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On octahedral extensions of Q
and quadratic Q-curves

par JULIO FERNANDEZ

RÉSUMÉ. On donne une condition nécessaire pour qu’une repré-
sentation surjective Gal(Q/Q) ~ PGL2(F3) provienne de la 3-tor-
sion d’une Q-courbe. Nous étudions plus particulièrement le cas
des Q-courbes quadratiques.

ABSTRACT. We give a necessary condition for a surjective repre-
sentation Gal(Q/Q) ~ PGL2(F3) to arise from the 3-torsion of
a Q-curve. We pay a special attention to the case of quadratic
Q-curves. 

1. Introduction

Let C be a Q-curve defined over a number field k, that is an elliptic
curve over k without complex multiplication and isogenous to all its Galois
conjugates. Throughout, we will denote by Gk and GQ the absolute Galois
groups Gal(Q/k) and Gal(Q/Q), respectively. Let

be the representation given by the Galois action on the 3-torsion points
of C. Then, there exists an odd representation

whose restriction to Gk is lifted to GL2(F3) by pc. The representation oc
comes from the Galois action on the 3-torsion of the abelian varieties of

GL2-type having the curve C’ as a quotient (see the proof of Theorem 2.1).
The fixed field of flc, which we will denote by Kc, has Galois group

over Q inside the symmetric group S4, since this last group is isomorphic
to PGL2(F3). The behaviour of the restriction of gc to Gk implies the
following property for the field its compositum with is the extension
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generated by the x-coordinates of the 3-torsion points of C, with respect
to any Weierstrass equation for C over k. Whenever k /Q is Galois and pc
is surjective, is the only 54-extensions of Q satisfying that property; a
proof of this claim is given in the appendix. We recall that oC being odd
amounts to Kc not being real.
We will say that a representation

arises f rom a Qcurve C if o = oc, where this last equality is considered
up to conjugation inside Any such representation o must be
odd.

In section 2 we give a necessary condition for a surjective representation p
as above to arise from a given Q-curve, in terms of the trace quadratic form
attached to any quartic subextension of the fixed field of o. In section 3 we
focus on the case of elliptic curves defined over quadratic fields.

2. The sign component in Br2(Q) attached to a Q-curve
Let C/k be a Q-curve. From any locally constant set of isogenies from C

to its GQ-conjugates, one can attach to C an invariant 6c E of
its isogeny class (see [5], Proposition 2.1, and also [7], section 6). The sign
component of 6c, denoted by ça, is an element in Br2 (Q) , the 2-torsion of
the Brauer group of Q. This element is related to the complète definition
of the Q-curve (cf. [5] and [6]): assuming 1~ to be the minimal field of
definition for C up to isogeny, which is a polyquadratic extension of Q, the
existence of a k-twist C’ of C with all the isogenies

defined over k amounts to the existence of a double cover of the group
whose corresponding embedding problem has obstruction given

by
The sign component çð is explicitly given in [5], Theorem 3.1, as a

product of quaternion algebras in terms of the minimal field of definition
for C up to isogeny and the degrees of the isogenies between C and its Galois
conjugates. Our first result gives another expression for ç8 depending only
on the octahedral extension Kc/Q in the introduction.

Theorem 2.1. Assume that gc is surjective, and let Kc be defined as in
section 1. Then, the sign component given by the following product
in Br2(Q) :

where dc and we are, respectively, the discriminant and the Witt invariant
of the trace quadratic f orm attached to any quartic subextension of Kc /Q.
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Proof. For any character 77: GQ - F*, with F an algebraically closed field,
let [1]) be the element in Br2(Q) giving the obstruction to the existence of
a character 0: GQ - F* such that 1/;2 = q. Let us consider these two

particular cases:

9 For the mod 3 cyclotomic character

[x] is given by the quaternion algebra (-1, -3).
~ For any lifting

of the projective representation (lc, the element [det p] gives, by Theo-
rem 6 in [8] and Proposition 1.2 in [4], the obstruction to the solva-
bility of the embedding problem

where 2 S4 is the only double cover of S4 which can be embedded
into SL2 (F3). That obstruction can be expressed (see [9], Th6or6me 1,
and [10], section 2) in terms of the trace quadratic form attached to
any quartic subextension of Kc /Q, so that we have the equality

in Br2(Q).

