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A fast algorithm for polynomial
factorization over Qp

par DAVID FORD*, SEBASTIAN PAULI~
et XAVIER-FRANÇOIS ROBLOT*

RÉSUMÉ. Dans cet article, nous présentons un algorithme qui re-
tourne pour un polynôme 03A6(x) à coefficients dans l’anneau Zp
des entiers p-adiques, soit un facteur propre de ce polynôme, soit,
dans le cas où 03A6(x) est irréductible, un élément générateur de
l’anneau des entiers de Qp[x]/03A6(x)Qp[x]. Cet algorithme se fonde
sur l’algorithme Round Four pour le calcul de l’ordre maximal. Les
expérimentations montrent que le nouvel algorithme est cependant
beaucoup plus performant que l’algorithme Round Four.

ABSTRACT. We present an algorithm that returns a proper fac-
tor of a polynomial 03A6(x) over the p-adic integers Zp (if 03A6(x) is

reducible over Qp) or returns a power basis of the ring of integers
of Qp [x]/03A6(x)Qp [x] (if 03A6(x) is irreducible over Qp). Our algorithm
is based on the Round Four maximal order algorithm. Experimen-
tal results show that the new algorithm is considerably faster than
the Round Four algorithm.

1. Introduction.

We consider the problem of factoring polynomials with p-adic coefficients.
Restricting our attention to monic, square-free polynomials in Zp[x], we

present a method to compute the complete factorization of such polyno-
mials into irreducible factors in Our algorithm has its origins in
the Round Four algorithm of Zassenhaus, but with substantial modifica-
tions. The new algorithm is much faster than the "classical" Round Four
algorithm, and also more straightforward.

In Section 2 we establish some notation. In Section 3 we establish a
criterion for a polynomial to be reducible over Qp.

is a monic, square-free polynomial in Zp[x], then -D (x) is

reducible over Qp if and only if there exists a polynomial 0(z) in
Qp [x] such that the polynomial resultant t - 8(x)) of
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and t - belongs to Zp[t] and has more than one distinct
irreducible factor modulo p.

We further show how to construct a proper factorization of if such a

polynomial is known.
In Section 4 we define polynomials of "Eisenstein form" and give a cri-

terion for to be irreducible over Qp.
The polynomial $ (x) is irreducible over Qp if and only if there exists
a polynomial a(x) in such that the resultant t -

a(x) belongs to Zp[t] and is of Eisenstein form.
We say that such a polynomial a(x) certifies (the irreducibility of) 

In Section 5 we describe procedures which, given ~(x), yield a proper
factorization of if is reducible, or return a certifying polynomial
a(x) for P(x), if is irreducible.

In Section 6 we show how the results of these procedures can be used to
determine ideal factorizations and Zp-bases for p-maximal orders.

In four Appendices we give details regarding p-adic GCD computation,
the Hensel lifting threshhold, factorization of resultant polynomials modulo
p, and experimental results.

2. Notation.

In what follows, -P is a monic separable polynomial with coefficients in
Zp, which we aim to factorize completely over Qp. We take ... , ~n to
be the roots of (D in some fixed algebraic closure of Qp, and we denote by
vp the p-adic valuation of Q§ , extended to ~ (~1, ... , gn) and normalized so
that vp(P) = 1. For p(t) in Zp[t] we denote by its image cp(t) + pZp[t]
in 

Let denote the resultant of the polynomials and

g(x) with respect to the variable x. It is well known that g (z) ) =
0 if and only if and g(x) have a common root. Suppose f (x) _
(x-al) ~ ~ ~ (x-an). Then Resx (f (x), = 0 if and only if A = g(ai)
for some i, and it follows that

Definition 2.1. For 8(x) we define

We also define
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For 9(x) in 0$ with 0, the reduced discriminant of xe is pde, given
by

Remark 2.2. It is clear that = t - 0 (x)) E 
Remark 2.3. If 61(~) - 02(z) mod 4D (x) Zp[x] then X8¡ (t) = X82(t).
Remark 2.4. 8(x) belongs to O~ if and only if 0(~1), ..., 0(~.) are all
integral over Zp.
Remark 2.5. XB is not necessarily the characteristic polynomial of a single
field element; in general it is the product of several such characteristic
polynomials.

