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Notes on an analogue of the Fontaine-Mazur
conjecture

par JEFFREY D. ACHTER et JOSHUA HOLDEN

RÉSUMÉ. On estime la proportion des corps de fonctions qui rem-
plissent des conditions qui impliquent un analogue de la conjec-
ture de Fontaine et Mazur. En passant, on calcule la propor-
tion des variétés abeliennes (ou Jacobiennes) sur un corps fini qui
possèdent un point rationnel d’ordre 

ABSTRACT. We estimate the proportion of function fields satis-
fying certain conditions which imply a function field analogue of
the Fontaine-Mazur conjecture. As a byproduct, we compute the
fraction of abelian varieties (or even Jacobians) over a finite field
which have a rational point of order 

1. Introduction

The paper [10] discusses the following conjecture, originally stated by
Fontaine and Mazur in [8]:

Conjecture 1.1 (Fontaine-Mazur, as restated in [1]). Let F be a number
field and i any prime. There does not exist an infinite everywhere unram-
ified Galois pro-i extension M of F such that Gal(M/F) is uniform.
The definitions of powerful and uniforin are taken from [6]:

Definition. Let G be a pro-I group. G is pozverful if t is odd and G / Gl
is abelian, or if i = 2 and G/G4 is abelian. (G’~ is the subgroup of G
generated by the n-th powers of elements in G, and Gn is its closure.)

Definition. A pro-i group is uniformly powerful, or just uniform, if (i) G
is finitely generated, (ii) G is powerful, and (iii) for all i, 

[G : 
The paper [10] then raises the following question:



628

Question 1.2. Let F be a function field over a finite field ko, and t a prime
invertible in ko. Let = Fki- be obtained by taking the maximal pro-i
extension of the constant field. Does F satisfy the following property?

Let F’ be any non-trivial subextension of
Foo/ F, and M be any infinite unramified pro-

(FM) t extension of P. If M is Galois over F and
M does not contain Fao , then Gal(M/F’) can-
not be uniform.

(See [1] for a discussion of the relationship between the conjecture as
phrased here and the conjecture as originally given.)
The general answer to this question is in fact negative, as shown by

examples due to Ihara [11] and to Frey, Kani, and V61klein [9]. In fact,
there is reason to believe that the correct analogue of the Fontaine-Mazur
Conjecture will be found not in questions related to [10] but in work related
to that of de Jong [3].

Nevertheless, results of [10] answer the above question acrmatively in
a large class of situations (see 4.1 below). Since a great deal of effort has
been put into constructing fields which do not satisfy (FM), we would like
to know if they are in fact common, or if they are rather rare. The present
paper will attempt to quantify in some way the proportion of fields F which
satisfy (FM).
The strategy is simple enough. The aforementioned paper [10] pro-

vides conditions on F (such as the absence of an t-torsion element in
the class group of F; see 4.1) which force an affirmative answer to the
question. These conditions may be formulated in terms of the action of
Frobenius on the t-torsion of the Jacobian of the smooth, proper model
of F. Equidistribution results for t-adic monodromy imply analogous re-
sults for mod I monodromy, and show that Frobenius automorphisms are
evenly distributed among GSp2g(IF/,); counting symplectic similitudes then
finishes the analysis. As a pleasant side effect, we calculate the proportion
of abelian varieties over ko with a ko-rational point of order t.

Section 2 reviews work of Katz on equidistribution, and axiomatizes
our situation. Section 3 studies (the size of) certain conjugacy classes in

The final section gives the quantitative Fontaine-Mazur results
alluded to in the title.

This paper was written while the first author visited the second at Duke

University as part of the second DMJ-IMRN conference; we thank these
institutions for providing such a pleasant working environment. We also
thank our anonymous referee for helpful suggestions.
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2. Monodromy groups
The main piece of technology which drives this paper is an equidistribu-

tion theorem for lisse I-adic sheaves. Originally due to Deligne [4, 3.5], it
has since been clarified and amplified by Katz. Deferring to chapter nine of
[12] a careful and complete exposition of the theory, we content ourselves
by recalling the precise result needed here.

Let (V, (~, ~)) be a 2g-dimensional vector space over 1~ equipped with a
symplectic form. Recall the definition of the group of symplectic similitudes
of (V, (.,.)):

= {A E GL(V) 13 mult(A) E w E V, (Av, Aw) = mult(A)(v, w)}.
The "multiplicator" mult is a character of the group, and its kernel is the

usual symplectic group For y E let = 

be the set of symplectic similitudes with multiplier y. Each GSp’y is a
torsor over SP2,.
Now let ko be a finite field of characteristic p, prime to 1, and let

U/ko be a smooth, geometrically irreducible variety with geometric generic
point fi. If k is a finite extension of ko, then one may associate to any point
u E U(k) its (conjugacy class of) Frobenius Fru/k in 1rl(U,ij).

