
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

JAMES W. COGDELL
On sums of three squares
Journal de Théorie des Nombres de Bordeaux, tome 15, no 1 (2003),
p. 33-44
<http://www.numdam.org/item?id=JTNB_2003__15_1_33_0>

© Université Bordeaux 1, 2003, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_2003__15_1_33_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


33-

On sums of three squares

par JAMES W. COGDELL

RÉSUMÉ. Nous nous intéressons à la question de savoir quand
un entier d’un corps de nombres totalement réel est somme de
trois carrés d’entiers du corps, et plus généralement, s’il peut être
représenté par une forme quadratique ternaire définie positive et
entière sur le corps. Dans un travail récent avec Piatetski-Shapiro
et Sarnak, nous avons montré que tout entier totalement positif et
sans facteur carré assez grand possède une représentation intégrale
globale si et seulement s’il en est de même localement partout,
résolvant ainsi pour l’essentiel le dernier cas ouvert du onzième

problème de Hilbert. Dans cet article, nous exposons les idées de
la démonstration de ce résultat.

ABSTRACT. We address the question of when an integer in a to-
tally real number field can be written as the sum of three squared
integers from the field and more generally whether it can be repre-
sented by a positive definite integral ternary quadratic form over
the field. In recent work with Piatetski-Shapiro and Sarnak we
have shown that every sufficiently large totally positive square
free integer is globally integrally represented if and only if it is
so locally at all places, thus essentially resolving the remaining
open case of Hilbert’s eleventh problem. In this paper we give an
exposition of the ideas in the proof of this result.

The question of when an integer is representable as a sum of squares has
a long venerable history. More generally, Hilbert’s eleventh problem asks
(among other things) which integers are integrally represented by a given
quadratic form over a number field. The case of binary quadratic forms
is equivalent to the theory of relative quadratic extensions and their class
groups and class fields as developed by Hilbert. For forms in four or more
variables the situation is quite different and has been understood for some
time. The case of three variables has remained open.
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The problem of which integers in a number field k are represented by
the genus of a quadratic form is completely answered by Siegel’s mass
formula, which gives the number of solutions in terms of products of local
densities [23]. If there is only one class in the genus of q(x), then this
answers the question of representability for q. If n &#x3E; 4 and q is indefinite
at some archimedean place of k then Siegel showed by analytic methods
that a number is represented by one form in a genus iff it is represented by
all forms in the genus, thus reducing the global representability question
to local ones [24]. These results were recovered and extended to indefinite
ternary forms via algebraic techniques by Kneser [12] and Hsia [7] utilizing
spinor genera. So we will restrict ourselves to the case of positive definite
integral forms over a totally real field k. If the number of variables is
at least five, one can proceed either by analytic methods, using bounds
towards Ramanujan for Hilbert modular forms, or algebraic methods [8]
to prove that there is an effective constant Cq such that if a the

ring of integers of k, is totally positive and its norm N(a) &#x3E; Cq then a is
represented by q iff it is represented by q for every completion kv of k. When
the number of variables is four one must add a primitivity condition on the
representations, both locally and globally [8]. Recently, in collaboration
with I. I. Piatetski-Shapiro and P. Sarnak, we have established an analogue
of this result in the case of positive definite integral ternary quadratic forms
via analytic methods [3].

Theorem. Let k be cc totally real number field and let q(x) be a positive
definite integrals ternary quadratic form over k. Then there is an ineffective
constant Cq such that if a is a totally positive square free integer of k with
N(a) &#x3E; Cq then a is represented integrally by q locally integrally
represented over every completions kv of k.

The result was previously known for k = ~ by Duke and Schulze-Pillot
[6, 18].
Of special interest is the case of the ternary form + ~2 + x3

giving the result on sums of squares in a number field alluded to in the
title.

Corollary. Let k be a totally real number field. Then there is an ineffec-
tive constant Ck such that every totally positive square free integer a with
N(a) &#x3E; Ck is the sum of three integrals squares iff it is the sum of three
integral squares locally for each place v of k.

Of course over Q Legendre has given us the precise answer: a E Z is the
sum of three squares iff a is not of the form 4’~(8m + 7). Over a number
field, partial results have been obtained by algebraic methods by Donkar
[4]. His methods, when applicable, give formulas for the number of ways



35

such a can be represented but do not give the local to global result we
present here.

