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*-Sturmian words and complexity

par IZUMI NAKASHIMA, JUN-ICHI TAMURA et SHIN-ICHI
YASUTOMI

RÉSUMÉ. Nous définissons des notions analogues à la complexité
p(n) et aux mots Sturmiens qui sont appelées respectivement *-
complexité p*(n) et mots *-Sturmiens. Nous démontrons que la
classe des mots *-Sturmiens coincide avec la classe des mots sa-
tisfaisant à + 1 et nous déterminons la structure des
mots *-Sturmiens. Pour une classe de mots satisfaisant à p*(n) =
n +1, nous donnons une formule générale et une borne supérieure
pour p(n). En utilisant cette formule générale, nous donnons des
formules explicites pour p(n) pour certains mots appartenant à
cette classe. En général, p(n) peut prendre des valeurs élevées, à
savoir p(n) &#x3E; 2n12014~ pour certains mots *-Sturmiens. Cependant
l’entropie topologique de n’importe quel mot *-Sturmien est nulle.

ABSTRACT. We give analogs of the complexity p(n) and of Stur-
mian words which are called respectively the *-complexity p*(n)
and *-Sturmian words. We show that the class of *-Sturmian
words coincides with the class of words satisfying p*(n) ~ n + 1,
and we determine the structure of *-Sturmian words. For a class
of words satisfying p*(n) = n + 1, we give a general formula and
an upper bound for p(n). Using this general formula, we give ex-
plicit formulae for p(n) for some words belonging to this class. In
general, p(n) can take large values, namely, p(n) ~ 2n1-e holds for
some *-Sturmian words; however the topological entropy of any
*-Sturmian word is zero.

1. Introduction

We announced results about *-Sturmian words as analogs of Sturmian
words in [11]. In this paper, we give proofs for all the results given there
together with some additional results. We define some notations. Let L be
an alphabet, i.e., a non-empty finite set of letters. We denote by Ln the set
of all finite words of length n over L, L* denotes the set U’o Ln, where
Lo = a and À is the empty word. LN (resp. L-N is the set of right-
sided (resp. left-sided) infinite words over L. We define an equivalence

Manuscrit reçu le 27 juillet 1999.
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relation - on the set LZ by: W2 (where Wl, W2 E LZ) if there
exists an integer y such that

We mean by a two-sided infinite word over L an element of the set L110.
We say that W E LZ / f’J is purely periodic if + y) = W(x) for

all x E Z for some fixed positive integer y. If W = wlz.v2 ~ ~ ~ E LN (resp.
W =...W-2W-I E L-N) satisfy

for any sufficiently large (resp. small) i with some fixed positive integer n,
we say that W is ultimately periodic with period ~c. The least period n of
W is called its fundamental period and for sufficiently large (resp. small)
i, the word wi+l - - - is also called a fundamental period. Especially, if
(1.1) holds for all integer i &#x3E; 0 (resp. i  -~), we say that W is purely
periodic. 

-- -- -

(where Wj E L, n &#x3E; 0), the word ~+1 - - - is called a subword of W.

Definition 1.1. We define D(W) := {V;V is a subword of W} and
D(n; W) := D(W) 0).
Definition 1.2. The complexity of a word W E L’ is the function that
counts the number of elements of D(n; W):

For W = ... Wi... E L N U L-N U L Z / ,,7 we say that a subword
w = (n &#x3E; 0) of W is a *-subword of W if w occurs infinitely
many times in W, i.e.,

Definition 1.3. We define D*(W) := {V; V is a *-subword dnd

Definition 1.4. The *-complexity of a word W E L~ is the function that
counts the number of elements of D*(n; W):

In general, p(n; W) &#x3E; p* (n; W) holds for all W E LN U L-N U 
We remark that p(n; W) = p* (n; W ) holds for billiard words W (also called
cutting sequences) of dimension s, which are defined by billiards in the cube
of dimension s with totally irrational direction v E R* (for the definition
of these words, see [1] and [3]). This fact follows from Kronecker’s theorem
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related to the distribution of the sequence {vn mod l}~==i,2,...’ It is well

known that billiard words of dimension s = 1 coincide with Sturmian words
defined below with some exceptions (for example, see [8]).