Remark 2.6. The reduced discriminant pde can be obtained directly from
the p-adic Hermite normal form of the Sylvester matrix of XB and x8.
Remark 2.7. Let 0(z) E O~ with 0 and let ~ be an arbitrary
root of If OK is the ring of integers of the field K = Qp (~) then
p

3. Reducibility over Qp.
Let 0(z) E Oip with = tn + c1tn-l + ..- + Cn, and define

Taking 8i = 0(i) for i = 1, ... , n and expressing cl, ..., cn as symmetric
functions in the 0j’s, it is easily seen (as in [9, Section 3-1]) that

Because = + ... + it follows that v;(8) =
vp(cn)/n if and only if vp(01) = ... = 

BIPABut suppose = A/B  vp(c",)/n. Taking p(z) = and

cpi = for i = 1, ... , n, we have
, , , "

and consequently will have at least two distinct irreducible factors
modulo p.

Proposition 3.1. If there exists 8(x) in such that Xo(t) has at least
two distinct non-trivial irreducible factors modulo p is reducible
in 
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Proof. Assume 0(z) belongs to C~~ with xg(t) having at least two distinct
non-trivial irreducible factors modulo p.

Hensel lifting gives relatively prime monic polynomials pi (t) and p2 (t)
in Zp[t] with 0  deg cpl  deg X8, 0  deg p2  deg Xo, such that

Reordering the roots of O if necessary, we may write

with 1 ~ r  n - 1, and it follows that

is a proper factorization 

~ 

0

Remark 3.2. See Appendix A for details of the computation of the p-adic
GCD.

Example 3.3. Let

and observe that Then

and has two distinct irreducible factors in F5 [t]. The Hensel construc-
tion leads to

and we have a proper factorization of 1) (x) -
Definition 3.4. Let 9(x) E 0,1, with = tn + cltn-1 + ..- + c~.
(i) We say 0 passes the Hensel test if = vo(t)e for some e &#x3E; 1 and

some irreducible monic polynomial -90 (t) in Fp [t] .
(ii) We say 0 passes the Newton test if



155

Remark 3.5. If 0 passes the Hensel test and t then 0 passes the
Newton test.

Remark 3.6. If 0 passes the Newton test then

Proposition 3.7. If any members of 04) fails either the Hensel test or the
Newton test then is reducible in 

Proof. This follows from Proposition 3.1. 0

4. Irreducibility over Qp.
Definition 4.1. A monic polynomial in Zp[t] is of Eisenstein form if
there exists a monic polynomial v(t) in Zp[t], irreducible modulo p, such
that

with q(t) in r(t) in Zp[t] B pZp[t], deg r  deg v, and k &#x3E; 0.

Remark 4.2. If x(t) is irreducible modulo p then x(t) is of Eisenstein
form. (Take v(t) = x(t) - p, for example.)
Remark 4.3. An Eisenstein polynomial is a polynomial of Eisenstein form
with v(t) = t.

Proposition 4.4. If X(t) is of Eisenstein form then X(t) is irreducible in

Zp[t].

Proof. If there is a factorization X(t) = (V(t)kl +PCfJl(t») (V(t)k2 
with kl &#x3E; 0, k2 &#x3E; 0, and with X and v satisfying the conditions of the
definition, then the requirement r(t) 0 pZp[t] cannot be met. 0

Proposition 4.5. Let K be a finite extension of ~ with OK its ring of
integers and q3 its prime ideal. Let v(x) be a monic polynomial in 
with irreducible modulo p and let a be an element of OK such that
v(a) Then the minimal polynomials of a over Qp is of Eisenstein
form if and only if v (a) is a prime element of OK and = 

Proof. If the minimal polynomial of a is of Eisenstein form then it is con-
gruent modulo p to a power of v, and it follows directly that v ~a~ is prime
and (~K ~~ _ Fp ~a~ ~

To prove the converse, let 7r = v(a), vp (1r) = 1/E, degv = F, and define
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Then the set Ra is a complete set of representatives of OK /fl3 and 7rElp is
a unit in Therefore 7rE/p has the x-adic expansion

with belonging to Ra and = 0. For 1 ~ j  oo and
0  1~  E -1 there exists in Rx such that Aj,k = 6j,k (a). The
polynomial

is of Eisenstein form (since Ai,o is a unit) and Q (a) = 0. It follows that
is the minimal polynomial of a over Q§ . 0

Definition 4.6. Let be a monic polynomial belonging to and
let a(x) E We say a (x) certifies W a(x») is of
Eisenstein form.

