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Rational points on and

quadratic Q-curves

par STEVEN D. GALBRAITH

RÉSUMÉ. Nous considérons les points rationnels sur 
dans le cas où N est un nombre composé. Nous faisons une étude
de certains cas qui ne se déduisent pas des resultats de Momose.
Des points rationnels sont obtenus pour N = 91 et N = 125.
Nous exhibons aussi les j-invariants des Q-courbes quadratiques
correspondantes.

ABSTRACT. The rational points on in the case where
N is a composite number are considered. A computational study
of some of the cases not covered by the results of Momose is given.
Exceptional rational points are found in the cases N = 91 and
N = 125 and the j-invariants of the corresponding quadratic Q-
curves are exhibited.

1. Introduction

Let N be an integer greater than one and consider the modular curve
Xo (N) whose non-cusp points correspond to isomorphism classes of isoge-
nies between elliptic curves § : E - E’ of degree N with cyclic kernel [5].
The rational points of Xo (N) have been studied by many authors. Results
of Mazur [21], Kenku [19] and others have provided a classification of them.
The conclusion is that rational points usually arise from cusps or elliptic
curves with complex multiplication. There are a finite number of values of
N for which other rational points arise, and we call such rational points
’exceptional’. For the largest N for which there are exceptional
rational points is the famous case N = 37.
The Fricke involution W~ on Xo (N) arises from taking the dual isogeny

~ : E’ -~ E. We define the modular curve Xo (N) to be the quotient of
Xo (N) by the group of two elements generated by WN. There is a model
for Xo (N) over Q and one can study the Q-rational points on this curve.

Rational points on are an interesting object of study. Momose
[22], [23] has given some results of a similar nature to those of Mazur,
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but the results only apply to certain composite values of N. Therefore, a
classification of rational points on Xj (N) is not yet complete.

In this paper we use computational methods to determine some excep-
tional rational points on in cases where N is composite and not
covered by the results of Momose. This continues the work of [9] which
gave a computational study of the case when N is a prime number.
The conclusions of this work and [9] are the following: The modular curve

Xj (N) has an exceptional rational point when N E {73, 91,103,125,137,
191,311}. We conjecture that these are the only values of N for which the
genus of Xo (N) is between 2 and 5 and for which has exceptional
rational points. The above conjecture includes the statement that Xsplit (p )
(which is isomorphic to xt (p2» has no exceptional rational points when
p = 13.

2. Rational points on 

The case of cusps can be easily understood. Rational cusps on Xo(N)
give rise to rational cusps on Xt(N). Using the notation for cusps intro-
duced by Ogg [25], the following result easily follows.

Proposition 1. The only integers N for which non-rational cusps of
Xo(N) can give a rational cusp on Xo (N) are N E {9,16,36}. The corre-
sponding cusps are ([1 : ~~, [-1 : 
The non-cusp points of Xo (N) can be interpreted as pairs 10 : E -

E’, 0 : E’ -~ E~. From [5] it is known that if a non-cusp point of Xo (N) is
defined over a field L then the corresponding pair of isogenies and elliptic
curves may also be taken to be defined over L.

Therefore the only possibilities for rational points on Xo (N) are as fol-
lows : Either the rational point is a cusp, or else it corresponds to a pair
10 : E - E’, ~ : E’ -~ E~ such that one of the following holds.
1. E, E’, 0 and ~ are all defined over Q.
2. E and E’ are defined over Q, the isogeny 0 is defined over a quadratic

field L, and the non-trivial element a E Gal(L/Q) is such that 0’ ~
and so E ~ E’.

3. E, E’, 0 are defined over a quadratic field L, E’, and the
non-trivial element a E Gal(L/Q) is such that ~~ ^--’ ~ and E’ E£ E~.

Case 1 is the case of rational points on and these have been
classified. Rational points on Xo (N) corresponding to elliptic curves with
complex multiplication can arise as Heegner points (see Section 3) or not
(e.g., the case of Xo(14) where there is an isogeny 0 : E --3 E’ of degree
14 such that End(E) has discriminant -28 while End(E’) has discriminant
-7).
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In case 2 above we have E E£ E’ and so End(E) ~ End(E’). The existence
of a cyclic isogeny of degree N implies that the elliptic curves have complex
multiplication and so the point is a Heegner point (and the class number
of the endomorphism ring is one).

