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Modularity of Galois representations

par CHRIS SKINNER

RÉSUMÉ. Dans cet article, nous donnons une interprétation en
termes de théorie de Galois des représentations galoisiennes p-
adiques de dimension 2 associés aux formes modulaires holomor-
phes de Hilbert qui sont des "new forms" . L’article suit pour
l’essentiel l’exposé des Journées Arithmétiques de 2001.

ABSTRACT. This paper is essentially the text of the author’s lec-
ture at the 2001 Journées Arithmétiques. It addresses the prob-
lem of identifying in Galois-theoretic terms those two-dimensional,
p-adic Galois representations associated to holomorphic Hilbert
modular newforms.

By the work of many mathematicians (Eichler, Shimura, Deligne,
Carayol ... ) it is known that if f is a holomorphic Hilbert modular new-
form over a totally real field F of degree d and if the weight (k1,... , kd)
of f is such that the ki’s are greater than zero and all have the same
parity, then for each rational prime p there is a continuous representation

Gal(F/F) 2013~ GL2 (Qp) such that trace (frob f) = for almost all

primes t of F, where is the eigenvalue of the action on f of the usual
Hecke operator Tt. Conversely, it is expected that any "reasonable" repre-
sentation p : Gal(F /F) - GL2(Qp) should be isomorphic to some (see
the Conjecture in 91 below). The first significant result of this type was
obtained by A. Wiles [Wl] for the case F = Q. This paper discusses efforts
and results extending those in Wiles’ ground-breaking work. Emphasis is
placed on loosening hypotheses (e.g., replacing Q with an arbitrary F or
allowing reducible residual representations).

1. Introduction

This lecture focuses on modularity in the context of Galois represen-
tations. More to the point, it discusses various recently-proven results
pertaining to the problem of intrinsically characterizing the p-adic Galois
representations associated to automorphic representations.

Manuscrit requ le 30 janvier 2002.
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We begin by recalling some of the properties of the Galois representa-
tions associated to holomorphic Hilbert modular newforms. Suppose that
F is a totally real number field of degree d and that f is a holomorphic
Hilbert modular newform of level n, Nebentypus x, and weight (kl, ..., kd)
with each ki &#x3E; 1 and all having the same parity. For each prime ideal i of
F let c¡,(f) be the eigenvalue of the usual ~h Hecke operator T~ acting on f
(so Ttf = c, ( f ) f ) . It is known by the work of many mathematicians (Eich-
ler, Shimura, Deligne, Carayol, Wiles, Taylor, Blasius, Rogawski, Tunnell,
Jarvis...) that for each rational prime p, upon fixing an embedding Q ~ Qp
(so we may view the as elements of Cap), there is a continuous rep-
resentation

such that

(i) is irreducible,
(ii) for all complex conjugations c (i.e., is odd),
(iii) = xem, m = 11,
(iv) trace = ~(/), 

’

In (iii), we view X as a Galois character via class field theory, with the
reciprocity map normalized so that arithmetic Frobenii (frob l) correspond
to uniformizers. Also, - is the usual p-adic cyclotomic character.

The results described herein are mostly concerned with the following
problem.
Problem. Intrinsically characterzze the set MgFp of continuous repre-
sentations p : Gal(F/F) - such that for some Hilbert
modular newform f ,

By an intrinsic characterization we mean a characterization in terms of the
Galois-theoretic properties of the representation (such a characterization is
found in the conjecture stated in 31 below).
The celebrated proof of the modularity of elliptic curves defined over Q (a

consequence of the main results of [Wl] , [TW] and their extensions in [D l] ,
[CDT], and [BCDT] ) entailed showing that the representation attached to
the Tate module for some prime p (and hence for all primes) for such a
curve is contained in This result has been amply discussed else-
where and was a topic of a lecture by B. Conrad at the previous Journees
Arithmétiques. The organizers of the current conference requested that the
author discuss other aspects of efforts to resolve the above problem, so this
is the last that will be said about elliptic curves until the final section.

