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On mean values of some zeta-functions

in the critical strip

par ALEKSANDAR IVI0106

Dedzcated to the memory of Robert Rankin

RÉSUMÉ. Un entier k ~ 3 et un réel 03C3 tel que ½  03C3  1 étant

fixés, on considère dans la formule asymptotique

$$
le terme erreur R(k, 03C3; T), pour lequel nous montrons de nouvelles
bornes lorsque min(03B2k, 03C3*k)  03C3  1. Nous obtenons également des
majorations nouvelles pour les termes erreur dans le développe-
ment des moments d’ordre deux des fonctions zeta de formes

paraboliques holomorphes et des séries de Rankin-Selberg.

ABSTRACT. For a fixed integer k ~ 3, and fixed ½  03C3  1 we

consider

$$

where R(k, 03C3; T) = 0(T) (T~ ~) is the error term in the above

asymptotic formula. Hitherto the sharpest bounds for R(k, 03C3; T)
are derived in the range min(03B2k, 03C3*k)  03C3  1. We also obtain
new mean value results for the zeta-function of holomorphic cusp
forms and the Rankin-Selberg series.

1. Introduction

The aim of this paper is to provide asymptotic formulas for the 2k-th
moment of the Riemann zeta-function ~(s) and some related Dirichlet series
in the so-called "critical strip" 2  a = 9te s  1. For the zeta-function
our results are relevant when l~ &#x3E; 3 is a fixed integer, where henceforth
s = a + it will denote a complex variable. Mean values of (((s) on the
"critical line" a = ~ behave differently (see e.g., [4]), while the problem

Manuscrit recu le 11 septembre 2001.
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of mean values for 0  Q  ~ can be reduced to the range .1  Q  1 by
means of the functional equation for ((s), namely

Mean values of ((s) for -1  1 in the cases k = 1 and k = 2 have been

extensively studied, and represent one of the central themes in zeta-function
theory. One has (see [10, Theorem 2])

and (see [7, Theorem 2])

which are the sharpest hitherto published asymptotic formulas valid in the
whole range .1  a  1. These results have been obtained by special
methods, and cannot be generalized to higher moments. The formula for
the general 2k-th moment of ((s) can be conveniently written (cf. [4,
Chapter 8]) as

where 1  Q  1, T - oo, and the arithmetic function dk(n)
denotes, as usual, the number of ways n may be written as a product of
k factors (so that dk(n) is generated by ~’’~(s), and d2(n) = d(n) is the
number of divisors of n) . In [4, Chapter 8] it was proved that

where henceforth E denotes arbitrarily small constants, not necessarily the
same ones at each occurrence, and crk is the infimum of ~* ( &#x3E; ~ ) for which

holds for any given é. Writing further the bounds for R(k, d; T) as
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and using the known bounds for when 3 ::; 1~  6, it follows from (1.4)
that we have

As indicated in [4], explicit values for ck (a) could be given for any fixed
k &#x3E; 1, but the expressions in general would be cumbersome, so only explicit
values were given for 2  k  6. The point of (1.3)-(1.5) lies in the fact
that each value satisfies  1 (i.e., when (1.3) becomes a true
asymptotic formula), precisely for the range given in (1.5). However, as a
approaches 1, the values of become rather poor and they do not tend
to zero, as one expects.

The problem of mean values of a Dirichlet series F(s) (in this context
2k-th moments of F(s) can be regarded simply as the mean square of

(k E N)) can be treated in various degrees of generality. Here we shall
mention only the classes of Dirichlet series treated by Chandrasekharan-
Narasimhan (see [2], [3]), Perelli [14], Richert [17] and Selberg [18]. Re-

cently S. Kanemitsu et al. obtained in [12] a mean value theorem for a
general class of Dirichlet series possessing a functional equation with mul-
tiple gamma-factors. The merit of their result, which is in part based on
ideas of Matsumoto [13], is a relatively good value of the exponent in the
error term as Q approaches the abscissa of absolute convergence of the
Dirichlet series in question. In particular, the result of [12] can be applied
to higher power moments of ~(s). In this case in the notation of [12] one
has

Their Theorem 4 gives then, in the notation of (1.3),

for k &#x3E; 2 and

When (1.6) is compared with (1.3)-(1.4) it transpires that it holds for a
poorer range, but the exponent in the error term is much sharper as a
grows, and it tends to 0 as a --7 1 - 0, as one expects.

In what follows we may assume o-  1, since we have the asymptotic
formula
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which was proved in [1]. In (1.8) one can take l~ E C arbitrary, but fixed.
Thus (1.8), obtained by a special method that cannot be adapted to the
range or  1, yields a better error term than the one obtainable from any
of the previous bounds ( 1.1 )-t 1.7) .

The plan of the paper is as follows. In Section 2 we shall formulate the
results (Theorem 1 and Theorem 2) concerning the higher moments of C(s),
the proofs of which will be given in Section 3. In Section 4 we shall deal
with the mean value of the Rankin-Selberg series, and in Section 5 with
the mean values of the zeta-function of holomorphic modular forms and its
square.