In case 3 there are two possibilities: either E has complex multiplication
(and therefore End(E’) and the point is a Heegner point of class
number two) or not, in which case we call the point an exceptional rational
point. In both cases we have an elliptic curve E over a quadratic field (and
not defined over Q) which is isogenous to its Galois conjugate. Such an

elliptic curve is called a ’quadratic Qcurve’ (see [14], [27]).
Examples of quadratic Q-curves which do not have complex multiplica-

tion are interesting and one of the main contributions of this paper is to
provide some new examples of these.

It can be shown that every quadratic Q-curve without complex multipli-
cation corresponds to a rational point on Xj (N) for some N &#x3E; 1. For a
more general result along these lines see Elkies [6].
We now recall the definition of the Atkin-Lehner involutions [1] for any

nlN such that gcd(n, N/n) = 1. Over C they may be defined as elements of
SL2(R) as follows. Let a, b, c, d E Z be such that adn-bcN/n = 1 and define
Wn = na b This construction is well-defined up to multiplication by
ro(N) and therefore each Wn gives an involution on the modular curve
Xo(N). Note that if gcd(nl, n2) = 1 then Wn¡n2 = Wn¡ Wn2.
The W~ also give rise to involutions on Xo (N). If n ¢ ~1, N~ then

Wn acts non-trivially and the action of Wn and W N/n is identical. The
Atkin-Lehner involutions are defined over Q and so they map L-rational
points of Xo (N) to L-rational points for any field L/Q. Furthermore the
Atkin-Lehner involutions map cusps to cusps.

Proposition 2. Let w(N) be the number of distinct primes dividing N.
Then the exceptioraat rational points of Xo (N) (if there are any) fall into
orbits under the Atkin-Lehner involutions of size 2~~)"~. The field of def-
inition of the corresponding j-invariants is the same for all the exceptional
points in a given orbit.

Proof. Suppose we have a point of Xo (N) which is fixed by some Atkin-
Lehner involution Such a point corresponds to some T E such that

Wn(T) _ (or WN/n(r) = ~(~-)) for some q E ro(N). It follows that r
satisfies a quadratic equation over Z and so we either have a cusp or a CM
point and the point is not exceptional.

The field of definition of the j-invariants is the field of definition of the
points on Xo(N) which correspond to the rational point on Xt(N). Since
the action of Wn is rational on Xo (N) it follows that the field of definition
is preserved. C7
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3. Heegner points
A Heegner point of Xo(N) [2] is a non-cusp point corresponding to an

isogeny of elliptic curves 0 : E --~ E’ such that both E and E’ have complex
multiplication by the same order ~? of discriminant D in the quadratic field
K = Q(d5) . In this case we say that the Heegner point has discriminant
D.

It is well-known (see [2], [15], [9]) that Heegner points on Xo(N)(C) are
in one-to-one correspondence with ro(N)-equivalence classes of quadratic
forms NAX 2 + BX Y + Cy2 where A, B, C E Z are such that A, C &#x3E; 0 and

gcd(NA, B, C) = gcd(A, B, NC) = 1. The correspondence is as follows.
Let T be the root of N AT2 + BT + C = 0 with positive imaginary part.
Then E = C/(1,T) is an elliptic curve with complex multiplication by the
order C~ of discriminant D = B2 - 4NAC and the cyclic isogeny with kernel
( N, Ty maps to the elliptic curve E’ ^--’ cC/(1, ’ ) which also has CM by 0
(see Lang [20] Theorem 8.1).

In particular, a Heegner point on Xo(N) of discriminant D can only
arise when the primes satisfy ( D ) -1. However this condition is notp
sufficient since there can be cases where all piN split or ramify and yet one
cannot find a suitable triple (A, B, C) as above.
The conductor of an order of discriminant D is the index of the order

in the maximal order of and it may be computed as the largest
positive integer c such that D/c2 = 0,1 (mod 4).
We must recall a few well-known facts about isogenies of degree dividing

the conductor c (see the Appendix of [10] for an elementary proof). Let E be
an elliptic curve over C such that End(E) ~ C~ of discriminant D. Suppose
p is a prime dividing the conductor of o. Then, up to isomorphism, there is
exactly one p-isogeny from E ’up’ to an elliptic curve E’ such that End(E’)
has discriminant D / p2 and there are exactly p isogenies of degree p from E
’down’ to elliptic curves whose endomorphism ring has discriminant p2D.
If p does not divide the conductor of 0 then there are 1 + (12) isogeniesp

of degree p to elliptic curves E’ with End(E’) = d and there are p - (D)p
isogenies of degree p down to elliptic curves whose endomorphism ring has
discriminant p2D.

