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Uniform distribution modulo one and

binary search trees

par MICHEL DEKKING et PETER VAN DER WAL

On the occasion of the 65th birthday of Michel France

RÉSUMÉ. On peut construire à partir d’une suite x = (xk)~k=1 de
nombres distincts de l’intervalle [0,1] un arbre binaire en plaçant
successivement ces nombres sur les noeuds selon un algorithme
"gauche-droite" (cela revient à classer les nombres selon l’algori-
thme Quicksort). On note Hn(x) la hauteur de l’arbre obtenu à
partir des nombres x1, ... , xn . Il est évident que

logn/log2-1 ~ Hn(x) ~ n-1.
Si la suite x est obtenue comme valeurs de variables aléatoires

indépendantes uniformes sur [0,1], alors on sait qu’il existe c &#x3E; 0
tel que Hn (x) ~ c log n, (n ~ ~), presque-sûrement Récemment,
Devroye et Goudjil ont montré que si les x sont les suites de Weyl,
i.e., xk = {03B1k}, k = 1,2,..., où 03B1 est une variable aléatoire
uniforme sur [0,1], alors

Hn (x) ~ (12/03C02)log n log log n, n ~ ~,
en probabilité.
Dans ce papier nous considérons la classe de toutes les suites x
uniformément réparties pour lesquelles nous montrons que l’on a
nécessairement Hn (x) = o(n) quand n ~ ~.

ABSTRACT. Any sequence x = (xk)~k=1 of distinct numbers from
[0,1] generates a binary tree by storing the numbers consecutively
at the nodes according to a left-right algorithm (or equivalently
by sorting the numbers according to the Quicksort algorithm).
Let Hn(x) be the height of the tree generated by xl, ... , xn. Ob-
viously

log n/log 2 -1 ~ Hn (x) ~ n - 1. 
If the sequences x are generated by independent random variables
having the uniform distribution on [0, 1], then it is well known that
there exists c &#x3E; 0 such that Hn (x) ~ c log n as n ~ ~ for almost
all sequences x. Recently Devroye and Goudjil have shown that
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if the sequences x are Weyl sequences, i.e., defined by xk = {03B1k},
k = 1, 2, ... , and 03B1 is distributed uniformly at random on [0, 1]
then

Hn(x) ~ (12/03C02)log n log log n
as n ~ ~ in probability.
In this paper we consider the class of all uniformly distributed
sequences x, and we show that the only behaviour that is excluded
by the equidistribution of x is that of the worst case, i.e., for these
x we necessarily have Hn (x) = o(n) as n ~ ~.

1. Introduction

The starting point for the present work is a paper published in 1981,
written by Michel Mend6s France and the first author titled "Uniform dis-
tribution modulo one: a geometric viewpoint" ([3]). The central idea of that
paper is to associate to any sequence (xk) of real numbers a curve r(x) in
the (complex) plane by putting r(x) = 7((0, oo)), where

and 1’(t) is linear The curve r(x) gives finer information
on the sequence x than if one considers x as a subset ~2? -" } of See

e.g. Figure 1 which displays a part of r((7rk 2)).

FIGURE 1. r((7T~)) .

As noted in [3] the subpatterns of r which appear on the spiral consist of
113 segments, the numerator of one of the continued fraction convergents
of x. This has been further explained in [4] and [1].
The first author has been involved the last few years in the study of trees
generated by algorithms (see e.g. [2]). Two important algorithms, Quicksort
([7]) and the binary search tree algorithm ([8]) generate essentially the same
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trees. In this paper we shall consider the question what one can say about
the shape of trees generated by the binary search tree algorithm when the
input sequence x is equidistributed, in other words we vary on the title
above: uniform distribution modulo one - a viewpoint from a tree.

2. Binary search trees

A binary search tree is constructed from a sequence of distinct real num-
bers, called the keys, as follows. The first key is placed at the top of the
tree, called the root. The next key is directed to the left subtree if it is
smaller than the root key, and to the right subtree if it is larger. In general,
keys enter the left or right subtree through the root node and then the
process of turning left and right is repeated until the end of a branch is
reached. We illustrate this with an example.