Proposition 4.7. If a(x) certifies (D and a(x) E such that u(x) ==
mod then also certifies 4~.

Proof. Let h(t) = (xa(t) - The coefficients of h(t) are integral
and lie in ~, hence h(t) E Zp[t]. It follows that xa(t) is of Eiseinstein

form, is. 0

Definition 4.8. For 9(x) belonging to O, and passing the Hensel and
Newton tests we define ve(t) to be an arbitrary monic polynomial in Zp[t] ,
with Vo (t) irreducible in such that = vo(t)e for some e &#x3E; 1, and
we set

If also passes the Hensel and Newton tests we additionally define

with
Remark 4.9. = l/Eo.
Remark 4.10. If Eo = 1 then 1ro(6) = p.
Remark 4.11. If 0 and both pass the Hensel and Newton tests then

E
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Remark 4.12. If a(x) belongs to 0,,p and passes the Hensel and Newton
tests and da = 0 then = ÏÏa(t), which is irreducible in Fp [t], and it
follows that certifies 

Proposition 4.13. be irreducible over Qp, with an arbitrary root
and let OK be the ring of integers of the field K = ~, (~). For a(x)

in 0,~~ the following are equivalent.
(i) a(x) certifies ~.
(ii) 1ra(a) = va(a) and EaFa = n.
(iii) OK = 

Proof. By Proposition 3.1 we have Xa(t) = ÏÏa(t)k for some k &#x3E; 1, and hence
we may write Xa(t) = + r(t)) with q(t) E r(t) E
Zp[t], and deg r  deg va. Moreover, we have OK = ~ 9(~) ~ I O(x) E (~~ }
and = vp~9(~)~ for all 8(x) E 0.,k -

(i) (ii) - is irreducible in then Ea = 1 and Fa = n. Oth-
erwise v~ (r (a)) = 0, so that kNalEa = V; (va(a)k) = 1 + v; ~q(a)va(a) +
r(a)) = 1, hence Ea/Na = k E Z, hence Na = 1, hence = va(a) and
n = kF. = 

(ii) ~ (iii). Let p(t) E Zp[t] be a monic polynomial of minimal degree
such that p (a(g)) E pOK. Then for some e &#x3E; 1

(otherwise deggcd(¡¡,Xa)  deg p, and the degree of p could be reduced),
so e/Ea = 1 and deg p = EaFa = n. Hence K =

Qp ~a(~)~, and it is clear that any integral basis for K must be contained
in Zp[a(6)]-

(iii) (i) - If is not irreducible in then k &#x3E; 1, and we
have r(t) ~ pZp[t] because otherwise would be a root of

X2 + q (a(6))X + and so would belong to OK but
not to D

Proposition 4.14. ~ is irreducible over Qp if and only if some a(x) in
certifies ~.

Proof. By Proposition 4.4, $ is irreducible over Q if a(x) certifies ~. For
the converse, let 6 be a root of &#x26; and let K = ~ (~). By [6, Proposition
5.6] there exists a(x) E such that 1, a(~), ... , a(6)n-1 is an integral
basis for K. By Proposition 4.13, a(x) certifies ~. D

5. Factorization Algorithms
In this section we describe Algorithms 5.1 and 5.3, which together pro-

duce a polynomial a(x) E certifying or else find a proper fac-
torization of 

Algorithm 5.1, below, takes monic polynomials X(x) and v(x) with
o X(x) E squarefree,



158

~ E irreducible modulo p,
~ v(x)e for some e &#x3E; 0,
~ X~~) _ (x - .. ~~ - an),
’ = 11E,
~ deg v = F,
~ EF  n,

and returns either

. a proper factorization of X(~), or

. a polynomial p(z) such that &#x3E; EF, with E~ &#x3E; E and F.

The algorithm attempts to construct the r-adic expansion given in the proof
of Proposition 4.5. The algorithm proceeds by computing the digits ~~ k
as roots of polynomials over the finite field Fp (a~. Because deg (3 = EF 
deg x, there will at some point be more than one choice for b~ k(x), and this
condition suffices to factorize X(x). Also, for each j, k the algorithm checks
if the threshhold for Hensel lifting has been reached (see Appendix B), in
which case approximates fi(x) sufficiently well to give a factorization
of

If then the 7r-adic expansion does not exist, and the
construction will eventually come to a digit not belonging to Ra. This
gives an element -y E OK such that 1F~ [a~, which leads to the
construction of a polynomial p(z) E Ot with F~ &#x3E; F and E.