In what follows we assume that L = {0,1}.

Definition 1.5. A word W E LN U L-N U LZI , is Sturmian, if W
satisfies

for any A, B E D (n; W) for all n &#x3E; 0, where denotes the number of
occurrences of the symbol 1 appearing in the word w E L*, cf. [10].
Remark 1.1. We should use the term "balanced" instead of "Sturmian" if
we followed the usual terminology. Note that the terminology "Sturmian"
is used in the recent literature for the words whose complexity function
is p(n) = n + 1; however we follow the terminology given by Morse and
Hedlund in [9, 10], since they started from Definition 1.5 and showed that
any Sturmian word has complexity function p(n) - n + 1 under a minor
condition, and since our results for *-Sturmian given in Section 2 will be
parallel to their results.

A *-Sturmian word W is defined to be a word satisfying the condition
with D* (n; W ) in place of D (n; W) in the definition above, i.e.,

Definition 1.6. A *-Sturmian word is defined to be a word W E LN U
L-N U LZ / ~ satisfying

for any A, B E D*(n; W) for all n &#x3E; 0.

*-Sturmian words have been considered by a number of authors (see
[4] and its references). There are some classical and well-known results
on Sturmian words and words satisfying p(n)  n + 1 given by Morse,
Hedlund and Coven, Hedlund. It is known that p(no; W)  no (W E LN)
for some no implies that W is ultimately periodic and any W E LZ / -
with p(no; W)  no for some no is always purely periodic (see [9]). The
class of words satisfying p(n)  n + 1 coincides with the class of Sturmian
words with some explicit exceptions, cf. Theorems 2.1, 2.4, 2.5 below.
Furthermore the authors above give a concrete description of Sturmian
words, cf. Theorems 2.2, 2.3.

In this paper, we show that the class of *-Sturmian words coincides with
the class of words satisfying p* (n)  n + 1, cf. Theorems 2.6, 2.8. We
also describe the structure of *-Sturmian words in a constructive manner.
In [13] Yasutomi introduced super Bernoulli sequences as a generalization
of Sturmian words. Super Bernoulli sequences coincide with -Sturmian

I
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words in specific cases. But in [13] super Bernoulli sequences are not given
in a constructive manner.

For completeness, we give our results (Theorems 2.6-2.11) together with
classical results (Theorems 2.1-2.5) in Section 2. In Section 3, we give the
proofs of Theorems 2.6-2.11.

For a class of words given by

which satisfy p* (n; W) = n + 1, we give a general formula for p(n; W ) and
an upper bound: p(n; W )  ’2 + ’ + 1? + + (n &#x3E; 0),- 4 2 8 8 4 4
cf. Theorems 4.1, 4.2 in Section 4. Using the general formula, we give
explicit formulae p(n; W ) = kn + c for some words belonging to this class
and sufficiently large n, where I~ and c are constants, cf. Theorem 4.4. Also,
using the general formula, there exist a word W and constants ci and c2,
such that  p(n; W)  for any given a &#x3E; 1, cf. Theorem
4.3.

For a more general class of words given by (4.11), we can also give a
general formula for p(n; W ), cf. Theorem 4.5 in Section 4.

In general, for W satisfying p* (n; W )  n + 1, p(n; W ) can take large
values, namely, p(n; W) &#x3E; 2n l-E holds for some W, cf. Theorem 5.2. On the
other hand, any *-Sturmian word W is deterministic, i.e., the topological

entropy lim 
log p(n; W ) of W is zero, cf. Theorem 5.1. We give Theorems

n-oo n

5.1-5.2 together with their proofs in Section 5.

2. Characterization of Sturmian words and *-Sturmian words

2.1. Sturmian words. We put

Theorem 2.1 (Morse and Hedlund ~10~ ) . If W is a one-sided or two-sided
infinite Sturmian word, then p(n; W )  n + 1, and the density

I I .W,% 

-

Now, we classify one-sided or two-sided infinite Sturmian words as fol-
lows :

(Type I) : a is irrational,
(Type II) : a is rational and W is purely periodic,
(Type III) : a is rational and W is not purely periodic.