The organization of the rest of this lecture is essentially as follows. Since
it is often easier to couch results in terms of automorphic representations
(and results in the literature are often expressed in such terms), we first
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reformulate the properties of p f,p in these terms and then go on to state a
conjectural resolution of the problem. Then the related notion of a residual
representation is introduced. This is done in §1. In §2 we summarize the
strategy introduced and successfully implemented by A. Wiles to prove
many cases of the conjecture is summarized. In §3 we discuss results of
K. Fujiwara and of Wiles and the author in the case where the residual
representation is irreducible but F may not be equal to Q. In §4 the work
of Wiles and the author in the case where the residual representation is
reducible is described. Finally, in §5 we mention a few things that the
constraints of space and time (and of the author’s understanding!) have

forced us to omit from the preceding sections.

2. Automorphic representations and Galois representations

To simplify matters, fix once and for all an embedding Q y C and
compatible embeddings Q Y C~~ and Qi y. C for each prime R. Let F be
a totally real number field of degree d with ring of integers OF- Suppose
that 1T = 01Tv is a cuspidal automorphic representation of GL2/F such that
(i) if vloo then 7rv is a discrete series representation with weight 1

and central character ’lfJ7rv satisfying 1/J7rv ( -1) = (20131)~,
(ii) the kv’s, all have the same parity,
(iii) the central character of 7r is X7r1 . 1~-1 where X7r is finite and m =

1}.
There is a one-to-one correspondence between such representations and the
Hilbert modular newforms as in the introduction.

For each prime p there is a continuous representation

such that

{1 i i 1 
(i) is irreducible,

where Wv is the Weil group at the finite place v and is the repre-
sentation of Wv associated to 7r v via the local Langlands correspondence
(cf. [Ta, Theorem 4.2.1]), which we normalize so that if 7r, = 1r(X1, ~C2)
is unramified then . 1;1/2 e ~2 1 I . ~~ 1/2. ’ If x corresponds to
the newform f , then is just properties (ii), (iii), and (iv) of pj p
following from property (ii) of (1.1). 
One can also say something about P1r,pIDv for where Dv is a de-

composition group at v, namely that in many cases (and conjecturally in
all)

(1.2) if vlp then is potentially semistable.
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The definition of "potentially semistable" is fairly technical (cf. [Fo]) but
reflects properties of p-adic representations that appear in the cohomology
of algebraic varieties. (That does when 2 is essentially the
content of [BR]).

The problem from the introduction is thus to characterize the continuous
representations p : Gal(F/F) - GL2(Qp) such that for some 7r. A

guess at a solution can be obtained by extracting as many Galois-theoretic
properties as possible from (1.1) and (1.2) and then positing that 
consists of all p-adic representations having these properties. This leads to
the following conjecture (which is essentially Conjecture 3c of [FoM]).

Conjecture. Let be the set of Tate twists of representations in

MgF,p. The set consists of the continuous representations p :
Gal(F/F) -+ GL2(Qp) such that
(i) p is irreducible,
(ii) p is odd,
(iii) p is unramified at all but finitely many places,
(iv) for all vlp, plDv is potentially semistable.

In order to state various theorems in the direction of the above Con-

jecture, we need to introduce the notion of a residual representation and
discuss some specific instances of potential semistability.

Suppose p : G - GLn(Qy) is a continuous representation of a compact,
Hausdorff group. A simple measure-theoretic argument shows that some
conjugate of p takes values in GLn (O) with 0 the ring of integers of some
finite extension of Qp containing the eigenvalues of all elements of p(G).
Replacing p with this conjugate, we define the residual representations p
of p to be the semisimplification of the representation into GLn(k) , k the
residue field of 0, obtained by reducing the matrix entries of p modulo
the maximal ideal of 0. This is well-defined up to equivalence and up to
extension of the field k.

Suppose p : Gal(F/F) -+ GL2(Qp) is continuous. For the rest of this

lecture we will be concerned with two possibilities for plDv whenever vlp.
The first will be that

- ( X2 ) , X2 I has finite order,

Iv being an inertial group at v. In this instance p is said to be nearly
ordircary at v. We will say that such a p is Dv -distinguished if X2~
From work of Wiles [W2] (see also [H2]) it follows that if 7r = 07rv is such
that the k", v I oc, are all equal and that for all v ip, ~2) is either a
principal series representation or a special representation with = I Iv
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satisfying is a unit in the ring of integers of Qp (A, a fixed
uniformizer of Op,v), then p~,p is nearly ordinary at 

The second is that

plDv is the extension of scalars of a representation
arising from a p-divisible group over OF,v.