Returning to the context of Heegner points, we have the following (where
we write f o g for the composition of functions f (g(~))).

Proposition 3. Suppose 0 : E - E’ is a Heegner point on Xo(N) of
discriminant D and that p is a prime dividing gcd(N, c) . Then ~ factors
as ~2 where

1. is an isogeny of degree p up from E to an elliptic curve E1 whose
endomorphism ring has discriminant D/p2.
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2. ~ is an isogeny of degree N/p2 frorra E1 to some elliptic curve E2 such
that End(E2) has discriminant D/p2.

3. 1b2 is an isogeny of degree p from E2 down to E’.

Proof. We can write E as ~/(1, T) where T satisfies NAT2 + BT + C = 0.
From the condition pID = 4NAC we have plB. One can show that
p2 IN (this also follows from the fact that ’what goes up must come down’).
The isogeny 0 has kernel (1/N, T) and we define 1/11 to be the isogeny having
kernel (1 /p, T). This isogeny maps E to Ei = cC/(1, pT), where
pT is a root of the quadratic + (B/P)X + C, and so the elliptic
curve E’ has complex multiplication by the order of discriminant D/p2.
The remaining statements are now immediate. 0

Indeed, when gcd(p, = 1 then we can also factor 0 as 1/1’ o 2 01/11
or 02 0 01 0 0’ (where 1b’ here is an N/p2-isogeny between elliptic curves
whose endomorphism rings have discriminant D).
The following result is now clear.

Proposition 4. Suppose N is a positive integer and that 0 is an order of
discriminant D and conductor c in an imaginary quadratic field K. Let d be
the largest positive integer such that die and d21N. Then there are Heegner
points on Xo(N) corresponding to the order (7 only if gcd(N/d2, cld) = 1,
all primes are such that (Dpd2) ~ -1 and all primes p such that
p21(N/dl) are such that (Dp 2) =+1.
Proof. then there must be some p-isogeny up which
is not matched by a p-isogeny back down again and it follows that the
corresponding point of Xo(N) is not a Heegner point.
The conditions on primes p dividing N/d2 come from the fact that kernel

of the corresponding p-isogeny can be viewed as an ideal. For the composi-
tion of these isogenies to have cyclic kernel it follows that the primes must
split or ramify and that ramified primes can only occur with multiplicity
one. D

The next result gives further constraints on when a Heegner point can
exist.

Proposition 5. Let N be an integer greater than one and 0 an order of
discriminant D and conductor c. Suppose that 2allc, that ( D 2 2a ) = +1,
and that Then a Heegner point of Xo(N) of discriminant D can
arise only if 22a+1IN.
Proof. Suppose instead that N/22a is odd and that we have a Heegner point
on Xo(N). Without loss of generality we may assume that c = 2.
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The isogeny 0 factors as 2 0 1/J 0 1/J1 where 1/J1 is an isogeny up of degree
2 and ~2 is an isogeny down. Indeed, since N / c2 is odd we may instead

factor 0 as 1/J’ o ~2 0 lbi .
= +1 the choice of the isogeny’02 down is unique. It follows

that 1/J2 ~ and therefore the isogeny does not have cyclic kernel. 0

In Section 7 the case N = 64 and D = -28 appears. This is an example
of how a rational point of Xo (N) can arise when both c and Nlc2 are even.
The Atkin-Lehner involutions Wn (where is such that gcd(n, N/n) _

1) map Heegner points to Heegner points with the same discriminant.
Therefore it makes sense to speak of Heegner points on Xo (N).

4. Rationality of Heegner Points on Xo (N)
In the context of this paper it is important to determine when Heegner

points on Xo(N) can give a rational point of Xo (N).
Following Gross [15] we write a for the projective (9-module (1, T) (the

isomorphism class of the elliptic curve E depends only on the class of a
in Pic(O)) and write b for (1 jN, T). The isogeny 0 then corresponds to
the projective 0-module n = which in this case is the d-module

(N, (-B + -v/D-)/2). The fact that the kernel is cyclic may be expressed as
0/n Gross uses the notation (0, n, ~a~) for the Heegner point.
From the results of Gross one can easily deduce the following (see [9]).