FIGURE 2. Building the tree from the sequence .5, .2, .4, .6, .3, .1.

Consider the sequence of keys x1 - .5, X2 = .2, X3 = .4, X4 = .6, z5 =
.3, xs = .1: the first key is .5, and it will be placed at the root of the tree.
The second key, .2, goes to the left subtree because .2  .5. The third key,
.4, first goes to the left subtree, because .4  .5. After this it gets compared
to .2, and because .4 &#x3E; .2, goes to the right. This process continues until all
keys are placed in the tree, and we have reached the final tree in Figure 2.
We shall denote T (x) the tree generated by a sequence x with elements
from ~0,1~, and Tn (z) the tree generated by the first n elements xl, ... , xn.
Since the nodes at each level double in number, the ordinary representation
of will quickly get messy. We therefore choose a special embedding
of the binary tree in the (complex) plane, where the branches are scaled by
a factor vlr2- at each level. More precisely, if we code a level n node v by
the vector (dl, ... , dn), where dk = 1 when the level k node on the unique
path from v to the root is a right son of his father, and dk - -1 if it is a
left son, then the embedding is given by

(cf. Figure 3).
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FIGURE 3. Embedding a binary search tree in the plane.

When we apply this algorithm to the first 1500 elements of the sequence
x = (17rk 21) (here {y} denotes the fractional part of a number y), and use
this embedding we obtain Figure 4.

FIGURE 4. T,500 (firk 21).

Apparently we do not see now the structure imposed by the continued
fraction expansion of 7r as in Figure 1. However, we mill see this structure
in (see Figure 5), and this will be explained in the next section.
An important characteristic of a binary search tree is the height Hn(x)

of 7~(~c). Here the height is defined as the largest level that is occupied by
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a key (the level of the root is 0). Obviously we have for all x and all n

It is customary for the analysis of the algorithm to assume that the keys are
generated by independent random variables having the uniform distribution
on (0,1~. For this so called random permutation model almost all sequences
behave essentially in the same way:

Theorem 1 (cf. [5, 9]). Under the random permutation model Hn(x) ~
c log n as n --~ oo almost surely for some c &#x3E; 0 (c = 4.31107... ).
Now typically, in fact almost surely, the sequences x generated by the

random permutation model are uniformly distributed. A natural question
is therefore what can be said about Hn(x) for an arbitrary equidistributed
sequence x.

FIGURE 5. 

3. Binary search trees generated by Weyl sequences
To answer the previous question we can profit from a nice analysis per-

formed by Devroye and Goudjil ([6]) of a subclass of equidistributed se-
quences the Weyl sequences
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They are able to give a precise description of the height of the tree generated
by such sequences.

Theorem 2 ([6]). Let a be an irrational numbers in [0, 1] with continued
fraction expansions a = ~al, a2, ... ~, and convergents Pn/qn. Then

and

Devroye and Goudjil deduce from this that for most (i.e., almost all if
a is chosen according to the uniform distribution on [0, 1]) sequences the
height behaves as

where the convergence is in probability as n ~ 00.
They furthermore deduce the following result on "large height" behaviour.

Theorem 3 ([6]). Let (hn) be a monotone sequence of real numbers de-
creasing 0 at any slow rate. Then there exists a such that

(2) nhn for infinitely many n.

Clearly (1) above implies that "small height" behaviour is obtained for
0: = T := ~(B/5 2013 1). We then have

See Figure 6 for the embedding of this tree.
Our goal will be to show that if one takes arbitrary equidistributed se-

quences x, one can not do better than in (2), i.e., = o(~c), but it is
possible to fill the gap between I~ and This will be done in the
next two sections.

4. The height of trees generated by uniformly distributed
sequences

We first show that denseness of a sequence x already forces some regu-
larity on T(x).

Proposition 4. Let be a dense sequence of distinct numbers in
~0,1~. Then for each - &#x3E; 0 there exists N such that all level N nodes in

are occupied, and such that any two neighbours v and v on level N
have keys Xk and which differ less than ê.
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FIGURE 6. + ~)k~) .

