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A note on circular units in Zp-extensions

par RADAN KU010CERA

RÉSUMÉ. Nous nous intéressons aux limites projectives des grou-
pes de Sinnott et des groupes de Washington des unités circulaires
dans la Zp-extension d’un corps abélien. Nous montrons par un
exemple qu’en général ces deux limites ne coincident pas.

ABSTRACT. In this note we consider projective limits of Sinnott
and Washington groups of circular units in the cyclotomic Zp-
extension of an abelian field. A concrete example is given to show
that these two limits do not coincide in general.

1. Introduction

For any positive integer m, let ~’~.,.L = e21ri/m and let Q(m) = be
the mth cyclotomic field. Let K be an abelian field of conductor m, i.e.,
m is the smallest positive integer such that K is a subfield of Let

C(K) be the Sinnott group of circular units of K (see [S]). It is well known
(see [L]) that this group can be defined as the intersection of the group
E(K) of all units in K and the subgroup of the multiplicative group of K
generated by -1 and by all norms (~), where 1  rim
and (a, r) = 1. Let C(K) be the group of cyclotomic units of .~ mentioned
in [W, page 143], i.e., C(K) - E(K) n C{~’’’2~ ). We shall call the latter
group the Washington group of cyclotomic units.

Now, let p be an odd prime which does not ramify in K. Let B/Q be the
cyclotomic Zp-extension of the rational numbers, i.e., Q = Bo c B1 C B2 C
... are abelian fields ramified only at p, [Bn : Q] = pn, and B U’ Bn.
Hence KB = KBn is the cyclotomic Zp-extension of K.
We shall consider the following projective limits (with respect to norms)

C’ = Zp), and C = Zp). It has been proved
in [KN] that C is of finite index in C. But there has remained an open
question whether C = ~’ in general or not. This note is devoted to the

negative answer to this question. More precisely, by an explicit construction
we shall prove the following
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Theorem. For p = 3, there is an abelian field K of degree 9 over Q such
that there is 77 = E C(KBN) and
n

Let us mention that by an easy and straightforward modification of our
construction one can get, for any given odd prime p, an example of an
abelian field of degree p2, ramified at 2p + 1 primes, whose cyclotomic
Zp-extension satisfies p I [C : C].
A similar example has been given independently by J.-R. Belliard, who

describes in [B] an abelian field K of degree p2, ramified at p + 1 primes,
and shows by means of an explicit construction in Zp-extension KB/K that
C is not a A-free A-module, where A = Zp[[Gal(KB/K)]]. Moreover, he
proves here that there exists - E C such that EP E C and - 0 C if and only
if C is not a A-free A-module. To compare these two constructions: on the
one hand our example needs more ramified primes, but on the other hand
we do not need to tensor by Zp to be able to define units rln E 
giving the norm-coherent sequence (in) E C, so - in some sense - our
example is more explicit.

Notation. Let ql, q2, .. - , q7 be different primes, all congruent to 1 mod-
ulo 9, chosen in such a way that ql ~ 1 (mod 27) and that for different
i, j E {I, 2, ... , 71 the prime qi is a cubic residue modulo qj. For each
i E {I, 2, ... ,7}, let x2 be a cubic Dirichlet character modulo qi. Let K be
the abelian field corresponding to the group of Dirichlet characters gener-
ated by X1X2X3X4X5 and x2x3x4x5xsx7. So K : i Q] = 9 and K has the
following four subfields of degree 3:

For the sake of brevity, let us write Ko = K, f o = M2M4M6?7? K5 = Q,
is == 1.

For any prime q 3/o? let Frob(q) mean a fixed Frobenius automorphism
of q on KB /Q, i.e., any chosen extension to KB of the Frobenius automor-
phism of q on the maximal subfield of KB unramified at q. Since qi is a
cube modulo folqi for any i = 1, 2, ... , 7, the previous choice can be done
in such a way that E for each i = 1, 2, ... , 7.
We shall introduce generators of For any i = 0,1, ... , 4 and

any integer n &#x3E; 0 let
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Moreover, let = -1 and

for any positive integer n. The following lemma shows that units Ei,j with
0  j  n are generated by all conjugates of the units eij, where j = 0 or
i = n.

Lemma 1. For any integer n &#x3E; 0, the Sinnott group of circular units
C(K Bn) is the Galois module generated by

Proof. Using [L], C(KB,,) is the intersection of E(KBn) and of the Galois
module D generated by -1 and by all norms where

1  r I 3n+l fOe We can write r = 3jq, where 0  j  n + 1, and q fo. Let

So, denoting B_ 1 = Q, we have n KBn = KiBj-1- Therefore

But

where q in the product runs over all primes q ( r, q f 3J fj (an empty product
equals 1). Hence D is generated by -1, by for all i = 0,1, ... , 4 and
j = 0,1, ... , n, and by

for j - 1, 2, ... , n ~- 1. If 0  j  n then

and (3’+’) = (1 - (3nH)(1 - ~3 +1 ) . Therefore .D is the

Galois module generated by - l, by Ej, j for all i = 0, 1 , ... , 4 and j E 10, ?~},
and by { 1- (3n+l )(I - ~~ +1 ) . It is well-known that all the numbers but the
last one are units and that the quotient of any two conjugates of the last
number is a unit. The lemma follows using the fact that the automorphism
sending each root of unity to its fourth power generates the Galois group
of 0