Theorem 1. Let x = 10 : E - E’, ~ : E’ ~ E} be a Heegner point of
with End(E) = d. Let n be the projective corresponding

to the isogeny. Then x is defined over Q if and only if either
1. ho =1, or
2. ho = 2, n is not principal. and n = n.

We now discuss the meaning of the condition n = n. In terms of the

representation n = (N, (B + B/D)/2) we see that n = n if and only if 
In the case when N is coprime to the conductor of 0 it follows that every
prime p dividing N must ramify in 0, and therefore N must be square-free.

As seen in [9], rational Heegner points coming from class number two
orders are rather rare.

Proposition 6. Suppose N &#x3E; 89. Then there are no rational Heegner
points on Xo (N) of class number two.
Proo f . Let D be the discriminant of a class number two discriminant. We
consider first the case when N is coprime to the conductor of D.

In this case we require that N be square-free and that all primes piN
ramify (i.e., 
The list of all class number two discriminants D is -15, -20, -24, -32,

...... . "’" ...1""’11........., "., ,.. ,..... n · -- -- - - "" ,.. -.... --
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-112, -115, -123, -147, -148, -187, -232, -235, -267, -403, -427. This
already severely limits the number of possible values of square-free N for
which 
A further condition is that the projective (9-module n which has norm

N must satisfy n = n and be non-principal. For most of the larger discrim-
inants in the list one sees that D is itself square-free and that by unique
factorisation the only ideal of norm N = -D is the ideal which is

principal.
One can check that 89 is the largest N for which gcd(N, c) = 1

and for which a suitable ideal n exists. Indeed, there is a rational point
on the genus one curve Xt(89) corresponding to the class number two
discriminant D = -267.

Now, assume that gcd(N, c) ~ 1 and that we have some isogenies up
and down of degree d (where d divides c). The remaining N/d2 isogeny is
handled by the previous case, and so it follows that It remains to
determine which possible values for N can arise with d &#x3E; 1.
The only values for D with non-trivial conductor are D = -32, -36, -48,

-60 -64, -72, -75, -99, -100, -112 and -147 (for which we have c =
2, 3, 4, 2, 4, 3, 5, 3, 5, 4 and 7 respectively).
The possibilities for N &#x3E; 89 are therefore 99,100,112 and 147. These

cases do not have rational points since the corresponding ideal n would
necessarily be principal. 0

As mentioned above, Xt(89) has a class number two Heegner point.
Rational Heegner points corresponding to class number two discriminants
for which N is not coprime to the conductor seem to be extremely rare. In
fact, the only example I have noticed occurs with N = 8 and D = -32.
There are further examples of rational Heegner points of class number two.
For instance, in Section 8 it is shown that the curve Xo+ (74) is an example
of a composite value of N for which there is a rational class number two
heegner point.
We could end the analysis here, since Proposition 4 and the fact that

Heegner points come from quadratic forms NAT2 + BT + C of discriminant
D can be used as the basis of an algorithm to list all ro (N)-equivalence
classes of suitable T and Theorem 1 tells when they give rational points of
Xt(N). Thus, from a computational point of view, we have all the tools
we need. However, it is useful to have more information about the action
of the Atkin-Lehner involutions on Heegner points.

5. The Action of Atkin-Lehner Involutions on Heegner Points

We first consider the case where gcd(N, c) =1.

Proposition 7 (Gross [15]). Let (C~, n, [a]) be a Heegner point ort Xo(N)
with N coprime to the conductor of o. Suppose and suppose n = pam
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where p decomposes as ~.p in O. Then the Atkin-Lehner involution Wpa acts
by Wpa(O, n, [a]) = (0, pam, 
The following result is then immediate.

Proposition 8. Let N be a positive integer. Let 0 be an order of conduc-
tor coprime to N for which there exist rational Heegner points on Xo (N) .
Let w’(N) be the number of distinct primes dividing N which split in 0.
1. If the class numbers o f d is one then there are maxfl, 2’ N-1 rational

Heegner points on Xo (N) corresponding to the order 0 and they are
all mapped to each other by Atkin-Lehner involutions.

2. If the class number of 0 is two then there is only one such Heegner
point. Furthermore w’(N) = 0 and the point is f xed by all the Atkin-
Lehner involutions.

Proof. From the notation (0, n, [a]) it follows that the set of all rational

Heegner points on Xo (N) corresponding to an order (~ is obtained by tak-
ing the images of one of them under the group of Atkin-Lehner involutions.
The statements about the number of rational points which arise then

follow from Proposition 7 and Theorem 1. 0

We now consider the case where N is not coprime to the conductor of
O. 