Suppose J’ is a local system of symplectic Ft-modules of rank 2g on U.
Recall that such an object is tantamount to a continuous representation
p. F : 1rl(U,ij) GSN9 (Ft) - (To see this, one may consider the
total space of .~’, which is an 6tale cover of U. The fundamental group of
U acts on covering spaces of U, and in particular on the total space of .~;
this is the desired representation.)
A simple case of Katz’s equidistribution theorem says the following:

Theorem 2.1 (Katz). In the situation above, suppose the sheaf gives rise
to a commutative diagram

where is surjective. There is a constant C such that, for any union
of conjugacy classes W C and any finite extension k of ko,

where y(k) is the images of the canonical generator of Gal(k) under pk°.
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Proof. This is a special case of [12, 9.7.13]; see also [2, 4.1~ . 0

The constant C in Katz’s theorem is effectively computable, and the
theorem actually holds uniformly in families; but we will not need such
developments here.

Let C -3 .J1~I --~ Spec ko be a smooth, irreducible family of curves of genus
g &#x3E; 1. There is a sheaf F = 7c,t of abelian groups on M whose fiber at
a geometric point x E M is the t-torsion of the Jacobian Jac(C.)[4. We
will say that the family of curves has full 1-monodromy if the associated
representation PF : ij) -+ is surjective. In practice,
general families of curves tend to have full 1-monodromy; see, for instance,
the introduction to [7]. Concretely, we will see below that the universal
family of curves over has full 1-monodromy.

Lemma 2.2. Let C -&#x3E; S -+ Spec ko be a geometrically irreducible, smooth
versal famil y of proper smooth curves of genus g. For almost CIS
has full 1-monodromy.

Proof. Fix a natural number N relatively prime to p and consider NCg
NMg, the universal curve of genus g with principal Jacobi structure of
level N. If then the final paragraphs of [5] imply that this family
has full 1-monodromy. Indeed, [5, 5.11] shows that it suffices to verify the
statement for the analogous family over C, and [5, 5.13,5.15] provides this
proof. If t is relatively prime to N, then consider the moduli space 
On one hand, the t-torsion of the Jacobian of iNCg has full t-monodromy.
On the other hand, the forgetful map is finite; therefore,

has full t-monodromy, too.
For any C/S as in the statement of the lemma, there is an 6tale base

change T ~ s so that admits a level N structure. Then cp*T is the
pullback of NCg by the classifying map 0 : T -~ Moreover, the sheaf
of t-torsion on cp*T, Fo-Tt is the pullback of the universal i-torsion:

By the versality assumption, T has dense image in NM9- We have seen
above that has monodromy group Thus, as long

deg ib, - T has full 1-monodromy; a ,fortiori, CIS does,
too. 

’ 

0

We now relate these notions to the quantitative Fontaine-Mazur question
posed at the beginning of this paper. Let P be a property of abelian
varieties over finite extensions k of J~o which is detectable on t-torsion. We
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will say a curve has P if its Jacobian does, and that a function field has
P if its smooth, proper model does. (We have in mind, e.g., having a k-
rational point of order i.) Define WP C GSp2g(IFe) as the set of Frobenius
automorphisms satisfying P, and let Wp = WP fl More precisely,
w E WP if and only if there exists an abelian variety X/k over a finite
extension of ko and an isomorphism (V,w) 
Corollary 2.3. Fix E Ft . Let {kn} be a collection of extensions
of ko such that #kn = oo, and, for all n, y. Suppose
that C .M -&#x3E; ko is a smooth, irreducible family of curves with full t-
rraonodromy. If P is a property as above, then

Proo f. In view of the preceding discussion, this is an immediate application
of 2.1. 0

Let Ej denote the set of all characteristic polynomials of elements of
It is well-known that the isomorphism is given by sending

a characteristic polynomial to its first g coefficients. For a property P as
above, let w~ denote the set of all characteristic polynomials which satisfy
?~. The proportion of characteristic polynomials satisfying P is roughly the
same as the proportion of actual elements of GSplf satisfying P.
Lemma 2.4. For any property as above,

Proof. For f (x) E =:¡, let A( f) be the number of elements of 
whose characteristic polynomial is f (x). One knows [2, 3.5] that, since
dimSp2g = 2g2 + g,