It is known that each case can occur. The words of Type III are referred
to as skew Sturmian words.
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Definition 2.1. Let 0  a  1 and (3 be real numbers. We define
G(n; a, (3) := L(n + 1)a + (3J - Lna +,8J and G’(n; a"l3) := r(n + 1)a +
,81- r na + ,81, where Lx J is the greatest integer which does not exceed x and

rx1 is the least integer which is not smaller than x. Obviously G(n;a,,8),
G’(n;a,,8) E {0,1}. A word G(a,,8) is defined by

Similarly, Gl (a, 0) is defined by using G’(n; a,(3). We set G(a) := G(a, 0),
G’(a) := G’(a, 0), G(n; a) := G(n; a, 0) and G’(n; a) := 

If a is rational, G(a, (3) is obviously purely periodic.
Definition 2.2. Let a be a rational number with 0  a  1. For a 0 0,1
we define S(a), S’(a) E LZI - as follows:

where

and

where

For a = 0,1 we define S(0), S’(1) by

where

Theorem 2.2 (Morse and Hedlund [10]). If a is irrational (resp. rational),
then G(a, /3) and G’(a,,8) are Sturmian words of Type I (resp. Type II).
Conversely, if W E LN is a Sturmian word of type I or II with density

/ TRTB

, there exists a real number (3 such that W = G(a, (3) or
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Theorem 2.3 (Morse and Hedlund [10]).
(I) Let W be a two-sided infinite skew Sturmian word with density a =

9 (p, q E Z, (P, q) = 1). Then W is represented by W = ~ ~ ~ AA ~ ~ ~
AACBB... BB... (A, B, C E Lq) with JAI, = IBll = p, and 1011 = P -1
orp~-1.

(II) Let W be a two-sided infinite skew Sturmian word with density a =

9 (p, q E Z, (p, q) = 1). Then, W = S(a) or W = S’(a). Conversely, for
each rational number a with 0  a  1, S(a) and S’(a) are skew Sturmian
words.

(III) Let D be a finite word and assume that the one-sided infinite word
W = DD ~ ~ ~ DD ... is Sturmian. Then W can be extended to a two-sided

infinite skew Sturmian word.

The converse of the assertion given in Theorem 2.1 does not hold, but the
words W E LA satisfying p(n; W )  ~x + 1 for all n E N are characterized
by Coven and Hedlund, in particular, they showed the following
Theorem 2.4 (Coven and Hedlund [5]). Let W be a one-sided infinite word
and p(n; W ) = n + 1 for 0. Then W is a Sturmian word.

Theorem 2.5 (Coven and Hedlund [5]). Let W be a two-sided infinite word
and p(n; W ) = n + 1 for all n &#x3E; 0 that is not Sturmian. Then there exist
a numbers m &#x3E; 0 and ca word B E W) such that

(1) Both OBO and lBl belong to D(m + 2; W) and one and only one of
OB1 and 1BO belongs to D(m + 2; W), so that aBa’ E D(m + 2; W)
and a’Ba 0 D(m + 2; W) with a:A a’ (a, a’ E L).

(2) aBa’ occurs exactly once in W.
(3) If aBa’ = xz ... then

(3a) WR = Xi+lXi+2 ... is purely periodic and Sturmian and i + 1 is
the least integer such that is purely periodic.

(3b) WL = ... is purely periodic and Sturmian and 
is the greatest integer such that ~ ~ ~ is purely peri-
odic.

(4) If lR, lL are the lengths of the shortest periods of WR, WL, respectively,
then lR + lL = m + 2 and = 1.

2.2. *-Sturmian words. We give a characterization of *-Sturmian words
in terms of the *-complexity together with a description of *-Sturmian
words by which we can construct any *-Sturmia,n word in Theorems 2.6,
2.8 below. We need some definitions.

For A, B E L* we denote by IA, B}* the set

We say a word W E la, b}* is strictly over {a, 6} if both a and b eventually
occur in W. The notation w* (resp. *w) (A 0 w E L*) stands for the word
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w* := www ~ ~ ~ E LN (resp. *w :_ ~ ~ ~ www E (n E N, w E L*)
is the word wn := VI V2 ... Vn where vi = w for all i. We mean by *vw (resp.
vw*) the word (*v)w (resp. v(w*)).