Every lifting of oc into GL2 (F3) is obtained, up to isomorphism, as
follows. Let A /Q be an abelian variety having the Q-curve C as a quotient
and with Qendomorphism algebra Q Q9 Endo(A) a number field of degree
dim(A). By [7], Theorem 6.1, such an abelian variety exists, and we can
also assume, replacing A by a Qisogenous abelian variety if necessary, that
the Q-endomorphism ring of A is the maximal order in Q Q9 EndQ (A). For
every prime ideal p over 3 in that order, the intersection of the kernels
of all the endomorphisms in p becomes then a 2-dimensional vector space
over IF3, and the representation

given by the Galois action on A[p] is a lifting of gc ; for another description
of the representations we refer to [2], section 2.
From ~1~, Proposition 2.15 (see also [5], Theorem 4.2), we have the iden-

tity

By combining it with the above equalities, we obtain

in Br2 (Q) , as desired.
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Remark 2.1. Given an octahedral extension K/Q , let d E and
w E Br2(Q) be, respectively, the discriminant and the Witt invariant of
the quadratic form attached to a quartic subextension Kim /Q
of Then, w can easily be computed from any reduced polynomial
f (X ) = X~ + a X 2 + b X + c defining the extension (cf. [2], Re-
mark 4.2, and [3], section 2):

. If a = 0 or a = 2 d up to squares, then w = (-1, -d).
9 Otherwise, 8 = 2 a3 ~- 9 b2 - 8 a c is non-zero, and then
w = (-l,-d)(2a~,~).

Notice also that d is the discriminant of f up to squares.

The following corollary, which is just a restatement of Theorem 2.1, gives
the necessary condition announced in the introduction.

Corollary 2.1. Let g: GQ - PGLZ(IF3) be a surjective representation,
and let d and w be the invariants defined by the fixed field of g (as in
Remark 2.1). If Lo arises from a Q-curve C, with attached sign component
ij in then the equality

must hold.

3. Ellipticity over quadratic fields of pro jective mod 3 Galois
representations

Given a projective representation

we will say that o is elliptic over a quadratic field k if its restriction to Gk
is given by

PE
for some elliptic curve E defined over k. Here PE denotes as above the

representation of Gk attached to the 3-torsion points of E, and stands
for its associated projective representation. It is clear from the definitions
that ellipticity is a necessary condition for the representation o to arise
from a Q-curve defined over k.

Whenever det o : GQ - is the cyclotomic character X, the represen-
tation o arises from an elliptic curve defined over Q (and hence it is elliptic
over any quadratic field) if and only if it can be lifted to GL2 (lF3 ) [3]. If

this last condition is not fulfilled, there are still a priori infinitely many
quadratic fields k over which p could be elliptic.
On the other hand, the quadratic field k is uniquely determined by o

provided that det Lo 54 X : it corresponds necessarily to the quadratic cha-
racter X det o, so that the restriction det g becomes cyclotomic. In this
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case, the following result gives a characterization of those surjective repre-
sentations o which are elliptic over k.

Theorem 3.1. Let o : GQ - PGL2(F3) be a surjective representation with
non-cyclotorraic determinant, and let d and zv be, respectively, the discri-

minant and the Witt invariant of the trace quadratic form attached to any
quartic subextension of the fixed field of Lo. The following conditions are
equivalent:

(1) The representation p is elliptic over a quadratic field.
(2) For every Prime p that splits in ), the local components at p

of the quaternions algebra w (-l, -d) is trivial.

(3) Every prime p for which (-1, -d)p in Br2(%) satisfies the
following (where we regard d and -3 d as squarefree integers):

~ If p is odd, then the Legendre symbol 3d) is not 1.
. If p = 2, then d ~ 5 (mod 8).

(4) The fixed field of o is the splitting field of a polynomial of the form
X4-6X2~-bX-~c, for some &#x26;,c ~ Q.