I 
- 

I I I

Adding up over all elements ofW we see that = A(f),
and thus
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0

3. Remarks on symplectic groups
3.1. Eigenvalue one. We start by counting the number of matrices for
which 1 is an eigenvalue; these will correspond to a certain class of func-
tion fields which we will later show (in Theorem 4.1) satisfy (FM). Let
(E) be the property of having 1 as an eigenvalue. Writing fA(x) for the
characteristic polynomial of A E we see that A E and

only if fA(1) = 0. Barring any obvious reason to the contrary, one might
suppose that the values are evenly distributed in Fl,
and thus that is about ~. We will now show that
this rough estimate is the approximate truth - and that, confounding our
initial expectations, e 11 is an even better estimate.
We need a little more notation in order to state our result precisely. Let

T(g, ’1, Fl) = be the number of elements of which have

one as an eigenvalue. If 1, let be the number of elements
of for which the eigenspace associated to 1 has dimension g,
and let S(g, 1, FI) be the number of unipotent symplectic matrices of rank
2g. Our goal in this section is to compute As
an organizational tool, we collect intermediate results in a series of easy
lemmas.

Lemma 3.1. E 1Fe and S as above,

Proof. These computations use the following chain of standard observations
[2]. Any characteristic polynomial of an element in is the char-
acteristic polynomial of some semisimple element A. Moreover, the number
of elements with such a characteristic polynomial is

where Z(A) is the group of elements of SP2r which commute (inside GSp2r)
with A. From this, the computation of S immediately follows. Indeed,
A = 1, ~y, -" , ,1) is the unique semisimple element with char-
acteristic polynomial (x - 1)r. = 1, then Z(A) = Z(id) _

and dimZ(A) = 2r2 + r. If 1 =F 1, then the centralizer Z(A) is

( (~ (M-1)T J ~ ^--’ GL,., a group of dimension r2. In either case, the
lemma now follows. D
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Lemma 3.2. With notation as above, T(I, = S ( 1, For g 2:: 2,

Proof. The first claim is a tautology. For dimension g &#x3E; 2, we enumerate
elements of GS 7 (Fi) which have one as an eigenvalue. First, we index
elements A of Wéb,9 (Ft) by r, the order of vanishing of f A at 1 ff -y 0 1, and
half that multiplicity = 1. To such an A corresponds a decomposition
of V as U(E),r ED U(N),s, where U(E),r and U(N),, are symplectic subspaces
of dimensions 2r and 2s, respectively; fAlu (E),r (x) = (x - 1)r(x - ’Y)r; and
.fA~v ( N ), $ (1) ~ O.
The factor #Sp29 (‘ ) - counts the number of ways of decomposingy p g

V = U(E),r EÐ U(N),s. The penultimate factor S(r, , Fi) counts the possi-
bilities for A acting on U,., and the last factor enumerates all choices for
AI U(N),8 . ° 1:1

RoUghlY is about .1. In fact, an argu-
ment similar to (but easier than) 3.4 shows that this ratio is between

(~/ (~ + 1))2g2+g.1 and Still, a more precise estimate isn’t
too difficult.

Lemma 3.3. For each g &#x3E; 1 there is a constant c(g) such that

where

Proof. We treat the and leave the remaining case for the indus-
trious reader. Lemma 3.2 shows that = and that
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Higher order terms - those coming from r &#x3E; 2 - contribute less than

0((T~ )~) to the lemma is proved. 0

3.2. An intricate condition. Fix as before a dimension g, and consider
C the set of all elements A whose characteristic polyno-

mial fA(x) satisfies the following condition:
Pairs of distinct roots of f (x) over Fi do not

~~) multiply to 1; f (x) has at most a single root
at -1; and f (x) has at most a double root at
1.

While is presumably amenable to analysis in the style of Lemma
3.3, we content ourselves with the following, coarser estimate.

Lemma 3.4. then there is a constant C(g) depending only on g
such that

Proof. Fix a y E In fact, 1; for otherwise, = 0.
Consider the space A9 of characteristic polynomials of elements of

By considering successively the requirements for a point in 3¡ to
satisfy (R), we will show that (R) is a Zariski open condition.
The first condition is that f (x) and have no common root. This is

clearly an open condition, as it is equivalent to the disjointness of Spec 
and Spec inside The second condition says that at

least one of f (-1) and f’(-1) is nonzero; and the final condition says that
at least one of f (1), f ’(1), and f"(1) is nonzero.