In this instance p is said to be flat at v. Note that p can be both nearly
ordinary and flat at v. From work of Carayol and Taylor (see [T]), it follows
that if x = 07r, is such that kv = 2 for all vloo and 7rv is unramified for all
vlp, then is flat at all vip if either the degree of F is odd or if is
irreducible. 

’

I can now state the first significant results in the direction of the Con-
jecture. These were obtained by Wiles [Wl], [TW] and Taylor and subse-
quently refined in [Dl] to yield

Theorem 1 ([Wl],[Dl]). Suppose p is an odd prime. If p : Gal(Q/Q) -
GL2(Qp) is a continuous representation such that
(i) p is irreducible and unramified at all but finitely many primes,
(ii) p is odd,
(iii) det p ~ with X finite and 1,
(iv) p is either flat at p or nearly ordinary at p and Dp-distinguished,
(v) is irreducible,

(vi) for some 7r,
then p E 

(Note: hypotheses (iii) and (iv) ensure that p is potentially semistable.)
Since the appearance of [D l] other refinements and generalizations of this

theorem have appeared, most notably in [CDT], [BCDT], and [Di], but to
simplify both notation and statements we state only the theorem above.

Subsequent efforts have also gone a long way towards allowing Q to be
replaced by a totally real field F in Theorem 1 and towards loosening con-
dition (v). In order to explain these efforts and the obstacles encountered,
we first recall the strategy behind the proof of Theorem 1.

3. The strategy (very briefly)
Suppose p is an odd prime and suppose p satisfies the hypotheses of

Theorem 1. Replace p by a conjugate taking values in some GL2(O) as was
done to define p. Let k be the residue field of 0.

Step 1. Formulate deformation problems



372

By an 0-deformations of ‘p we mean an equivalence class of continuous
representations a : Gal(Q/Q) 2013~ A a complete local Noetherian
0-algebras with residue field 1~ and maximal ideal ny, such that p mod mA =
P.

Let Eo be the set of primes at which p is ramified. Given a finite set of
primes E D Eo, we say that an 0-deformation a is of provided
a is unramified away ftom £ U {p},
. if p is nearly ordinary at p ( WI ;2) with ~2 = X2?
. if p is flat at p, but not nearly ordinary, then for all n, a mod mn A arises
from a finite flat group scheme over Zp with an A-action.

Clearly p is of type-E for any E containing all the primes at which p is
ramified.

We call an 0-deformation a minimal if

. cr is of type-Eo with the slightly stronger condition that
o if p is flat at p, then for all n, d mod m~ arises from a finite flat group
scheme over Zp with an A-action.

~ ~ is "minimally ramified at each t E Eo."
The third condition (which we do not make precise) is such that the rami-
fication is essentially the same as that of ptDt8

From the theory of deformations of Galois representations as introduced
by Mazur [MI], [M2] it follows that there are universal 0-deformations

PE : GL2(RE) and pmin : Gal(Q/Q) ~ GL2(Rmin)
of type-£ and minimal, respectively. The universality is such that if a is
any 0-deformations of type-E into GL2 (A) then there exists a unique map
RE -7 A of local 0-algebras such that a is obtained by combining this map
with ps, and similarly for minimal deformations.

Step 2. Fznd some modular deformations
Let flr and Hmin be the sets of cuspidal automorphic representations

,7r such that is isomorphic to an (9-deformation that is of type-£ or
minimal (with scalars extended to of course), respectively. Let T~ be
the 0-subalgebra of TI7rEIIE Qp generated by Ti = 
e V E U {p}. Let Tmin be defined similary but with TIE replaced by Ilmin ·
Then both TE and Tmin are complete, local Noetherian 0-algebras with
residue field 1~. When p is nearly ordinary at p but not flat, then Tr
is a nearly-ordinary Hecke ring in the sense of Hida [HI] and hence 3-
dimensional. Otherwise these rings are finite 0-algebra. That the set

nmin is non-empty (and so Tmin and Ts are non-zero) is a consequence
of hypothesis (vi) of Theorem 1 and the proof of Serre’s epsilon conjecture
(see [D2]).
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There are 0-deformations

of type-E and minimal, respectively, such that

and

Thus there are surjective maps

coming from the universality of lR and Rmin (with surjectivity coming
from (2.1a,b)).
Step 3. Prove that Pmill is an isomorphisms

This is essentially done by realizing both Rmln and Tmin as quotients of
the same power series ring by the same ideal, at the same time showing that
they are also both complete intersection rings. The power series rings and
the quotient maps are obtained by "patching" together various quotients
of auxiliary deformation rings.