The generators described by Lemma 1 are not independent. For any
integers j &#x3E; 0 and i, l E ~0,1, ... , ,5} such that 1 = 0 or i = 5 we have the
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following relation

where q in the product runs over all primes dividing filfi. Moreover, for
any integer j &#x3E; 0 and i E 10, 1, ... , 5}

Construction. As we have already mentioned, the Frobenius automor-
phism Frob(qi) E Gal(KB/K) for each i = 1, 2, ... , 7. Moreover, qi - 1
(mod 9) implies that Frob(qi) is a cube in Gal(KB/K) - (7G3, +). There-
fore there is unique o E Gal(KB/K) such that 03 = Frob(ql)-1. Because

1 (mod 27), ~ is a topological generator of Gal(KB/K). Hence, for
each i = 2, 3, ... , 7 there is a uniquely determined 3-adic integer ai satis-
fying Frob(qi)-1 = ’Ø30i.

It is easy to see that Gal(KBn~Bn) ~ {id} is the disjoint union

Therefore

Let us consider the group C(KBn)/(C(KBn))3 written additively, where
we shall identify any unit ofC(KBn) with its image in C(KBn)/(C(KBn))3.
Therefore the identity (4) means

Let us fix n &#x3E; 2. By abuse of notation, we shall denote the restriction of ’0
to KBn again by 9. We shall apply

on (5). Since = 1, we have

It is easy to see that +’lj;203n-l is the norm operator of K Bn/ K Bn-1-
Using (6) and the norm relations (2) and (1) we obtain
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Similarly, for any i = 2, 3, 4 using (2) we have

Let be a positive integer satisfying (mod 3nZ3). Then

where

and (6) and (1) give

A similar computation gives

Putting (5), (7), (8), and (9) together, we obtain

This equality in C(KBn)/(C(KBn))3 means that there E C(KBn)
such that

Since KBn is a real abelian field, is uniquely determined by the pre-
vious identity. It is easy to see that E C(KBn-i) , E KBn-1-
Since KB,,/Q is abelian, we have E hence E Q(3n fo).
On the other hand 1Jn-1 E imphesq,,-, E f-)). But for
cyclotomic fields, the Sinnott groups of circular units satisfy the Galois
descent (see [GK]), so

This means
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Since we have

It is easy to see that for any positive integers a and b

Using the previous identities we can easily prove that the numbers aj (n) can
be replaced by a~~ in (10). Using (1) this implies that

so

Denoting 1]0 = we have proved

E C(KBn), so r~3 e To show that 11 rt it
is enough to prove that C(KB1). For this purpose we shall describe a
basis of C(KB1).

Lemma 2. There is a basis of C(KBi) consisting of
(i) 4 conjugates of each of the units ~1,1, ê2,1, e3,i, and s4,1,
and 

~ ~ 

(ii) of 2 conjugates of each of the units ê1,O, £2,0, ê3,0, é:4,0, and ~5,1’

Proof. Since

which is the number of units mentioned in the lemma, it is enough to show
that they together with -1 generate We have chosen the primes
ql , .. - , q7 in such a way that all automorphisms Frob (q7 ) act
trivially on KB1. Hence relations (4) and (2) for n = 0, 1 give -3, = 1, so
Eo,o = eo,l = 1. Because £5,0 = -1, Lemma 1 gives that the multiplicative
group, generated by -1 and by all conjugates of units mentioned in the
lemma, equals 

Let us fix any i == {I, 2, 3, 4} and consider The Galois

groups Gal(KZ B1 /Ki ) and Gal(KiB1/ B1) are groups of order 3; let p and
v be their generators, respectively. Then [L and v generate Gal(KiBi /Q),
so with r, s = 0, l, 2, is the system of all conjugates of Ei,i . Using the
trivial action of Frobenius automorphisms, (2) implies
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Similarly, (3) gives

Therefore all conjugates of £i 1 are generated by the four conjugates 
with r, s = 0, 1, and by all three conjugates of 

’

Similarly, one can show that each of the units £1,0, £2,0, £3,0, E4,0, and E5,1
has precisely three conjugates and the product of them (i.e., its absolute

norm) equals one. The lemma follows. 0

Since 1/13 acts trivially on equality (10) gives 773 = But

Lemma 2 shows that -,,l is not a cube in hence C(KB1),
which gives q ~ 
The theorem will be proved, if we show that there exist primes q1, ... , q7

satisfying all assumptions made in the first sentence of Notation. But this
can be done either by a standard technique using Tchebotarev density
theorem (e.g., see Theorem 3.1 in [R]) or just by checking that primes

satisfy all these assumptions.
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