If v(a) is not a prime element of OK then the x-adic expansion does not
exist, and the construction will reach a point where Vp((3j,k(a» is not a-

multiple of 1/E. This leads to the construction of a polynomial cp(x) E 0,1,
with E~ &#x3E; E and F. = F.

Algorithm 5.1.
Note: References to field elements apply to all embeddings simultaneously;

",(a) E means E zp10(ai)I for i = 1, ... , n", etc.

1. Find E with 1 mod X (x). ( r~(a) = ]
Set (3(x) = v(x)E. Initially = vp((3(a» = 1. ]

2. Set j = Lvp((3(a»J, k = (vp((3(a» - j)E. ( k E Z, as E. ]
- .. , _ , "J.- _ .. . ,

If q fails the Hensel test then go to step 13.
If Fy t F then go to step 12.

3. Find 6(z) = co + ClX + . . + CF-1XF-1 such that = 0 and

b(a~)) &#x3E; 0 for some j.
[ splits completely over because I F. ]

If q - 6 fails either the Hensel test or the Newton test then go to step 13.
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4. Replace

If Ep f E then go to step 11.
If is sufficiently precise then go to step 13.

[ Hensel lifting applies. ]
Go to step 2.

11. Find a, b, c &#x3E; 0 such that (aN, - cE,)E + = gcd(E, E~).
Set 

[ Ep = lcm(E, &#x3E; E, Fcp = F. ~ ]
Return cp(x).

12. Find cp(x) E with = Fv = Icm(F,F,,). ]
If cp fails the Hensel test then go to step 13.
If fails the Newton test then go to step 13.
If Ev  E, replace cp(~) E- cp(x) + v(x). ]
Return 

13. Return a proper factorization of X(~). ~ X(x) is reducible. ]

Remark 5.2. In [7] it is shown that Algorithm 5.1 above terminates before
becomes greater than 2vp (discx) / deg (,D)

With as input, Algorithm 5.3 returns either
~ a polynomial in 0.1~ certifying ~(x) or
· a proper factorization of 

Initially a(x) = x; then a(x) is iteratively replaced by cp(x) until either
. Algorithm 5.1 gives a proper factorization of X(x) or
~ EaFa = n.

The condition E,,F,,,, = n implies that is of Eisenstein form, so that
a(x) certifies -4~.

Algorithm 5.3.

1. Set a(x) = x.

2. While Da = 0, replace a(x) f- a (x) + pz.
[ This makes X,, separable. ]

If or vo:(a(x» fails either the Hensel test or the Newton test, go
to step 11.
If Na &#x3E; 1 then replace + 

[ This gives = 11E,,, with va and Ea unchanged. ]
If EaFa = n then go to step 12.

[ If EaFa = n then xa is of Eisenstein form. ]
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3. Apply Algorithm 5.1 to the pair vo(x)].
If Algorithm 5.1 returns a proper factorization of xa(x) then go to step
11.

Replace f- 

Go to step 2.

11. Return a proper factorization of ~(x). [ ~(~) is reducible. ]
12. Return a(x). [ ~(x) is irreducible; a(x) confirms 4D(x). ]

Example 5.4. Let

Then

with = 25z - 17, r(x) _ -35, so is not of Eisenstein form. Now

and so = 1. Our initial approximation to the minimal polynomial
of a is

v~~~ - ~2 ~- x + 1.
Because = 1, the element

must be a unit. We have
JII ,.,. n n -

This gives two choices for 8(x), namely 6(z) = -z - 2 or 6 (x) = x -1, and
in fact 7(x) - 8(x) fails the Hensel test for each choice. Note that if we
choose 6(x) = -x - 2 and set

162 (z) being the euclidean quotient of x(x) on division by ~1(~), then

which are sufficient conditions to apply Hensel lifting.

Example 5.5. Let

Initially a(x) = x, so that
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which is of Eisenstein form, so that a(x) certifies ~.