~ ~ ~ ~

The isogeny 0 factors as ~2 0 "p and so 0 factors as ;¡¡;; 0 ;p o ~2’
Since the isogeny up is always unique, we have that ~1 and’02 are uniquely
determined. However, the isogenies ~2 and 01 are only constrained by the
condition that the full composition has cyclic kernel.

It follows that there may be several non-isomorphic Heegner points com-
ing from a given discriminant D. It is useful to know when a Heegner
point is fixed by an Atkin-Lehner involution. We give one result in this
direction which can apply when p is 2 or 3 (which are the most commonly
encountered cases).

Proposition 9. E - E’ is a Heegner point on Xo (N) of dis-
criminant D and having prime conductor p. Suppose that the class number

of D is one, that p2 N and that p - ( D ~2 ) = 2. Then the Heegner point is
fixed by the Atkzn-Lehner involutions W2 .
Proo f . Write N = p2m. Since the class number of D is one it follows that
E ^--’ E’. We can factor 0 as ~2 where ~1 is a p-isogeny up and ~2 is
a p-isogeny down and 0 has degree m. Since p - ( D r2 ) = 2 there are only
two choices for the isogeny down. It follows that ~2 is uniquely specified
by the condition 1b2 # 

It remains to show that the m-isogeny 1b is fixed by Wp2 (the argument
we give applies in more general cases too). Let T correspond to the Heegner
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point, so that where B2 - 4NAC = D. We focus on
the isogeny 0 given as (cC/ ( 1, T), ( 1 ~m, T) ) . The class number one condition
implies that = for some, E SL2(Z). Using the quadratic
equation for T one can deduce that, E ro (m) and that the isogeny o is
preserved.

Therefore, the involution Wp2 must fix the Heegner point. 0

An example of the above situation occurs with N = 52 and D = -16.
We have p = 2, (24) = 0 and there is only one rational Heegner point on
Xo (52) corresponding to the discriminant -16. In contrast, with N = 52
and D = -12 we have (23) = -1 and there are two rational Heegner points
on Xo (52) arising (each mapped to the other by W4).

6. Results of Momose

Momose [22], [23] has studied the question of whether there are excep-
tional rational points on Xo (N).
Theorem 2 (Momose [23]). Let N be a composite number. If any one of
the following conditions holds then Xt(N)(Q) has no exceptional ratio-
nal points (i. e., all rational points of Xo (N) are cusps, rational points of
Xo (N), or Heegner points. ).
1. N has a prime divisor p such that p &#x3E; 11, p ~ 13, 37 and #Jo (p) (~)

finite.
2. The genus of Xo (N) is at least 1 and N is divisible by 26, 27 or 35.
3. The genus of Xo (N) is at least 1, N is divisible by 4 9, and m := N/49

is such that one of the following three conditions holds: 7 or 9 divides
m; a prime q - -1 (mod 3) divides m; or m is not divisible by 7 and
(~)=-1. .

Regarding the first condition above, Momose states that the number of
points of Ja (p) (Q) is finite for p = 11 and all primes 17  p  300 except
151, 199, 227 and 277.
Of course, when the genus of Xt(N) is zero then there will be infinitely

many exceptional rational points. The N for which this occurs are N 
21, 23  N  27, 29, 31, 32, 35, 36, 39, 41, 47, 49, 50, 59 and 71 (see Ogg
[26]). Information about the quadratic Q-curves in the cases N = 2, 3, 5, 7
and 13 was found by Hasegawa [18]. González and Lario [12] determined
the j-invariants of Q-curves when Xo (N) has genus zero or one and so
their results also contain all these cases of quadratic Q-curves (although
their results give polyquadratic j-invariants and the quadratic cases are
not readily distinguishable from the others).

It is also possible to have infinitely many exceptional points in the case
when the genus of Xt(N) is one.
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7. Genus one cases

It can be shown (see Gonzalez and Lario [12] Section 3 for the square-free
case) that Xo (N) has genus one when N is 22,28,30,33,34,37, 38,40,43,
44, 45, 48, 51, 53, 54, 55, 56, 61, 63, 64, 65, ?5, ?9, 81, 83, 89, 95, I01,119 and
131. In the cases 37,43,53,61,65,79,83,89, 101 and 131 the rank of the
elliptic curve Xo (N) is one and so there are infinitely many exceptional
rational points.