In this note I would like to describe our proof of this theorem in the
simplified case of k totally real of class number one.

This paper is an expanded version of the lecture I presented at the XXII
Journées Arithmétiques 2001 in Lille. I would like to thank the organizers
of JA 2001 for the opportunity to speak on this topic. I would also like
to thank my collaborators, I. I. Piatetski-Shapiro and P. Sarnak, for allow-
ing me to present this summary of our work here. In particular, I thank
P. Sarnak for reading and providing critical comments on an earlier version
of this note.

1. Theta series

We take k to be a totally real number field having class number one. Let
d = (k : Q) be the degree of 1~ over Q. We let 0 be the ring of integers
of k. Let V be a vector space of dimension three over k equipped with a
positive definite integral quadratic form q (x) . We will let L = C73 denote
the integral lattice in V. So q(x) E 0 for every x E L.
The proof we will give is analytic in nature. Hence we begin with the

theta series associated to q(x) and L, Siegel’s analytic class invariant [23],

where T . This is a Hilbert modular form of weight 3/2 for an appro-
priate congruence subgroup r c 8L2(O). Its Fourier expansion is given
by

where E Llq(x) = all [ is the representation number of a by
L.

There are two related theta series. Let Spn(L) denote the spinor genus
of L and Gen(L) the genus of L [18, 19]. (Whether we fix the lattice and
work with the genus of the form or fix the form and work with the genus
of the lattice is all the same. Here we fix the form q and vary the lattice in
its genus to conform to the work of Schulze-Pillot.) We set
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to be the weighted average over the genus of L, Siegel’s analytic genus
invariant [23], where o(M) is the order of the group of units of M, and
similarly for Spn(L)).
By the work of Siegel [23] we know that the coefficients rq(T, Gen(L))

are given by a product of local densities and is non-zero iff a is locally
represented integrally by (q, Lv) for all completions. So we need to be able
to relate rq(a, L) and rq(a, Gen (L)).
By classical results of Siegel, an algebraic proof of which can be found

in Walling [27], we know that both

and

are cusp forms of weight 3/2. Now there are two types of cusp forms of
weight 3/2. Recall that we have the Shimura correspondence between cusp
forms of weight 3/2 for F and modular forms of weight 2 for an appropriate
subgroup r’ c PGL2(O). If we denote by 53~2(r) the cusp forms associated
to theta series attached to one dimensional quadratic forms and its

orthogonal complement with respect to the Petersson inner product then

53~2(T) consists of precisely those cusp forms that lift to cusp forms in

52 (F’) [25].
Following the work of Schulze-Pillot (see [19, 20] for related results) we

can conclude that

and

Fortunately the Fourier coefficients of the forms in (r) are quite sparse.
In fact, it is known (see [7, 12]) that outside of an explicitly computable
finite number of "genus exceptional" square classes we have

So for square free a there are only a finite number of such genus exceptions
which we can avoid by taking ~x sufficiently large. Hence for all but finitely
many square free cx we have

where a(a) is the a-Fourier coefficient of a cusp form f E Bgj2(r).
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From the computation of the local densities (see [19]) one can conclude
that for a locally represented a one has an ineffective lower bound

with the implied constant independent of a. The ineffectivity comes from
an application of the Brauer-Siegel theorem and is the source of the inef-
fectivity of our theorem. Thus our result will follow if we can produce an
estimate for the Fourier coefficients a(a) of half-integral weight forms in

Sg/2 (r) of the form

for some fixed 6 &#x3E; 0. This program was carried out in the case of k = Q
by Duke and Schulze-Pillot [6] with a key ingredient being estimates on
the Fourier coefficients of half-integral weight forms due to Iwaniec [9] and
Duke [5].

2. Fourier coefficients and L-functions

By now, a common way to estimate Fourier coefficients of modular forms
of half integral weight is to appeal to Waldspurger’s formula [26] relating
these coefficients to central values of the L-functions of the Shimura lift.

Waldspurger established this relation only for k = Q but recently his re-
sult has been generalized to totally real fields by Shimura [22] using the
Shimura correspondence and by Baruch and Mao using Jacquet’s relative
trace formula [I]. We will use Baruch and Mao’s version of this relation.

