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Kummer congruences for expressions involving
generalized Bernoulli polynomials

par GLENN J. FOX

RÉSUMÉ. Nous illustrons le fait qu’une expression particulière,
impliquant les polynômes de Bernoulli généralisés, satisfait un
système de congruences si et seulement si une expression sem-
blable, impliquant les nombres de Bernoulli généralisés, satisfait
les mêmes relations de congruence. Parmi ces relations se trouvent
les congruences de Kummer ainsi que des généralisations fournies
par Gunaratne.

ABSTRACT. We illustrate how a particular expression, involving
the generalized Bernoulli polynomials, satisfies systems of con-
gruence relations if and only if a similar expression, involving the
generalized Bernoulli numbers, satisfies the same congruence re-
lations. These congruence relations include the Kummer congru-
ences, and recent extensions of the Kummer congruences provided
by Gunaratne.

1. Introduction

Let X be a primitive Dirichlet character having conductor f. The gener-
alized Bernoulli polynomials associated with x, are defined by the
generating function

The corresponding generalized Bernoulli numbers can then be defined by
= If we let Z [x] denote the ring generated over Z by all of

the values x(a), a E Z, then it can be shown that fxB,,,x must be in Z[x]
for each n &#x3E; 0, whenever x # 1. Thus, as elements of Q[X], each such Bn,x
can be described as having a denominator that is a divisor of f x. The case
x =1 is best considered in terms of the classical Bernoulli polynomials.

Manuscrit requ le 21 mai 2001.
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The generating function for the classical Bernoulli polynomials, 
is given by

and from the classical Bernoulli polynomials we obtain the classical
Bernoulli numbers, Bn = The Bernoulli numbers, Bn, are ratio-
nal numbers, and, by the von Staudt-Clausen theorem, whenever 0,
they satisfy 

-

Therefore, whenever 0, the denominator of consists of the product
of those primes p such that (p -1) ~ n.
The classical Bernoulli polynomials are related to the generalized

Bernoulli polynomials in that, for X = 1, we have Bn,l(t) = 
for all n, so also = Therefore, from the above discussion,
we have a description of the possible contents of the denominators of the
classical and the generalized Bernoulli numbers.
By considering congruences on the classical and the generalized Bernoulli

numbers, we gain information about their numerators. One of the more
notable examples of this is Kummer’s congruence for the classical Bernoulli
numbers, which states that

where c E Z is positive, with c = 0 (mod p --1), and n E Z is positive,
even, and n ~ 0 (mod p -1) (see [11], p. 61). Note that we are using
0~ to denote the forward difference operator, Acxn = Xn. More

generally, it can be shown that

where k E Z is positive, and c and n are as above, but with n &#x3E; k.
The application of Kummer’s congruence to the generalized Bernoulli

numbers was first treated by Carlitz in ~1~, with the result that

for positive c E Z, with c == 0 (mod p -1), n, k E Z with n &#x3E; k &#x3E; 1, and
x such that p~, where p E Z, p &#x3E; 0. From [5] (see also [10]), we see
that, if the operator Aj is applied to the quantity

...
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then the congruence will still hold if the restriction n &#x3E; k is dropped,
requiring only that n &#x3E;_ 1. In addition to this, the divisibility requirements
on c can be removed, yielding a congruence of the form E 

for c, n, k E Z, each positive, and X such that E Z, p ~ 0. Here,
we are using x~ to represent the primitive Dirichlet character with
c~ the Teichmüller character, and we are taking q = 4 if p = 2, and q = p
otherwise. The values arise in connection with the p-adic L-function
Lp(s; X) of Kubota and Leopoldt [8], in that they yield the values of this
function at the nonpositive integers, Lp(1- n; X) = /3n,x. With respect
to this expression, the restriction c - 0 (mod p -1), as in the previous
versions of Kummer’s congruence, causes each of x~ = Xn+c = ... = 

when p &#x3E; 3. Thus, the expression involves generalized Bernoulli
numbers associated with only one Dirichlet character, Xn.
As an extension of the Kummer congruences, Gunaratne (see [6], [7]) has

shown that if p &#x3E; 5, c, n, k E Z are positive, and X = wh, where h E Z and
h 0 (mod p -1 ), then E Zp, with a value modulo pZp that isc p

independent of rn, and

for positive k’ E Z with k = k’ (mod p -1). Additionally, by means of the
binomial coefficient operator

where r E Z is positive, for these x, the satisfy ‘ p r 1 °~ l ~3~,X E Zp,
also with a value, modulo pZp, that is independent of n. Young [12] has
extended these congruences to show that whenever c - 0 (mod 0(p’)), for
N a positive integer, we must E Zp[X] for all primes p
and for all nontrivial primitive characters x, with = 1.