It is clear that is nonempty if and only 1. So there is a

constant C(g), depending on g but not on 1, such that

Invoking 2.4 now proves the lemma.
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4. jrm j holdS generically

Following the abstract situation at the end of Section 2, say that an
abelian variety X over a finite field k has (N) if it does not have a rational
£-torsion point over k. Say that X/k has (R) if its characteristic polynomial
of Frobenius, taken modulo 1, satisfies (R) as in Section 3.2. Recall that a
curve has (N) or (R) if its Jacobian does, and that a function field has such
a property if its proper, smooth model does.

Theorem 4.1. If a function field satisfies (N) or (R), then it satisfies (FM).

Proof. If the function field satisfies (N), then we know that I does not
divide the class number of the function field. We thus have the conditions
of Theorem 2 of [10], which shows that the function field satisfies (FM). On
the other hand if the function field satisfies (R), then we are in the situation
of Remark 4.10 of [10], and again the function field satisfies (FM). 0

We will now see that, in some sense, most function fields fall under the
aegis of 4.1.

Theorem 4.2. Let C -&#x3E; J1~1 -~ Spec ko be a smooth, irreducible, proper
family of proper curves of genus g &#x3E; 1 with fulli-monodromy. Fix a, E Fix -
Let {kn} be a collection of extensions of ko such that lirIln-+oo #kn = oo,
and, for y(kn) = 7. Four. = (N), (R),

There are constants C: 9, independent such that:

..... 

Proof. By 2.1, the proportion of curves with either property (N) or (R)
converges to Q;,g, the appropriate proportion of elements of 
Lemmas 3.3 and 3.4 estimate these values for (N) and (R), respectively. 0

The exact same techniques let us compute the proportion of abelian va-
rieties over a finite field which have a rational i-torsion point. For a natural



636

number N, let Ag,N denote the fine moduli scheme of triples (~4, A, Ø) con-
sisting of an abelian scheme A, a principal polarization B, and symplectic
principal level N structure 0.

Proposition 4.3. Let N = iN’ &#x3E; 3 be a natural number relatively prime to
p, and let kp be a finite field of chamcteristic p containing a primitive lVth
root of unity. Let {kn} be a tower of extensions of ko such #kn =
oo and, for n sufficiently large, #kn = 1 mod 1. Then

where the constant in the error term 0( depends onl y on g.
Proof. The proof of 4.2 uses only statements about abelian varieties, and
thus applies in this setting, too. Let be the sheaf of i-torsion of
the universal abelian variety over Fix a geometric point x E 
which is the Jacobian of a curve. Since the Torelli locus already has full
monodromy (2.2), the image of -+ Q~ is Thus,
all the machinery exposed in this paper applies, and the result follows.
By 2.1, as ~kn -~ oo the proportion of abelian varieties with a rational
i-torsion point approaches the proportion of symplectic matrices with one
as an eigenvalue. The latter ratio, or at least its leading term, is computed
in 3.3. 0

Remark. We would like to comment briefly on the collections of fields
in 4.2 and 4.3. On one hand, the collection of extensions J~ of J~o with

~k - 1 mod i is cofinal, in that any extension of l~o is a subfield of such
a subfield. Thus, it seems natural to take limits over towers of such fields;
this explains our choice in 4.3. (It is not hard to adapt the statement for a

On the other hand, if 1, then W Thus, in 4.2, the7 UN)9 
collection of fields kn } may be generalized to any collection of increasingly
large finite extensions of ko, so long as 1 for sufficiently large y.

Remark. Theorem 4.2 shows that approximately ~ of all function fields
satisfy (N), and thus (FM). Similarly, roughly all function fields sat-

isfy (R). In fact, it seems likely that on the order of 1 - pr function fields
satisfy (N) or (R), and that at least this proportion of function fields has
(FM). (One could compute this number directly, but at present the rela-
tively modest payoff does not seem to warrant the detailed combinatorics
required.) To see this, we argue on the level of characteristic polynomials,
using Lemma 2.4 to help us pass from characteristic polynomials to group
elements. In 3.4 we showed that (R) is a Zariski open condition on ~9 .
Similarly, one directly sees that (E) is a closed condition on ~9 since
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lex) if and only if f ( 1 ) = 0 and that ( N ) is Zariski open. The closed( )9
conditions which trace the complement are indepen-() ()
dent, is the complement of a closed set of codimension two
in =’Y. If proportions of characteristic polynomials are directly reflected in
proportions of elements of the symplectic group, then about 1- it function
fields satisfy (N) or (R).
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