Definition 2.3. We define the substitutions bo, ð"1 by

~~ can be extended to L’ by

is injective. Hence we can

It is known that Sturmia,n words have deep relations with substitutions
(see ~4~ ) .
Definition 2.4. For E ~o,1}, we define Ai = A(k1,...,ki) :=
- - 1-1 ’B. - -,- . I - w I- , ’" , .. - - ..... ’"

Let x be a rational number with 0  ~  1. The two-sided infinite
words G(x) and G(x) are defined in [13] as follows (G(0) and G(1) are not
defined). Recall the definition of G(.), cf. Definition 2.1.

Definition 2.5. If x is a rational number, 0  x = n/m  1, ((n, rn) = 1),
let x = n/m denotes the greatest number satisfying x &#x3E; x and m  m. We
define

Definition 2.6. If x is a rational number, 0 :5 x = n/m  1, ((n, m) = 1),
let x = n/m denotes the least number scatisfying x  x and m  m. We

define

We see that S(x) = G(x) and S’(x) = G(x) with some exceptions (see
Section 3).

Definition 2.7. For W E LN U L-N U and x E (0,1~, we define
the following conditions

(C1) D*(W) = D(G(x)),
(C2) D*(W) = D(G(x)) E Q 0,
(C3) D*(W) = D(G(x)) mith x E Q 1,

where D(.) and D*(~) are defined in Definition 1.1 and Definition 1.3 re-
spectively.
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Remark 2.1. Words which satisfy one of the conditions (Cl)-(C3) are
super Bernoulli words. Super Bernoulli words play an important role for
Markov spectra as shown in [13]. For any x E (0,1~, G(x) is a super
Bernoulli word that satisfies Condition (Cl).
Theorem 2.6. Let W E LN. Then the following four conditions are equiv-
alent :

(i) W is *-Sturmian.
(ii) p*(n;W)n+1 foralln&#x3E;0.
(iii) There exists a finite or infinite fkl, k2, ... , ki ... 1, ki E

10, 11 which satisfies the following equation,

where Ai = A(1~1, ~ ~ ~ , ki), Bi = B (kl, ~ ~ ~ , kZ ) are the words given in
Definition 2.4, uo E L*, and each ui is a certain finite word strictly
over fAi, for all i &#x3E; 0.

(iv) W satisfies one of the conditions (Cl), (C2) or (C3) in Definition
,~. 7.

Remark 2.2. In condition (iii), if p* (m; W) = m + 1 for any m, then
W = uoul ... ui If p* (m; W)  m + 1 for some m, then W = uoAi
or uoBZ for some i and p. (n; W) is bounded. In condition (iv), if x is an
irrational number or W satisfies Condition (C2) or (C3) in Definition 2.7,
then p. (n; W) = n + 1 for all n. If x is a rational number and W satisfies
condition (C 1 ) in Definition 2.7, then p. (n; W) is bounded.

Theorem 2.’T. Let W = wlw2 ... E LN be *-Sturmian. Then there exists
a = = lim and one of the conditions (Cl)-(C3) in

n-+oo n n-+oo n

Definition ,~. 7 holds with x = a.

We give an example. 
’

Example 2.1. Let W = 01021031041051 ~ ~ ~ . Then, we see that

By Definition 1.6 we see that W is *-Sturmian and p* (n; W) = n + 1 . Let
ki - 0 for i 

. 

= 1, 2, ... and Ai = A(kl, ~ ~ ~ , ki), Bi - B(A:i, -" , ki) be the
words given in Definition 2.4. Then, we have Ai = 0, Bi = Oi-11. Thus,
we have

On the other hand, we have limn,,,,c, = liIIln-+oo = 0. Using
(2.1) and G(0) = ...0001000... , W satisfies Condition (C3) with x = 0 in
Definition 2.7.
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Theorem 2.8. Let W E LZ. Then the following three conditions are
equivalent:

(i) W is *-Sturmian.
(ii) There exists a finite or infinite sequence r. = Iki7k27 ... , 7 ki7 ... I,

ki E 107 11 such that W has one of the following representations.
(1) W ... u-i ... u-luoul - - - Ui ..., r. is an infinite sequence,
(,~) W = ... u-i is an infinite sequence and J~Z = 0

for all i &#x3E; j,
(3) W ui ..., x is an infinite sequence and ki = 0 for

all i &#x3E; j,
(4) W - - - - u-j ... is an infinite sequence and ki = 1

for all i &#x3E; j,
(5) W is an infinite sequence and ki = 1 for

allz&#x3E; j,
(6) W r~ is a finite sequence and ki is its final term,
(7) W is a finite sequence and ki is its final term,
where Ai = A(k¡,... , , ki), Bi = B(kl, - · · , 7 ki) are the words given in
Definition ,~.l~ and uz and u-i are certain finite words strictly over
fAi, Bil for i &#x3E; 0 and uo E L*.

(iii) W satisfies one of the conditions (Cl), (C2) or (C3) in Definition
,~. 7.

Theorem 2.9. Let W = ... W_¡WOW¡W2... E LZ be *-Sturmian. Then

there exists cx = lim 9, and one of the conditions (Cl)-n +00 n n-&#x3E;oo n

(C3) holds with x = a.

Theorem 2.10. Let W E LZ be a *-Sturmian word. Then, p*(n; W ) 
n-E-1 

We give an example.

Example 2.2. Let W, =1)01021031... and W2 = ... 03102101021031....
Then, we see that

By Definition 1.6 we see that WI and W2 are *-Sturmian and p* (n; Wl ) _
p* (n; W2) = n + 1. Let ki = 0 for i = 1, 2, ... and Ai = A(kl, ~ ~ ~ , ki),
Bi = B {J~1, ~ ~ ~ be the words given in Definition 2.4. Then, we have
Ai = 0, BZ = Oz-11. Thus, we have

Wi W2 - ... 

On the other hand, we have = lim- 0 for, _ .-an -+ 00 n

i = 1, 2. Using (2.2) and G(0) = ... 0001000--., Wi (i = 1, 2) satisfies
Condition (C3) with x = 0 in Definition 2.7.
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Theorem 2.11. Let W E LZ. Suppose that p* (n; W )  n + 1 for all n &#x3E; 0
and W is not a *-Sturmian word. Then, there exists a finite sequence

and a word uo E L* such that

where Aj = A(kl, ~ ~ ~ , Bj = B(J~1, ~ ~ ~ , kj) are the words given in Def-
inition 

We give an example.

Example 2.3. Let W =~1 *. Then, we have

We see easily that ~* (n; W ) = 2 and W is not ~-Sturmian.

3. Lemmas and the proof of Theorems 2.6-2.11

3.1. A dynamical system. We need some definitions to state lemmas.

Definition 3.1. Let Io := (0,1/2J, Ii := (1/2,1~, 00(x) ~+1 E Io,
01(X) := 2’:x E Ii U {1/2} (x E (0,1~). Let T denotes the transformation
on [0,1] defined by

The above 00, 01 and T have an important role in our paper. The fol-
lowing lemma gives a connection between Oi and 6j for i = 0,1. We give a
proof of Lemma 3.1 for completeness.

Lemma 3.1 (Ito, Yasutomi [7]). For any x E ~0,1~, the equality 
6iG(x) (i E {0,1}) holds.

Proof. First, let us show = SoG(x). If x = 0,1, then we see easily
that the equality holds. Let x 0 0,1. Let U = [-1, 0), Uo = [-1, -x) and
Ul = [2013~ 0). We define a transformation F on U as follows: for y E U

We define an infinite word jn ... by

Let us show that G(m; x) = 1 if and only if Fm (- 1) E Ul for some non-
negative integer m. First, we suppose G(m; x) = 1. Then, from Definition
(2.1) we see that mx  L(m + (m + 1)x. Therefore, we have
mx - L(m + 1)xj E Ul. On the other hand, it is not difficult to see that

E Z. Therefore, = mx - and Fm(-I) E
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Ul. Next, we suppose G(m; x) = 0. Then, similarly, we have F"L(-1) E Uo.
Thus, we have = 

Let V = ~-1, x), Yo = (-1, 0) and Vi = (0, x). We define a transforma-
tion ho on V as follows: for y E V

We define an infiflte word .0 byvve e e an 1 te wor 3031.. 3n ... y

Then, we see that

Therefore, we have = j8jf .... On the other hand, by using
a map 8 from V to [- 1, 0) defined by 8(y) = ~, the dynamical sys-
tem (V, ho) is equivalent to the dynamical system ( ~-1, o) , ho ) where the
transformation ho on 8(V) is defined as follows: for y E V

where a - +1. Similarly we have G(a) = Thus, we havex+l’ -, - , 1

. - ... 