Extending work in [4], we derive a collection of congruences concerning
the generalized Bernoulli polynomials. These congruences are similar to
the results of Gunaratne, but they are without any restriction on either X
or p. Given X a primitive Dirichlet character and p a prime, we consider
congruences for the polynomials that satisfy the generating function

which follows from (1). For positive n E Z, denote
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so that (3n,x. The make up the set of values taken on by
a particular two-variable p-adic L-function, found in [4], as the
variables ranges over the nonpositive integers: Lp ( 1- ~,;~) = 
Since is a polynomial for each n, it follows that 

as t -~ 0, in the p-adic metric. Therefore, given some posi-
tive a E Z, there must exist a region R c Cp, containing 0, such that for
any t E R we have  Thus, for certain values
of t, we can expect to have the same magnitude, p-adically, as
that of Our main result relates congruences on values of the

(3n,x(t) in the following manner:

Theorem 1. Let n, c, k, r E Z, with n, c positive and k, r nonnegative, and
let Fo E Z be the smallest positive multiple of each 
... , Furthermore, let t E Cp, with Itlp ~ 1~ and T E Zp such
that  Then

(a) the quantity E 

(b) if n’ E Z such that n’ &#x3E; n, then

(c) if k is positive, and if c~ E Z is positive with c’ 54 c, then

(d) if k’ E Z such that k’ &#x3E; k and k’ - k (mod ~(~vN)), for some positive
N E Z, and if t E Zp, then

(e) if t E Zp, then 8n,X (t)) E 
(f) if n’ E Z such that n’ &#x3E; n, and if t E Zp, then

Most of these congruences are extensions of the work of Guneratne. The

independence of + T) - /3,~,x (t) ), with repect to the value
of n, when considered modulo qZp [X, t], is implied by (b). Similarly, (f)



191

implies that the quantity is independent of
n when considered modulo qZp[x]. On the other hand, (c) implies that we
have independence with respect to the value of c when +

T) -,Q~~X(t)) is considered modulo t~. There are no results involving
independence with respect to c in any of the earlier works [6], [7], [12],
or [13], so that this appears to be a new direction of investigation with
respect to Kummer’s congruence when applied to the generalized Bernoulli
polynomials and numbers.

Both (e) and (f) in the above can be generalized quite nicely. As we
have seen, the binomial coefficient yields a polynomial
in having coefficients in Q. Thus, to generalize (e), one may
wish to consider what other polynomials in when applied to
!3n,x(t + T) - !3n,x(t), yield values in Zp [X]. The following result, which can
be found in [9], enables such a generalization:

Theorem 2. A polynomials f (x) E Qp[x] of degree N maps Zp into Zp if
and only i f it can be written in the form

where bo, bl, ... , bN E Zp.
Assuming the hypotheses of Theorem 1, along with the additional restric-
tion that t E Zp, since + T) - E for each

nonnegative r E Z, any sum of the form

where bo, bl, ... , bN E Zp, must also be in Zp [X] - Thus, Theorem 2 implies
that every polynomial E Qp [x] that maps Zp into Zp yields an operator

such that

I /

It then follows, by (f), that

whenever n’ E Z with n’ &#x3E; n.
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Letting t = 0 in Theorem 1 yields congruences on ~i~,x (T) - /?~(0),
and, thus, provides equivalences between congruences on /3n,x(r), involving
generalized Bernoulli polynomials, and congruences on /3n,x(O), involving
generalized Bernoulli numbers. Furthermore, if n is even and x ( -1 ) _ -1,
or if n is odd and x(-1) = 1, X =f:. 1, then = 0, with the only exception
for the case X =1 being when n = 1, for which we have Bl,l = 1/2. Thus,
given x, we can always find n and c such that = 0, implying
that each of the above congruences hold for the corresponding 
provided we have the appropriate restrictions on T.
A polynomial structure for the classical Bernoulli polynomials, similar

to that of ,8n,x (t), is incorporated in a result of Eie and Ong. In [3], they
apply Kummer’s congruence to show that, for p &#x3E; 5, if n, c E Z are each
positive with n fl 0 (mod 0(p)) and c - 0 (mod 0(p)), then

where T &#x3E; 0 is an element of Q having denominator relatively prime to p,
and j E Z with both 0  j  p -1 and j  pT. This has been extended
to applications of Ak, with k &#x3E; 1, by Young. Furthermore, Young shows
that similar congruences hold for the generalized Bernoulli polynomials
associated with certain primitive Dirichlet characters [13]. We continue our
work by showing how the congruences of Eie and Ong with 1  j  p -1
relate to the same congruences with j = 0.