Step l~. Deduce from Step 2 that OE is an isomorphism
This is done by comparing two numerical invariants. By extending 0 if

necessary, we can assume that there exists a 7r such that p~.~p comes from a
minimal deformation into GL2 (O) (i.e, is isomorphic to such a representa-
tion with scalars extended to This gives rise to maps

as well as maps

Note that 9min = Wmin 0 9r = ~~ , and and 0r factor through
the natural surjective maps To - Tmin and Rr - Rmin, respectively. Put

The isomorphism of Step 3, being an isomorphism of complete intersection
rings, implies (cf. [DRS]) that

That OE is an isomorphism would follow from

To establish (2.3) one needs to give an upper bound on the difference of
the left hand sides of (2.2) and (2.3) and a lower bound on the difference
of the right hand sides and hope that these bounds are the same. The left
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hand sides are orders of global Galois cohomology groups, but their differ-
ence is bounded from above by a product of orders of some local Galois
cohomology groups that can be easily computed using local Tate duality.
The right hand sides essentially measure congruences between cuspforms
and the difference between the two sides can be bounded below by general-
izations of Ribet’s methods (see [Wl, Chapter 2]). This last step requires
some technical results on the injectivity of various cohomology groups of
congruence subgroups and their freeness over the Hecke rings. This latter
result is a consequence of the "multiplicity one" result in Chapter 2 of [Wl]
(nowadays it can be proven in other ways - but that’s the next section).
Step 5. Deduce that p is modular

Suppose £ contains all the primes at which p is ramified. The map
0 corresponding to p via the universality of RE sends Ti to

tracep(frobt) for all £ g E by (2.1b). From this one easily deduces that
for some x E TIE (in the nearly ordinary case one needs the main

results of 

4. Residually irreducible representations over totally real fields

About a year after the publication of [Wl], K. Fujiwara released a
preprint [Fl] that generalized much of Steps 1-3 of the preceding strat-
egy to totally real fields.

Theorem 2 ((F1~). Suppose p is an odd prime and F is a totally real field.
If p : Gal(F /F) - GL2(Qp) is a continuous representation such that
(i) p is irreducible and unramified at all but finitely many places,
(ii) p is odd,
(iii) det p = XEm with X finite and m &#x3E; 1,
(iv) either p is totally unramified in F and p is fiat at all vlp or p is not

flat at any vip but is nearly ordinary and Dv -distinguished at all vip,
(v) irreducible,
(vi) p=p~,p for somme 7r such that P7r,p comes from a minimal deformation

of p,
(vii) p comes from a minimal deforrnation of p,
then p E 

Actually, Fujiwara proves a stronger result. In particular, he proves a
result analogous to Step 3 above: he identifies a deformation ring with a
Hecke ring.

Step 1 of the strategy sketched in §2 generalizes to the setting of Theorem
2 without any difficulty. Step 2 also generalizes, but we also need to know
that TImin is not empty. This is ensured by hypothesis (vi) of Theorem 2
which is much stronger than the corresponding hypothesis of Theorem 1.
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A stronger hypothesis is needed since we do not have a version of Serre’s
,,-conjecture for totally real fields (but see [J], [Ra], and [F3] for progress
towards such).

One of the most significant new ideas in [F1] comes in generalizing Step
3. The argument in [TW] relies on the fact that certain Tmin-modules are
free. This fact is proven in by a delicate geometric argument that
does not seem to generalize to a general totally real field. But Fujiwara
discovered that by "patching" both modules and rings he could simulta-
neously prove that Rmin£fTmin and that the Tmin-modules are free (a fact
which is important for Step 4). This was independently discovered by F.
Diamond [D3].