Proof. Fix an E &#x3E; 0. By the denseness of (xk), between any two Xn and
zm an Xk will appear for some k &#x3E; n, m (and numbers arbitrarily close to
0 and 1 will appear) . Clearly this implies that all levels will be filled out in
the end. Now let no be so large that for any xk in {~1,~2?’’ - there
exists Xl such that  §- Next, choose N such that N &#x3E; HnO, then
obviously level N is yet completely empty. According to the observation at
the beginning of this proof, there exists nl such that the complete level N
is occupied by keys from We claim that for any two neighbours
v and E, of this level (say v to the left of v) their keys xk and xk differ less
than E. Suppose not, i.e., suppose that lXk - ê. Let v A P be the
closest common ancestor of v and v, is on the path from v and
that from v to the root, and its level is maximal with this property. Let

xj be the key at v A ÎÍ. Then clearly x~  xk . Let xi be the smallest
number so that 1  ~  no and

(since ê, either xt exists, or there will exist a largest number x,
with Xj  zr  xié and the proof will proceed similarly) . Since I  no  k,
and since there are no other xm between Xk and Xl, xe has been assigned to
a node v* on the path from the root to v. Then there are two possibilities
(writing v’  v" if two nodes v’ and v" are on the same path to the root
and the level of v’ is smaller than the level of v") : v*  v 1B ¡; or v 1B ¡;  v*.
Case 1: v*  v A v. Then we get a contradiction with the fact that v*, v 1B ¡;
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and v are on the same path: since Xl has gone to the right subtree
of v*, but since xk  XI, xk has gone to the le f t subtree of v*.
Case 2: v 1B v  v* . Then we get a contradiction with the fact that v and
v are neighbouring nodes: now Xk must have gone to the left subtree both
at v 1B v and at v * . 0

We next show that equidistribution of x gives still more structure on

T(x).
Theorem 5. If X = (Xk)k&#x3E;l is a uniforml y distributed sequence in ~0,1~,
then = o(n) as n - oo.

Proo, f. Suppose c ~ n infinitely often for some c &#x3E; 0.
Choose N’ such that the first node of level N’ has a key which is smaller
than c/2, and the last node of level N’ has a key which is larger than
1 - c/2. By the proposition above there is a level N &#x3E; N’, such that the
keys coming from x at level N, which we denote by yl  y2  ...  y2N
have the property that

For where n is large, we define
= height of the subtree rooted at the node with key y;.

Then there is a j such that

for infinitely many n.

Keys zk which will be moved to the subtree rooted at the jth node (with
label yj) should at least satisfy  xx  Yj+l, hence this implies that
infinitely often

This contradicts the fact that the left hand side converges to 
which is strictly smaller than c.

D

5. Small height
Let x = (~1,~2?. ... ) = (3? ~ ~ ~ §? §) - ... ) denote the van der Corput

sequence. Fix c in the interval ( 1, 2) and define an index sequence I(c) =
(21, 22, ’ ... ) by

,

Note that the sequence i(c) is strictly increasing. We obtain a sequence
y(c) _ (Yl, y2, ... ) by permuting the van der Corput sequence x in the
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FIGURE 7. 

following way. We first place the entry X2n-l = 2n at position in in y(c)
for n = l, 2, ... and then place the remaining entries of x along the open
positions, in the same order they appeared in x. Note that y(2) is again
equal to the van der Corput sequence.

Lemma 6. For c E (1, 2~, the sequence y(c) is equidistributed on the unit
interval and

From this lemma it immediately follows that

Proof. Note that all sequences y(c) generate the same binary search tree
and that at time n, the height of the tree is equal to the number of powers
of 1 stored in the tree minus 1. Hence, if n &#x3E; 
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and if n  r cn-ll

To see that the sequence y(c) is equidistributed, note that the number of
entries in (xl, ... , zn) that do not appear in (yl, ... , y~) is at most

where we used that xl = yl. Hence, for 0  a  b  1

Since

it follows n : a  yk  b} I converges to b - a and hence the
sequence y(c) is equidistributed. 0
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