Finally, we consider the expression

where t E Cp, Itip  1, and discuss the strength of the congruences that
can be obtained with regard to it.

2. Preliminaries

One of the more well-known properties of the generalized Bernoulli poly-
nomials is that, for positive m E Z,

for all n &#x3E; 0. This can be derived from (1). Similarly, for the classical
Bernoulli polynomials, (2) implies that, whenever m E Z is positive,

for all n &#x3E; 0. These properties are key to the derivation of our congruences,
as we will see.
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Let p be a fixed prime. We will use Zp to represent the set of p-adic
integers, and Qp the set of p-adic rationals. Let Cp denote the completion of
the algebraic closure of Qp under the p-adic absolute value 1.lp, normalized
so that lplp = p-1. Note that, for each t E Cp, there exists some a E Q
such that itlp = Fix an embedding of the algebraic closure of Q into
Cp. Each value of a Dirichlet character X is either 0 or a root of unity.
Thus, we may consider the values of X as lying in Cp.

Denote q = 4 if p = 2 and q = p if p &#x3E; 3. Let w represent the Dirichlet
character having conductor fw = q, and whose values E Zp satisfy

= 1 and cd(a) - a (mod qZp) for (a, p) = 1, with = 0 other-

wise. For an arbitrary character x, we then define the character xn = Xw-n,
where n E Z, in the sense of the product of characters.

Let (a) = w-1 (a)a whenever (a, p) = 1. We then have (a~ - 1 (mod qZp)
for these values of a. For our purposes we extend this notation by defining
(a+qt) = for all a E Z, with (a, p) = 1, and t E Cp such that
Itlp  1. Thus, (a-f-qt) _ so that (a + qt) =- 1 (mod qZp(t~).
We now use these quantities to express the difference 

for F E Z a positive multiple of pq-1 fXn’ in a manner that will enable the
proof of the main result.

Lemma 3. Let t E Cpi ltlp  1, and let n E Z be positive. Then, for
F E Z a positive multiple of pq- 1 fXn I

Proof. By definition,
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Thus, by (3), we can write

Since xn(a) = and + qt) _ (a + qt), whenever
(a, ~) = 1, the result follows. 0

Lemma 4. Let i and m be integers such that 2  i  m. Then (7)qpi-2 =
0 (mod m(m - 1)PZp).
Proof. For 2  i  m,

Since (i, i - 1) = 1, the lemma will follow if we show that 
0 (mod pZp) and qpi-2/(i - 1) == 0 (mod pZp), whenever i &#x3E; 2.

If p = 2, then the power of p that divides any j E Z,1  j  i, is at most
i/2. Thus, the power of p that divides qpi-2 / j is at least i - i/2 = i/2. For
i &#x3E; 2, this implies that the power of p that divides qpi-21j is at least 1.
Therefore, qpi-2/ j - 0 (mod pZp).

If p &#x3E; 2, then the power of p that divides j E Z, 1  j  i, is at most
i/3, so the power of p that divides qpi-2/ j is at least i - 1 - z/3 = 2i/3 -1.
For i &#x3E; 2, the power of p that divides is then at least 1/3, and,
thus, at least 1. Therefore, 0 (mod pZp).

Therefore, for any prime p, the quantity 0 (mod pZp) when-
ever j E Z with 1 j i, implying the result. 0

In the following lemma, we derive congruence properties of the quantity
(a + that will be utilized to prove the main result.

Lemma 5. Let a, m E Z, wath (a, p) = 1 and m &#x3E; 2, and let t E Cp such
that ltlp  1. Then

Proof. Recall that (a + qt) = (a) + qw-1(a)t. Since (a) E Zp and
(a) - 1 (mod qZp ) , there must be some b(a) E Zp such that (a) = 1+qb(a).
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Thus,

Lemma 4 then implies that

The result follows since qb(a) = (a) - 1.