Step 4 has yet to be completely generalized, whence hypothesis (vii) of
Theorem 2. However in [F2], a refinement of ~F1~, Fujiwara has made great
progress towards doing so.

Some of the problems encountered in attempting to generalize the strat-
egy can be avoided if one is content to merely prove p E M!gFp and not

This is thanks to Langlands’ results on the image of solvable
base change which imply that p E if p E MQL,p for some finite,
totally real extension L of F having solvable normal closure over F. This
can be exploited as follows. The main result of [SW3] essentially asserts
that p being irreducible combined with for some 7r such that p~~p
comes from a deformation that is minimal at p (meaning that it satisfies
the conditions of a minimal deformation for all but not necessarily at
other places) implies hypothesis (vi) of Theorem 2 over some extension L
of F as above. Combining this with Fujiwara’s results and the observations
about base-change should yield the following theorem.

"Theorem 3" . Suppose p is an odd prime and F is a totall y real field. If
p : Gal(F /F) - GL2 (Qp) is a continuous representatzon such that
(i) p is irreducible and unramified at all but finitely many places,
(ii) p is odd,
(iii) det p = X£m wzth x finite and m &#x3E; 1,
(iv) either p is totall y unrarrtified in F and p is at all vip or p is not

flat at an y but is nearl y ordinary and Dv -distinguished at all vip,
(v) irreducible,
(vi) for some 1f such that comes from a deformation of p that

is minimal at p, 

then p E 

We use "should" and put quotes around the label because a proof has
not yet been written down.
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Exploiting a similar observation Wiles and the author were able to loosen
hypothesis (v) of Theorem 1 in some cases.

Theorem 4 ([SW4]). Suppose p is art odd prime and F is a totally real
field. If p : Gal(F /F) - GL2(Qp) is a continuous representation. such that
(i) p is irreducible and unramified at all but finitedy many places,
(ii) p is odd,
(iii) det p = XE’ with X finite and 7rt &#x3E; 1,
(iv) p is nearly ordinary at v and Dv-distinguished for all vip,
(v) p is irreducible,
(vi) for soyne 7r such that is nearly ordinary at each vip and
X

then p E MgF,p.
The condition of being X2-good is that if X2*,~, ) then

with ’l/J2,v = X2,v for all vlp. (This is an unnecessary hypothesis if F = Q
or if no is split.)
The proof of Theorem 4 is an adaptation of the methods employed in

[SW2] to handle cases where p is reducible, so we will reserve comments for
that case, which is discussed in the next section.

5. Residually reducible representations
So far all the results discussed have included the condition that p be ir-

reducible. What about the case where p is reducible? Such representations
were the focus of [SW1] and [SW2]. In [SW1] some special cases where
one could identify the deformation rings with Hecke rings were examined;
roughly the cases where p = 1 EÐ X and there is a unique extension of 1 by
X. A different tack was taken in [SW2] that yielded the following theorem.

Theorem 5 ([SW2]). Suppose p is an odd prime and F is a totally real
field. Suppose also that p : Gal(F/F) - is a continuous repre-
sentation. If
(i) p is irreducible and unramified at all but finitely many places,
(ii) p is odd,
(iii) det p = with X finite and 7n &#x3E; 1, _

(iv) p = Xl EÐ X2 and (X1/X2)BDv ~-‘ 1 for all vip,
(v) for dll vlp, I ’~i," * J, X2, dnd has finite

order, 
(vi) F(xi /x2) is abelian over Q, _

then p E M9F,p.
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This actually follows from a theorem for general F that requires the
existence of solvable extension of (which is the splitting field over
F of the character Xl/X2) whose class group has p-rank relatively small in
comparison to its degree. When F(Xl/X2) is abelian this is known thanks
to a theorem of Washington [Wa].
We now sketch the main ingredients that go into the proof of Theorem 5.