2. Higher moments of the zeta-function

The aim of this section is to furnish new bounds for R(k, a; T), which
will improve both (1.4) and (1.6). We shall formulate now our results, with
the remark that Theorem 2 is based on the use of the defining property of
~~ and it gives good bound for R(k, cr; T) when a is close to Theorem 1,
on the other hand, is derived by using the values of the constant #k in the
mean square estimates for the divisor problem. Namely we let, as usual,

where is the error term in the asymptotic formula for the summatory
function of dk(n) (cf. (3.1)). Theorem 1 will provide good results for values
of Q close to 1. Results of similar type for the general case and the case
of the Rankin-Selberg series can be found in [12] and [13]. However in the
proof of Theorem 1 we shall avoid using the Cauchy-Schwarz inequality and
therefore obtain a sharper value of the exponent than we would obtain by
following the ideas of [12] and [13].
Theorem 1. For fcxed a satisfying  a  1 and every fixed

3, we have

Theorem 2. For fixed a satisfying Q~  a  1 and every fixed integer
k &#x3E; 3, we have

Remark 1. Note that (2.2) improves (1.6). Namely we have

for
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But from (1.7) it follows that

for

Equality in (2.4) holds only for k = 3, since 63 = 3 (see [4]). But we have
/34 = 1 and #k  (k - 1)1(k + 2) for k &#x3E; 4 (see [17]), hence in (2.4) we
have strict inequality for k &#x3E; 3. This means that (2.2) improves both the
exponent of the error term in (1.6), and at the same time it holds in a wider
interval than the one given by (1.7).
We also note that

is equivalent to

which is obvious. This means that (2.3) of Theorem 2 improves (1.4) in the
whole range Qk  a  1.

3. Proof of Theorem 1 and Theorem 2

We write as usual, for k E N‘,

where is a polynomial of degree k - 1, whose coefficients (which
depend on k) may be explicitly evaluated. Using the Stieltjes integral
representation and (3.1) we have, for 1 « X W Tc (C &#x3E; 0), Q &#x3E; 1 and

k &#x3E; 2 a fixed integer,

where + P/ From the definition (2.1) of ,~~ it follows that,
for any given Y » 1, there exists X E [Y, 2Y] such that

Henceforth we assume that X is chosen in such a way that it satisfies,
besides 1 « X « Tc, also the bound in (3.3). Repeated integration by
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parts yields 
’

which provides analytic continuation of the left-hand side of (3.4) to C. We
also have

Note that the last integral converges absolutely for a &#x3E; in view of
the Cauchy-Schwarz inequality for integrals and the definition (2.1) of 
Therefore from (3.1)-(3.5) we obtain, for  Q  1 and T  t 

2T,

Observe now that (2.2) follows from

on replacing T by T2-i (j E N) and summing all the results. To evaluate
the integral in (3.7), we suppose that  1, we use (3.6) and

The reason of this splitting of the sum in two sums is to have rn and n differ
by unity at least, which is expedient to have in the integration that will
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follow. Now note that we have, by the mean value theorem for Dirichlet
polynomials (see [4, Chapter 4]) and dk(n) « 7~B

To evaluate the mean square of ibi we may proceed directly by squaring
out the modulus, or we may use Lemma 4 of [8], which says that

holds if g(x) is a real-valued, integrable function on ~a, /3~, a subinterval of
[2, oo), which is not necessarily finite. We shall obtain

We have

By direct integration it is found that
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on using the elementary inequality

Similarly, by using the first derivative test (see [4, Lemma 2.1]), we obtain

where the interchange of the order of integration is justified by absolute
convergence. Therefore from (3.10)-(3.12) it follows that

so that finally from (3.8)-(3.10) and (3.13) we obtain

Now in (3.14) we set X ~-2~ ~ ~’X 1 +~~ ~~~, namely

where the constant c &#x3E; 0 is chosen in such a way that (3.3) is satisfied.
With the choice (3.15) it is seen that (3.14) becomes (3.7), and the proof
of Theorem 1 is completed. 0

Corollary 1.
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The formulas follow from Theorem 1 with the values /3s = 3, ~4 = -
/?6  2 (see [4]) and #5  o (see [20]).
Remark 2. It transpires that the Lindelof hypothesis (~(Q+it) G Itl£ for
a &#x3E; ~) is equivalent to

Namely the Lindelof hypothesis implies that J3k = (k - 1)/(2k) for k &#x3E; 2
(see [4, Chapter 13]), in which case (3.16) follows from (2.2) and Theorem 1.
Conversely, if (3.16) holds, then by [4, Lemma 7.1] we have, for T~  H 
1/2 T

which yields the Lindelof hypothesis on taking H = ~T and letting 1~ -~ oo.
Remark 3. Other explicit results can be obtained from Theorem 1 with
the bounds for ~3~ furnished by [9], some of which are hitherto the sharpest
ones. Our method of proof can be used to obtain a sharpening of the
general result proved in [12], since we did not use the Cauchy-Schwarz
inequality in estimating ab dt, which was done in [12] and [13]. Namely
we integrated directly the expressions in question, which led to a sharper
estimate than the one that would have resulted from the application of the
Cauchy-Schwarz inequality.