Proof. The hypothesis on det o amounts to saying that d ~ -3 in Qfi /Q* 2.
As we have noticed above, the only quadratic field k over which 0 can be
elliptic is the fixed field of X det p, namely Q ( 3 d ) .

Let K1/Q be a quartic subextension of the fixed field of o. Consider
the quadratic form TrKl/Q(x2) on Kl, with invariants d E and

w E Br2(Q), and denote by T its restriction to the 3-dimensional subspace

The quadratic form T has also discriminant d and Witt invariant w. Re-
garded as a real quadratic form, its signature is (r¡ + r2 - 1, r2), where r1
(resp. 2 r2) is the number of real (resp. non-real) embeddings of Kl into Q
(see [9], 3.4) ; in particular, it represents any positive real number, which in
terms of Hilbert symbols means that (-1, -d)ao in Br2(R) whenever
d is negative.

Condition (4) amounts to the existence of an element a E Ki with
= 0 and = 3, i.e. to the representability of 3 by T.

In terms of Hilbert symbols, the obstruction to that is given by the equality

z"n = (-I, -d)p
in for every prime p such that -3 d is a square in Qp* - This is in
turn equivalent to condition (2), whose translation into Legendre-Kronecker
symbols is given by (3).

Consider now the natural morphisms
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The discriminant and the Witt invariant of the quadratic form (over k)
Trx, are the image of d and w, respectively, by these maps. By Theo-
rem 3 in [3] and Theorem 4.2, Lemma 4.1 in [2], p is elliptic over k if and only
if w = (-1, -d) in Br2(k). Since k is imaginary whenever (-1, -d)~
in Br2(R), this amounts again to condition (2). 0

Remark 3.1. The representation g need not be odd to satisfy the equi-
valent conditions in the proposition. Also, the surjectivity assumption can
be relaxed by only asking the fixed field of p to be the normal closure of a
quartic extension of Q, and the result remains the same.

Let us now apply the above result, along with the one in the previous sec-
tion, to Q-curves of degree N, that is to Qcurves defined over a quadratic
field, with non-rational j-invariant, and having an isogeny of degree N to
its conjugate curve.

Proposition 3.1. Let p, d and w be as in Theorem 3.1. If p arises from
a Q-curve of degree N, then the following two equivalent conditions are
satisfied:

(i) The Witt invariant w E Br2 (Q) is given by
zv = (-1, -d) (2 N, -3 d) .

(ii) For every polynomial X4 - 6 X2 + b X + c E Q[X] having the foxed
field of o as splitting field, 6 = 3 (16 c + 3 b2 - 144) is non-zero and
the quaternions algebra (2 8 N, -3 d) is trivial in Br2 (Q)).

Proof. The existence of polynomials as in (ii) is ensured by Theorem 3.1,
and the equivalence between the two conditions is a straightforward conse-
quence of Remark 2.1. Let C be a Q-curve of degree N attached to LO. Since
the quadratic field of definition for C is Q(V20133d ), the sign component
gj is given by the quaternion algebra (N, -3 d) [5]. Condition (i) follows
then from Corollary 2.1. 0

Appendix
We look closer here at the uniqueness of the octahedral extension Kc /Q

attached in the introduction to a Q-curve C defined over a Galois number
field I~, in the case of surjective 3-torsion. The precise statement amounts to
the following octahedral exercise. Its proof is obtained directly from Galois
theory and the lemma below.

Proposition. Let K/Q and k/Q be normal extensions such that the Ga-
lois groups Gal(K/Q) and Gal(K k/k) are isomorphic to the symmetric
group 54. Then, there are no other S4-extensions of Q having the same
compositum with k as K.
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Lemma. Let G1 and G2 be groups, and identify them with their respective
canonical images inside the product group G1 x G2. Assume the center

of G2 to be trivial. Let H be a normal subgroup of G1 x G2 with the same
order as G1 and having trivial intersection with G2 . Then, H must be equal
to G1.

Proof. From the assumptions on H, this subgroup must be of the form

All we must see then is that Q9 = 1 for all g in Gl. Assume that 1 for
some g . Since G2 has trivial center, there must be some 7 in G2 such that

T ~ Then, the element

lies in H and is different from (g, ag), which yields a contradiction. 0
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