-: 

,Secondly, let us show G(ol (x)) = 1G(x). Let V = [-1,1 - x), Vo’ =
~-1, -x) and ( = (-x,1 - x). We define a transformation hi on V’ as
follows: for y E V’

We define an infinite word ~... bY

We see that

Therefore, we have = JOJl .... Similarly we have jo ji ... =
G(21~). Thus, we have = 81G(x). 0

The following Lemma 3.2 is obtained from Lemma 3.1.
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Lemma 3.2 (Ito, Yasutomi [7]). The following diagrams commute for
k=0,1; 11 /1

where W (resp. Wk) is the image of [0, 1] (resp. Ik) by G.

The assertion obtained by replacing, respectively, Ik and T by ik and T
in Lemma 3.2 can be shown in the same way as in [7].
Definition 3.2 (Itinerary of a real number). We define the itinerary of
x E (0,1~ to be the sequence given by

Lemma 3.3. If x E ~0,1~ is an irrational number, then 0 and 1 occur
infinitely many times in its itinerary. If x 54 0 is a rational, number, then
there exists a natural number j such that Tl(x) = 1 and = 1 for any
natural &#x3E; j.

Proof. Let x E [0, 1] be an irrational number. We suppose that 0 or 1 does
not occur infinitely many times in its itinerary. First, we suppose that 1
does not occur infinitely many times in its itinerary. Then, there exists an
integer k &#x3E; 0 such that in = 0 for each n &#x3E; k. Let n &#x3E; k. On the other

hand, from Definition 3.2 and Lemma 3.2

Therefore, I We see easily that
, From Definition

3.2 and Lemma 3.2 we have

Therefore, x E Q. But this contradicts the assumption. Thus, 1 occurs
infinitely many times in the itinerary of x. Similarly we see that 0 occurs
infinitely many times in the itinerary of x. Secondly, let x E (0, 1] be a
rational number. We set x = P- where p, q E Z and P &#x3E; 0, q &#x3E; 0 and

p and q are relatively prime. We shall prove the lemma by induction on
q. Let q = 1. Then, x = 1. We see easily that in = 1 for any integer
n &#x3E; 0. Next, we suppose that q &#x3E; 1 and the lemma holds for each y E (0,1~
whose denominator is less than q. Let x be in Io. Then, = = 

Since the denominator of T(x) is less than x, from the induction hypothesis
there exists an integer j such that il (T(x)) = 1 for any integer I with l &#x3E; j.
Therefore, we have = 1 for any integer 1 with 1 &#x3E; j + 1. Secondly,
let x be in 11. Then, T(x) = 21/;1 = 2P;Q. Since the denominator of T(x)
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is less than x, from the induction hypothesis there exists an integer j such
that = 1 for any integer l with l &#x3E; j. Therefore, we have = 1
for any integer l with l &#x3E; j + 1. Thus, we have the lemma. 0

Lemma 3.4. For any sequence (in = 0,1) in which 0 and 1 occur
infinitely many times, there exists a unique irrational number x such that

Proof. For any positive integer n we set An = o ... o ~[0,1]. Then,
Ai D Ll2 :&#x3E; A3 D " -. Since [0, 1] is a compact set, there exists an x such
that x e It is not difficult to see that = in for n = 1, 2, ....
Let y E Let us show that J? = y. We suppose y. We

suppose that x  y without loss of generality. Then, apparently, for any
z e [~?!/]? = i(x). Since Q n (0,1~ is dense in ~0,1~, there exists a
rational number z’ such that z’ E [~,!/]. Then Lemma 3.3 implies that
there exists a natural number j such that = 1 for any natural number
I &#x3E; j. But this is a contradiction. Thus, we have the lemma. O