Proof of Theorem 2. From the well-known Mellin inversion integral

we obtain

We move the line of

integration in (3.17) to 9ie w = or* - a-. In doing this we encounter the pole
w = 1 - s with residue O(T-A) for any fixed A &#x3E; 0 in view of Stirling’s
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formula for the gamma-function. There is also the simple pole at w = 0
with residue ~’k(s). Therefore from (3.17) it follows that

where

Consequently we have, by the mean value theorem for Dirichlet polynomi-
als,

We also have, by the definition of or*

on taking A sufhciently large. Finally by using the Cauchy-Schwarz in-
equality we obtain

Putting together all the estimates, replacing T by T2-i (j &#x3E; 1) and sum-
ming over j we obtain

Now we take
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to obtain

I

On noting that the condition

reduces to a, which is certainly true, we obtain then (2.3) .

Corollary 2.

The above formulas follow from Theorem 2 with the values (see [4, Chap-
ter 8]) ~3  y~, o-4  ~ , ~~  so , a6  ? . They improve (1.5) and comple-
ment those furnished by Corollary 1.

4. The mean value of the Rankin-Selberg series

The arguments used in the proof of Theorem 1 and Theorem 2 are of a
general nature and can be adapted to obtain mean value results for a wide
class of Dirichlet series. Instead of working out the details in the general
case, which would entail various technicalities, we prefer to conclude by
considering two specific examples. In this section we shall deal with the
mean value of the so-called Rankin-Selberg series (see R.A. Rankin [15],
[16])

and in Section 5 we shall consider the zeta-function attached to holomorphic
cusp forms. Here as usual a(n) denotes the n-th Fourier coefficients of a
holomorphic cusp form cp(z) of weight /-. with respect to the full modular
group SL(2, Z). We also suppose that is a normalized eigenfunction
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for the Hecke operators T(n), so that a(1) = 1 and a(n) E R We have (see
P-’" r- , - - , , -

with Rankin’s classical estimate (see and

This means that analogously to (3.6) we have

for ~  1, T ~ 2T, where 1 « X  T~ and X (E [K, 2V]) satisfies
(this is the analogue of (3.3))

Then we write

with

and consider

Similarly as in the proof of Theorem 1 we find that

With the choice X = bT2, where b &#x3E; 0 is a suitable constant, we obtain



175

which easily gives then

Theorem 3. For fixed a satisfying 1  a  1 we have

Remark 4. The asymptotic formula (4.2) improves, for 1  a  1, the
result of K. Matsumoto [13] who proved

with

For -1  Q  4 our result is slightly weaker than the corresponding result
of [13], namely

but it should be remarked that (4.2) is a true asymptotic formula only in
the range 1  Q  1.

5. The mean value of the zeta-function of cusp forms

We retain the notation of Section 4 and consider (see [6]) the Dirichlet
series

which may be continued analytically to an entire function over C. In (5.1)
the arithmetic function

is the "normalized" function of cusp form coefficients. This function is

"small" , since it satisfies 3(n) « d(n) by Deligne’s classical estimate. We
shall also consider

where
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is the convolution of a(n) with itself. The mean values of F(s) and F2(s)
were considered in [6]. It was proved there that, for a fixed,

and

with

and

Note that from (5.5) and (5.7) it transpires that we can obtain a true
asymptotic formula for the fourth moment of F(a+it) for i  a  1. This

reflects the fact that we have (see [6])

only for Q 2 ~, and any improvement of the range for which (5.8) holds
would result in the improvement of the bound for K(a°;T). We shall im-
prove on (5.6) and (5.7) by proving

Theorem 4. If H(Q;T) is defined by (5.4), then for a fixed we have

Theorem 5. If K(a; T) is defined by (5.5), then for cr fixed we have

Proof of Theorem 4 and Theorem 5. The first bounds in (5.9) and
(5.10) are the analogues of (2.3) of Theorem 2 corresponding to the values
~i = 2 and ~2 = 8, which follow from (5.4) and (5.8), respectively. The
method of proof of Theorem 2 may be used, since
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Similarly the second bounds in (5.9) and (5.10) are the analogues of (2.2)
of Theorem 1 corresponding to the values #i = 4 and #2 = 1, respectively.
Namely if we define

and

then p = 4 (this corresponds to fi2 = ~ in the classical Dirichlet divisor
problem) (see [6]; this corresponds to,84 = $ in the Dirichlet divi-
sor problem for ~4(x)). Thus proceeding as in the proof of Theorem 1 and
keeping in mind again that (5.11) holds, we shall obtain the second bounds
in (5.9) and (5.10). Clearly the bounds in (5.9) and (5.10) improve (5.6) and
(5.7), respectively. Although the first bound in (5.10) holds for 2  ~  4,
it is relevant only in the range Q &#x3E; i, when 16 ( 1 - cr)/(ll 2013 8Q)  1, when
(5.5) becomes a true asymptotic formula.
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