As a weaker form of this lemma, we have the congruence

with the same restrictions on a and t as in the lemma, but for all positive
m E Z.

For each r E Z, r &#x3E; 0, the quantity (jj) is defined in like manner as the

binomial coefficients, denoting (~) = 1 and

for r &#x3E; 0. Note that each such quantity is a polynomial in x, and has the
expansion

where the values s(r, m) are Stirling numbers of the first kind, defined by
the generating function

The s (r, m) are integers, where r, m E Z, r &#x3E; 0, m &#x3E; 0, satisfying s (r, m) =
0 whenever 0  r  m, and s(r, r) = 1 for all r &#x3E; 0. For additional
information on Stirling numbers of the first kind, we refer the reader to [2],
pp. 214-217.

3. Congruences for generalized Bernoulli polynomials
From Lemma 3 we have an indication that the divisibility properties

of (3n,x(t + T) - (3n;x(t) must be similar to the divisibility properties of
(a + whenever a E Z with (a, p) = 1. We will now consider how we
can utilize this to derive a collection of congruences concerning the general-
ized Bernoulli polynomials. Recall that ~c denotes the forward difference
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operator, xn. Repeated application of this operator can be
expressed in the form

for some positive k E Z.
We can now prove our main result:

Proof of Theorem The set of positive integers in FoZ is dense in FoZp.
Thus, for T E Fo Zp, there exists a sequence in with Ti &#x3E; 0
for each i, such that Ti ~ T. This implies that any f (x) E must

satisfy ~ f (~), and, thus, any congruence satisfied by each 
must also be satisfied by f (T) . Since each of 0 (3,x (t + x) - 6,,,x (t» and
c are in for t in Cp, any of the stated
congruences that hold for all positive T E FoZ must also hold for arbitrary
T ~ FoZp*

(a) Since Ac is a linear operator, Lemma 3 implies that

where F is a positive multiple of Fo. Note that

so that,

By Lemma 5, ((a + qt)~ - 1)k = 0 (mod implying the result.

(b) Let F be a positive multiple of Fo. By (7) we can write
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Lemma 5 implies that

and the result follows.

(c) By utilizing (7), we obtain

where F is a positive multiple of Fo.
For each a E Z, with (a, p) = 1, Lemma 5 implies that

where u, v E Zp [t], each depending on a. In particular, u = q-1((a) - 1) +
úJ-1(a)t. Therefore,

Similarly, there exists v’ E Zp[t] such that

Now consider

This can be expanded to yield

By Lemma 4, (m) prn - 0 (mod kp) for each m &#x3E; 1. Also, for these same
values of m, the quantity (c -1)mvm - (c’ is 0 modulo (c -1, c’ -

The result then follows.
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(d) From (7) we can write

where F is a positive multiple of Fo . Now, Lemma 5 implies that 
1= 0 (mod cqZp). Thus, if a is such that (a + qt} -1- 0 (mod 
then

However, if a is such that (a + (mod then

since k’ - k - 0 (mod ~(p~)). Therefore, the result.

(e) We are once again working with a linear operator, so Lemma 3
implies that

where F is a positive multiple of Fo. Utilizing (5), and then (6), we can
write

This can then be rewritten as
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Therefore,

From Lemma 5, E Zp for each a E Z with (a, p) = 1,
implying the result.

(f) Whenever F is a positive multiple of Fo , (8) implies that

The quantity (a +qt)n’-n -1 must be 0 modulo (r~’ - n)qZp, by Lemma 5,
so the result follows. 0

Note that both (e) and (f) require that t E Zp. This is because the

quantity c-kq-k((a + E Zp if this is true, and, hence,

I I

for all integers r &#x3E; 0, whereas, this will not hold for all values of r for
certain t E Cp. However, if r  p, then (p, r!) =1, so that

for any t E Cp with ltlp  1. Thus, we can still obtain congruences that
correspond to those of (e) and (f) for such values of t whenever r  p.