Lemma 3.5. For any sequence = 0,1) in which 0 occurs

finitely many tirrves, there exists a rational nurraber x ~ 0 such that

Proof. If for all n &#x3E; 1, in = 1, then in(1) = in for 0. We suppose
that 0 occurs in Then, there exists an integer j &#x3E; 1 such that

= 0 and for any integer l &#x3E; j, il = 1. We set x = o ... o ( 1 ) .
Then we see that = i(x). D

Let 10 = (0,1/2), 11 = [1/2,1]. We define T(x) as T(x) in Definition 3.1
with Ii in place of 7t (i = 0,1) and i(x) _ (in = is defined

in the same manner as i(x) in Definition 3.2 with T in place of T. Noting
T(x) = T(x), (x ~ 1/2), we can show the following
Lemma 3.6. If x is irrational, then i(x) = i(x). 1 is a rational

number, then there is a natural number j such that Tl(x) = 0 and = 0

for any natural number l &#x3E; j.

We remark that i(~) ~ i(x) if x (# 0,1) is a rational number. The proof
of the following lemma is similar to the proof of Lemma 3.5.

Lemma 3.7. For any sequence which 1 occurs finitely many
times, there exists a rational 1 such that i(~) _ 
Lemma 3.8. Let x be a rational number with 0 ::; x  1. Let =

i(x) and {i~,}°°_1 = a(x). Let for any integer n &#x3E; 0
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and Ao = 0, Bo = 1, Ao = o and Bo = 1. Let j &#x3E; 0 be the least integer such
that il = 1 for any I with 1 &#x3E; j. Let j’ &#x3E; 0 be the least integer such that
i~ = 0 f or any 1 with I &#x3E; j’ . Then, if x 1= 0, G (x) and if x 1= 1,
G(x) =*A’., B’., A’.,* . °

Proof. Let x 1= 0. We set x = q where p &#x3E; 0 and q &#x3E; 0 are integers and
(p, q) = 1. Let us show that (I An 1, = 1 and = 1. From

it follows

where

Therefore, we get

On the other hand, Lemma 3.2 implies G(x) = aZl o ... o for

any integer n &#x3E; 0. Since Tk(x) = 1 for k &#x3E; j, we see that

On the other hand, from the definition of G(x)

and

Using (3.2), (3.3), (3.4) and the fact (IB;I, IB;ll) = 1 which is a consequence
of (3.1), we see that B; = G(0; i)... G(q - 1; ~). Thus, [ = q
and = p. On the other hand,

We set $ = Oil o ... (0), where p’ &#x3E; 0 and q’ &#x3E; 0 are integers with_

(p’, q’) = 1. Similaxly, we have . Thus,
we see that . Since j &#x3E; 0 and ij = 0 for 1, we see
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that

S ince j = 0 for x = 1, we have

Thus, we get that p &#x3E; p’ and pq’_- qp’ = 1. Therefore, we obtain G(x) -
Similarly, we see that G (x) for x 54 0. 0

We show that G(x) = S’(x) and G(x) = S’(x) hold with some exceptions
in the following lemma.

Lemma 3.9. Let x be a rational numbers with 0  x  1. Then, G(x) -

Proof. Let x 1= 1. Let us show = S(x). If x = 0, then we see easily
that G(x) = S(x). Let 0  x  1. We set x = §, where p &#x3E; 0 and q &#x3E; 0

are integers with (p, q) = 1. Let p’ &#x3E; 0 and q &#x3E; 0 be integers with q &#x3E; p’
and P’q - pq’ = 1. Then, from the definition of G(x)

" 

m m _1

First, let us show that for
Since, for any integer m, rmp-1 if and only if L(m+1) q - q _

- 
q q 

- 

q q -

lml! - lJ we see thatq q
On the other hand, using p’q - pq’ = 1 we have

Therefore, we get = G(n + q’; x) for x such that (n + 1)x  1.