For the remaining cases the rank of the elliptic curve is zero and we
can ask whether the only points are cusps and Heegner points. Momose’s
result covers many of these cases and so the only N we must consider are
28, 30, 40, 45, 48, 56, 63, fi4 and 75. The following table lists the results and
we see that there are no exceptional rational points in these cases. Note
that in this table the number of rational points on Xo (N) is known to be
correct.

(*) see [4].

8. Higher genus cases

We now turn attention to the values of N for which the genus of 
is two or more. For these cases there are only finitely many rational points.
The following table lists all the composite values of N for which the genus
of Xo (N) is between 2 and 5 and for which Momose’s theorem does not
apply. The prime cases have already been studied in [9].

We now embark on a computational study of these cases using the meth-
ods of [8], [9]. The key is to construct explicit equations for using
the techniques of ~11~, [24] and [28] and cusp form data from [3].
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The results are given in the following table. The value for 
given in the second column is proven to be correct in many cases by using
coverings to rank zero elliptic curves. Nevertheless, for the cases N E
{91,117,125,169,185} it is simply the number of points of low height found
by a search as in [9]. We conjecture that this is the correct number of points
in each case.

9. The case N = 91 = 7 . 13

In this case there are exceptional rational points. We give the details of
the calculations in this case and we exhibit the j-invariants of the corre-
sponding quadratic Q-curves.
A basis for the weight two forms on ro(91) which have eigenvalue +1

with respect to W91 is given (see [3]) by the two forms

Following the techniques of ~11), [24], [17], [8] we set h = ( f -g)/2, x = f /h
and y = -q(dxldq)lh and find the equation
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for Xo (91). The hyperelliptic involution is not an Atkin-Lehner involution
in this case and so we find ourselves in an analogous situation to the case
Xo (37).

There are two rational cusps on Xo+(91) and three candidate discrimi-
nants D = -3, -12 and -27 for Heegner points. The primes 7 and 13 both
split in each of the orders of these discriminants and so there are always
two rational Heegner points for each of them.
The Heegner point of discriminant -91 does not give a rational point

since the corresponding ramified ideal is principal.
It is easy to find 10 points on the model above, which confirms that there

are two exceptional rational points on Xo (91).
The Atkin-Lehner involution W7 (which is equivalent to W13 on Xt(91»

maps the exceptional points to each other. It can be shown by considering
the original modular forms that W7 maps a point (x, y) to (x/(x-1), y/(x-
1)3). .
The following table lists all the data.

The exceptional points correspond to quadratic Q-curves. The j-inva-
riants can be computed using the method of Elkies [7]. The point (3, 7)
corresponds to the elliptic curve having j-invariant equal to

The point (3/2, 7/8) corresponds to the elliptic curve having j-invariant
equal to

As in [9] and [13] it is seen that these j-invariants have some properties
similar to those enjoyed by the singular j-inva,riants (see Gross and Zagier
[16]). We list some of these properties below (here N(j) represents the
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norm over the quadratic extension, while ‘Coefficient’ means the coefficient
of 3 . 29 in the j-invariant).

We see, as usual, that N( j) is ’neaxly a cube’ and that N(j - 1728) is
square. Notice the similarities in the primes arising above, and that the
’coefficient’ is divisible by 7 in both cases but not 13.

Also note that the j-invariants are of the form ji = a/213 and j2 = c~/2~
where a, a’ are algebraic integers such that the norms satisfy gcd(N(a),
2~3) = 27-1 and gcd(N(a’), 291) = 291-1. This suggests an analogue of
Theorem 3.2 of Gonzilez [13].

10. The case N = 125

We are again in the situation where Xo (N) has genus two and where
the hyperelliptic involution is not an Atkin-Lehner involution. From [3] we
find that the following forms are a basis for the weight two cusp forms for
0

Taking functions x = f /g and y = -q(dx/dq)lg gives the following
equation for Xo (125)

We find six rational points on the curve. There is one rational cusp, and
we find Heegner points for each of the discriminants D = -4, -11, -16 and
-19. In each case there is only one Heegner point. It follows that there is
an exceptional point. We first give the table of points.
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The exceptional rational point corresponds to a quadratic Qcurve with

The following factorisations occur.

The j-inva,riant is of the form a/l l where a is an algebraic integer and
the norm of a satisfies gcd(N(a),115 ) = 115-1.
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