partition determined by G.
In the other direction, any hyperplane which does not intersect
the interior of any L-polytope of an L-partition can be associated
with a rank 1 edge form of the corresponding L-type domain. Such
hyperplanes are members of a D-family of parallel hyperplanes.

Note that here an L-partition and an L-polytope mean a Delaunay par-
tition and a Delaunay polytope, and a D-family is a family of parallel
laminae.

In fact, the authors of [4] asserts that the ideas used in the proof of their
Theorem 4.3 can be extended to the proof of the equivalence But
our proof of this equivalence is different from one suggested in [4].
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