4. The classical Bernoulli polynomials and the congruences of
Eie and Ong

We will now show how the congruences that we derived for the gener-
alized Bernoulli polynomials can be utilized to derive congruences for the
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classical Bernoulli polynomials. For each positive n E Z, denote

Note that this structure involves only the classical Bernoulli polynomials.
Consider how to relate with /3n(t). Given we need X = w’~

in order for x~ =1. Thus,

Since B~(-t) _ + for all n &#x3E; 0, the above expres-
sion simplifies to

so that, from Lemma 3,

where F E Z is positive. For positive c E Z such that O(q) I c, we must

have = o/B so that

which is a quantity expressed solely in terms of the classical Bernoulli
polynomials. Therefore, some of the congruences of Theorem 1, involv-
ing !3n;x (t) with X = will also hold for !3n (t), provided ~(q) ~ c. In fact,
since our character wn does not vary with c or k, each of (a), (c), (d), and
(e) of Theorem 1 will hold for congruences on !3n(t + T) - #n(t), with the
same restrictions on c, k, n, t, and T, except also with §(q) c. Note that
our value Fo = 1. However, in the cases (b) and (f), the corresponding
characters, wn and wn~, are not the same unless n’ - n (mod ~(q)). Thus,
under the hypotheses of each of (b) and (f), and the resulting generaliza-
tion of (f), along with the restriction ~(q) ~ c, the resulting congruences of
these cases can be obtained for the difference ,~3,~ (t + T) - !3n (t) provided we
include the additional restriction that n’ = n (mod ~(q)).
Now let t E Cp, ltlp  1, and let j E Z with 1  j  p - 1. Eie and Ong

obtained congruences on an expression of the form
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We will see how congruences on /3~~~ (t) relate to congruences on !3n(t). By
utilizing (4), we can write

Since 1  j  p -1, we must also have (a, p) = 1 for 1  a  j, so that

The congruences on the difference + r) - were derived because
of certain congruence properties that are satisfied by cvn(a) (a + qt)n. This
quantity is very similar to Wn(-a)(a - qt)n, so that the congruences that
were obtained with regard to this difference should find parallels in congru-
ences on ,(i~~~ (t) - /3n (t), involving the expression of Eie and Ong, provided
~(q) ~ c. The following result, concerning the difference ,Q~~~ (t) - /3,~(t), can
then be obtained:

Theorem 6. Let n, c, k, r E Z, with n, c positive, c - 0 (mod ~(q)), and
k, r nonnegative. Furthermore, let t E Cp, with Itlp  1. Then for j E Z,
with
(a) the quantity E Zp[t] ;
(b) if n’ E Z such that n’ &#x3E; n and n’ - n (mod ~(q)), then
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(f) if n’ E Z such that n’ &#x3E; n and n’ - n (mod Ø(q», and if t E Zp, then

Proof. We derive the identity

for the application of the forward difference operator, and for the binomial
coefficient operator

The congruences then follow from the analysis of these expressions by the
same means used in the proof of Theorem 1. D

Assuming the hypotheses of Theorem 6, along with the restriction that
t E Zp, Theorem 2 can also be applied to the quantity ~3~~~ (t) - to

yield generalizations of (e) and (f). If f (x) E maps Zp into Zp, then
is an operator for which

Furthermore,

, r ,

where n’ E Z such that n’ &#x3E; n and n’ =- n (mod 

5. Additional congruences for the case p = 2

We now wish to consider congruences on the expression

taken over Cp, with t E Cp, ltlp  1. Note that, for primes p &#x3E; 3, this
expression is the same as ~i~,x (t), which we have already considered. Thus,
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the only additional interest in congruences on this expression occurs when
p = 2, the case for which we now restrict the remaining discussion.

In the case p = 2, we write the difference

where n E Z is positive, F E Z is a positive multiple of and t E C2
with ltl2  1. The quantity (a) + does not have quite the same
congruence properties as (a + 4t) = (a) + 4c~-1 (a)t, and our congruences
on this expression do not, in general, attain the same strength as those on
(a + 4t), as in Lemma 5. Instead, we have the following:

Lemma 7. Let a, m E Z, with (a, 2) = 1 and m &#x3E; 2, and tet t E C2 such
that ltl2  1. Farthermore, let to E C2, ItOI2 =1, and a E Q, a &#x3E; 0, such
that t = 2"to. Then

The proof of this result can be obtained by the same means that we
utilized to derive the proof of Lemma 5.

As a weaker form of this lemma, we have

with the same restrictions on a and t, but for all positive m E Z.
From Lemma 7 we can then derive congruences similar to those found

in Theorem 1, having the same strength as those results if 1212, but
weaker if otherwise. Results similar to those of Theorem 6 can also be
derived. The methods given in the proof of Theorem 1 can be employed in
these derivations, which we leave to the reader.
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