6. Ideal Factorization and Integral Bases

Proposition 6.1. Let ~ be a root of (D and let K = Qp(~), with OK its
ring of integers and q3 the unique non-zero prime ideal of OK. Assume

a(x) E and a(x) certifies Then:

(i) OK = 
(ii) is irreducible in 1Fp[t] then q3 = pOK.
(iii) If = ÏÏo(t)e with e &#x3E; 1 and -F,, (t) monic and irreducible in 1Fp(t],

then

Proposition 6.2. Let f (x) be an irreducible monic polynomial in 
let ~ be a root of f , let K = Q(~), and let 0 be the ring of integers of
K. If f (x) = cpl(x) ~ ~ ~ cp",,(x) is the complete factorization of f (x) into
distinct monic irreducible polynomials in and if ai(x) certifies cpi(x)
for i = 1, ... , m, then

is the complete factorization of pO ircto prime ideals in C~, where
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for i = 1, ... , m, with xai and Va¡ being computed with respect to ~pz and
being an y element of K satisfying

Proposition 6.3. Let f, etc., be as in Proposition 6.2. For i = 1, ... , m
let ~i be a root of ~a and let E Qp [x], satisfying

for j = 1, ... , n. Then

is a p-maximad order in 0; that is to say, p f [0 : Op] . Here we are taking

with d a natural number such E for i = 1, ..., m.

Appendix A. Computing the p-adic GCD.

Let relatively prime polynomials W1(X) and in be given, such
that

Define

so that

and let

Because = and ~Z(x) = we have ro
and s2  ro.

For j = 1, 2 let be the Sylvester matrix of (D and Wj. It is clear
that row-reduction of over ~ gives the coefficients of in its last
non-zero row. It follows (because the rank is invariant) that row-reduction
of over Zp gives the coefficients of in its last non-zero row,
for some r~ &#x3E; 0. Since
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it follows that and since

it follows hence rj = s~ .
If m &#x3E; ro then row-reduction of over Zp performed modulo p"~

gives in its last non-zero row the coefficients in

~~ ( x ) monic, and

It follows that

Remark A.1. In the construction of and it is sufficient to
have approximations to W1(X), and T2(X) that are correct modulo
p

Appendix B. Hensel Lifting
The well-known technique of Hensel lifting allows a sufficiently accurate

approximate p-adic factorization of a polynomial to be refined to any de-
sired degree of precision.

Suppose f (~), f1(X), f2(x), ... , are monic polynomials belonging
to and a2 (x), ... , are polynomials in such that

with d &#x3E; 0 and e &#x3E; 2d -+- 1. Taking

and defining



164

for 1  j  m, gives

f? (x) mod for 1  i  m.

Appendix C. Fast Computation of My
Let 1’( x) E O~ and let pd be the reduced discriminant of (D. For 0  

let

Define

and let

Row-reduction of A over Zp yields its p-adic Hermite normal form

with
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and define

Observe the following.

6. There exists a monic polynomial A(t) E Zp[t] such that

, , r  , - , , , · , .- , , ,

8. P is an ideal in Zp[t] and 
9. There exists a monic polynomial ii(t) E such that

10. The polynomial p(t) is congruent modulo p to the product of the dis-
tinct irreducible factors of modulo p. In other words, 7l(t) is the
squarefree part of in Fp (t~.

11. 7l(t)_1 since JCP.

_ 

. 

m ,- , - --

Therefore 

It follows that the distinct irreducible factors and X(t) in Fp [t] are the
same, and therefore that the distinct irreducible factors of A(t) and 
in Fp[t] are the same. If A(t) is a power of a single irreducible polynomial
modulo p then that irreducible polynomial is modulo p; otherwise -y
fails the Hensel test.
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Appendix D. Experimental Results

The new algorithm is included in the forthcoming PARI/GP 2.2.0. Tests
were run to compare the new version with PARI/GP 2.0.16, KANT V4/
KASH 2.2, and MAGMA 2.7. The tests were run on a Pentium MMX
200MHz with 80Mo of RAM. Computations running more than one hour
were interrupted. (Polynomial f30 produced an error with MAGMA.) Exe-
cution times are expressed in seconds.
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Examples from Ford &#x26; Letard [4]
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Examples for which PARI 2.0.16 performs poorly

Example f26 is from [1]; example f32 is from [3]. The other examples are due
to Karim Belabas, Bill Allombert, and Igor Schein of the PaZU development
team.
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