Note that it suffices to prove our estimate for Hecke eigenforms since
there is always a basis coming from such. Let if denote the cuspidal repre-
sentation of SL2 (A) generated by our f E Fix an additive charac-

ter 1f; of kBA such that 1f = 8(if,1/J) is the Shimura lift of 7r to a cuspidal
representation of PGL2(A). If a is a square free integer of O and we let

then we know [25]

where Xa is the quadratic character associated to the extension 
Classically xa is a ray class character mod (a). Let cp be the new form on
S5d associated to the new vector in the space of 7r and let a(a) denote its
a-Fourier coefficient.

Let S denote the finite set of places of k where 7r, 7i-, or 1/J is ramified.
Let Soo denote the archimedean places of k and let Sa denote the set of
finite places v where 0. Let
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be the finite (or classical) L-function of 7r. Then the formula of Baruch and
Mao [1] can be stated as:

where the are certain local constants given as ratios involving local
norms, local Fourier coefficient, and local L-values. Similar formulas had
been given earlier by Shimura [22]. For v 0 S Baruch and Mao can explicitly
compute the c, (a) and for v E S, a finite set of places, they can estimate
them as a varies. As a consequence one gets an estimate

with the implied constant independent of a.
Note that the convexity bound on L(l, 7r (9 as cx varies (see [10]) is

which would give

This is better than the Hecke bound, but not sufficient for our purposes. We
must beat the convexity bound to obtain a first non-trivial estimate towards
Ramanujan for the Fourier coefficients of half-integral weight forms over a
totally real number field.

3. Subconvexity

Let 1r be a cuspidal automorphic representation of PGL2 (A) correspond-
ing to a holomorphic Hilbert modular form of even weight k = (1~, ... , k) .
Let W(-r) be the associated new form. Let Xi be any ray class character
modulo an ideal a. We will let Xl also denote its associated idele class char-
acter. The key to our proof of the stated theorem, and a result of interest
in its own right, is the following breaking of convexity for 0 Xl) in
the conductor aspect as X, varies.

Theorem. We have

2uith the implied constant depending on E but independent of a.

Here again by L(s, 7r (8) Xl) we mean the classical (or finite) L-function

If we apply this result to our previous situation with X, = xa then this
will complete the proof of our first Theorem.
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We would now like to describe the proof of this Theorem, still in the case
of class number one. We will work with the L-function in its additive form.
To this end, we write

where tl+ is the group of totally positive units in U = This is related
to the Fourier expansion of cp

where dK is the different of K, by = 

We first use the approximate functional equation for L(s, (see for
example [13, 17]). This gives an expression of the form

as two sums of length essentially X, where we have taken X = N(a). Here
Vi and V2 are functions having Vi(O) = 1, smooth, and rapidly decaying at
infinity. By using a smooth dyadic subdivision it suffices to estimate sums
of the shape

where now W is smooth of compact support say in the interval (.1, 2), so
concentrated near 1. There are approximately log(N(a)) such sums up
to N(a). The crucial contribution for us will be again when X is of size
N(a). Note that the presence of the cutoff function W in J(xi) forces
Q - so that if we set WV(x) = VX W (x) we have W is still
smooth with compact support in (~,2) and

where

The sum ’9(xi) is the crucial sum we will have to estimate.
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Our estimate will proceed by placing S(Xl) into a family and then using
arithmetic amplification. For a general exposition of these techniques one
can refer to the talk of P. Michel at the XXII Journees Arithm6tiques 2001
[13]. To get an appropriate family we need to work with a sum over the
full set of totally positive integers. To this end we let F be a smoothed
characteristic function of a fundamental domain for the action of the totally
positive units U+ on the hyperboloid defined by = 1 in k~ = Rd+
which satisfies

for every x E k+ with N(x) = 1. We extend this to all totally positive u
by setting F(u) = F u Then we can write

Note that both W and F act as cutoff functions - W cutting off in 
and F cutting off in the "argument" of p.
We now place S(Xl) in a family. We do not use the family of all S(x)

where X runs over all ray class characters mod a, which might seem more
natural but could be too sparse. Indeed, the image of U+ in (O/a)" can be
large [15]. Instead we use the family of all S(X) as X runs over all characters
of the group (0/a)x. Let C(a) denote this group of characters. Then we
will consider the average value of in this family E IS(x)12. Note

C(a)
that the length of the sum is IC(a)l which is given by the generalized Euler
totient function ~(a) and is trivially bounded by N(a) and is at least of
size unlike the group of ray class characters.