We assume p satisfies the hypotheses of Theorem 5. Replacing p by its
twist by the Teichmuller lift of x21, we can assume

1. Deformation rings
For any finite set E of finite places of F containing all those dividingp and

all those at which X is ramified, let G~ be the Galois group of the maximal
extension of F unramified outside of E and the places above infinity. Let

where the maps are the restriction maps. For each 0 ~ c E Hj there is a
non-split representation p, Gal(F/F) -+ GL2 (k) such that

~ Pc is unramified at all finite places not in E,
~ PC ( 1 *) with c being the cohomology class associated to *.
~ v = aC E GL2 (k) for all 

We will say that an 0-deformations cr of Pc is of type-(c, ~) if

is unramified at all finite places not in E,

,v * with 1 v = x for all v 1 p.2,v ,

There is a universal deformation Gal(F /F) - of type-
(c, E).
2. Hecke rings

Define TE and ~’v (v a finite place not in E) as in Step 2 of §2, but now
let Ms be the set of 7r’s such that p,p comes from a deformation of type-
(c, E) for some 0 c E Unfortunately, in general there is no longer a
natural representation into Essentially this is because dimk HE
can be bigger than one. However, one does have a pseudo-representation
into Ts.

3. Pseudo-deformations

By an (C~-) pseudo-deformation of type-E we mean a complete local Noe-
therian (9-algebra A with residue field k and a triple 4&#x3E; = (a, d, x) of con-
tinuous maps a, d : Gj - A and x : Gs x Gr - A such that
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and some other equally illuminating relations (see Section 2.4 of [SW2]).
Essentially these capture the traces of 0-deformations of any pc. If

is an 0-deformations of some Pc (suitably normalized with respect to some
fixed complex conjugation), then

defines a pseudo-deformation of type-E. In particular, the universal defor-
mation Pc,E determines a pseudo-deformation 0,,E of type-E.

It turns out that there is a universal pseudo-deformation of type-E, call it
(RPZ’, OP,’). Also, there is a pseudo-deformation iod dmod, xffiod)
into TE such that

Thus there are maps

coming from the universality of 

4. Pro-modular primes

We define a prime p of Rc,E to be pro-modular if there exists a map
0 : Tj - Rc,E/P such that

where 7rp is the natural surjection - In [SW2] we show that
under suitable hypotheses every prime of each Rc,’E is promodular. This
is done by a delicate induction argument including a generalization of the
strategy sketched in §2.

5. Finishing up
To show that p E we first note that we may assume that p is a

deformation of type-(c, ~) for some c. Then it follows from Step 4 that the
kernel of the corresponding map -7 O is pro-modular. From this and
(4.1) and (4.2) one can deduce that there is a map T~ ~ ~ such that fiv
maps to trace p(frob v ) for And from this it follows that 
for some 7r just as in Step 5 of §2.
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6. Odds and Ends

In addition to the results high-lighted above, there have been a number
of other refinements, generalizations, and additions to the circle of ideas
that started with (W1~. We briefly discuss a few.

p = 2. M. Dickinson [Di] has begun to remove the condition that p be
odd.

Artin’s Conjecture. This Artin’s Conjecture is that the Artin L-function
attached to an irreducible Galois representations Gal(Q/Q) - GL2(C)
has an analytic continuation to the whole complex plane. The ground-
breaking work of Langlands and Tunnell in the case where the image of this
representation is solvable played a fundamental role in [Wl] and subsequent
work. This in turn has led to some partial results for the last remaining case
(when the projective image is icosahedral). See [BDST], [BT] for example.

The most spectacular application of the results stemming from
[Wl] has been the proof that all elliptic curves over Q are modular. While
not all elliptic curves (over a number field) are expected to be modular (in
the sense of being a quotient of the jacobian of a modular curve), there is
a class that is: the Q-curves. An elliptic curve over a Galois extension is
called a Q-curve if it is isogeneous to all of it’s Galois conjugates. In [ES]
results mentioned in previous sections are used to prove the modularity of
many such curves.

n &#x3E; 2. There has also been effort to generalize the aforementioned theo-
rems by replacing GL2 with GLn and 7r with an automorphic representation
on Some partial success has been achieved by M. Harris and R.
Taylor. Generalizing all the steps in §2 poses series technical difficulties,
not the least of which is finding the Galois representations associated to
the 1r’S on 

Alternate approaches. C. Khare and R. Ramakrishna (unpublished)
have developed an alternate approach to identifying deformation rings with
Hecke rings (and thereby establishing modularity) that yields many cases
of Theorem 1. Their approach is fairly different, and among other things
avoids the "patching arguments" usually employed in Step 3 of §2. To do
justice to their novel ideas would really require another lecture.
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