In addition to averaging over this family, we will utilize the technique of
arithmetic amplification. To this end we will take an auxiliary parameter
M which will be of size X6 with 5 small. Its precise value will be determined
in the course of the argument. We take a set fvl of totally positive integers
which should be relatively prime to a and all have norm bounded by M.
There should be roughly M of them and they should be balanced, in that
for the archimedean embeddings v each vv should be roughly of the same
size. For each v we take a coefficient c(v) such that I = 1. We then
consider the amplified sum
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To obtain an estimate on our original S(Xl) we will take arithmetically
defined coefficients c(v) = Xi 1(v) thus amplifying the term IS(XI)12 by a
factor of M2.

To utilize A, we expand the norm squares, interchange the order of sum-
mation, and perform the character sum over C(a). This yields

We split this sum into two terms, the diagonal D and the off diagonal
OD, where

and

The diagonal term is estimated simply using the Ramanujan bounds for
the known in this case by Brylinski and Labesse [2], namely I  

and then analysing the size of the sums determined by the cutoff
functions. These yield

The off diagonal term is more interesting. Let us write it as

where in B (v1, v2, h) we have resummed over ~~ which only has an effect on
the cutoff functions F. The terms v2, h) are estimated using several
variable Mellin inversion. We can write
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for suitably large a where s = (s1, ... , sd) E cJ Q D(s, vl, v2, h) is a type of
Dirichlet series

where we have used a multi-index notation, so t-s = where

.~1, - .. , .~d are the images of under the d embeddings of k into R This
Dirichlet series carries the arithmetic information in B(vl, v2, h). The func-
tion H(s) is essentially the Mellin transform of the cutoff functions.

H (s ) is relatively simple to handle. It is entire, rapidly decreasing in
and can be estimated by

where as is common we have written sj = aj + itj.
The interesting bit of the estimate is in the Dirichlet series D(s, vl, v2, h).

It is essentially a Dirichlet series formed with products of shifted Fourier
coefficients. Selberg has shown how to approach such Dirichlet series via
Poinear6 series [21]. To this end, let us set g(T) = Then
there is a Poincax6 series Ph(T, s) such that when we compute the Petersson
inner product of g with Ph(s) we find

One now expands this inner product spectrally via Parseval’s formula. If
we let fojl be a suitable orthonormal basis of Maass cusp forms then

where c(s) is a similar expression involving the continuous spectrum and is
estimated in a similar manner. Sarnak has developed a general method for
estimating (g, CPj) (see for example [16]) which in this case yields

where rj = (rj,l, - - - , rj,d) is the spectral parameter of Oj - The term

(0j, Ph (s)) is expressed in terms of the h-Fourier coefficient pj (h) of ~~ and
the associated archimedean r-factors involving the spectral parameters r~.
We then estimate these using the bounds towards Ramanujan in both the
archimedean and non-archimedean aspects due to Kim and Shahidi [11].
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The sum is then controlled using Weyl’s law. A similar type of estimate
can be found [14] and in the appendix of [17].

In the final analysis, these estimates give that the Dirichlet series

has an analytic continuation to the domain Re(sj) &#x3E; 2 + 1
and in this region satisfies

where the hj are the images of h under the d embeddings of k into IR. Note
that the ) in the boundary of the domain of continuation comes from the
archimedean estimates towards Ramanujan while the ) in the exponent of
N (h) is from the non-archimedean bound towards Ramanujan of Kim and
Shahidi.

Returning now to our expression of B(V1, V2, h) in terms of the inverse
Mellin transform, we can now shift the lines of integration to Re(sj) =
1/2

which in turn results in

When we combine D and OD and choose M = X6 to give them the
same order of growth in X we find that M = X7~65. Now taking X = N(a)
to get the dominant term from our partition we get an estimate of our
amplified sum

We now take c(v) = to amplify the term we are interested in.
Then estimating this one term by the entire sum we find

or

which finally gives

as desired.
Note that to our knowledge this estimate is better than the current best

bounds even in the case k = Q.
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