Let (n + 1)x &#x3E; 1. Since 0  n  1 mod q, we have
On the other hand Therefore,

we have I Thus, we have
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Secondly, let us show that s(x)n = + q’ - q; ~) for n such that q - q’ :5
nq. Let q’. 
same way 

- 1 - 1In 1 In 1

On the other hand,

Since Z for m  q’ - 1, s(x)n =
q q q q

for m with 0  m  - 1. Let m Then,
s(x)n = S(X)q-1 = LqiJ - L(q - = 1. On the other hand, G(n +

" 
q q 

,

= 1; ) = 1. Hence, We can

prove s(x)n = G(n - q; x) for n &#x3E; q in the same way. Thus, we obtain

G(x) = (E LZ/ ~). We get G(x) = S’(x) similarly. D

3.2. Combinatorial considerations.

Lemma 3.10. Let W E LN be a word satisfying p* (m; W) = p* (m+ 1; W)
for some integers 7n &#x3E; 0. Then we have

(i) p, (n; W ) = W) for any integer n &#x3E; m,
(ii) W is ultimately periodic.

Proof. (i) We suppose ~* (m; W) = p* (m + 1; W) = l. Let Wl, W2, ... , Wi
be all the words in D* (m, W). Then we can choose ai = 0 or 1 such
that alWl, a2W2, ... , alWI are words in D*(m+ 1, W). On the other hand,
p*(m; W ) = p*(m+l; W) yields that they’are all the words in D,, (m+ 1, W),
so that the l-tuple (01,02,... at) is uniquely determined.

Similarly, we can choose bi = 0 or 1 such that Wlbi, W2b2, ... , Wlbl are
all the words in D* (m + 1, W) and (bl, b2, ... , 7 bi) is uniquely determined.
Obviously at Wlbl are all the words in D* (m + 2, W).
Then + 2; W) = l. By induction p* (n) = p*(m) holds for any n &#x3E; m.

Proof of Lemma 3.10, (ii). We assume that W satisfies P* (m; W ) _
p. (m + 1; W ). Any subword V belonging to D(m+ 1; W) but not belonging
to D* (m+ l, W) occurs in W finitely many times. Hence taking sufficiently
large N, we may assume that V is not a subword of U = i.e.,

= = l, p(m; U) = p*(m; U) = l. Let U =

7 Uo E D* (m, U), then, by the proof of (i) above, aI, a2, ... are
uniquely determined by Uo as subsequent symbols and Uo occurs in a, a2 ...
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again, i.e., U = UOa¡a2... Hence U is purely periodic and
therefore W is ultimately periodic. 0

By Lemma 3.10 we have the following remark.

Remark 3.1. Condition (ii) in Theorem 2.6 implies that we have the fol-
lowing two cases:

(i) = n + 1 for all n &#x3E; 1.

(ii) There exists a number m &#x3E; 0 such that

In Case (ii), W is ultimately periodic and D*(m; W) coincides with the
set of fundamental periods of W.

Lemma 3.11. Let P~:(1;W) = 2 and p*(n;W)  n + 1 for 0 for
a word W = LN. Then there exists some number m such that
there is an inverse image and ~*(~; 8k 1(w,",,w"r,+i ~ ~ ~ )) 
n + 1 holds for 0, where k E defined by

Proof. The assumption implies p* (2; W )  3. First, we consider the case
p* (2; W ) - 2. Then D* (2, W ) - {01,10}, which implies 
(01)* and 00 ... = 0* for some m &#x3E; 1. Noting
p* (n; 0*) = 1  n + 1, we have the lemma in this case.

Secondly we consider the case p* (2; W ) - 3. Since O1,10 E D* (2, W),
only one of 00 or 11 belongs to D* (2, W ) . We suppose 00 E D* (2, W ) .
Since 11 occurs finitely many times in W , we can choose m such that

Put S - 0"Z1-110’’n2-i l ~ ~ ~ 10-i - 11 - - - - Assuming p* (no; S) &#x3E; no + 1 for
some no &#x3E; 0, we shall obtain a contradiction.

If p* (m + 1; S) - p* (m; S)  1 for any positive integer m  no, then

p* (no; S)  no + 1. We put nl = min{m ~ 1; p* (m + 1; S) - p* (m; S) &#x3E; 1},
consequently p* (nl; S) - p* (nl - 1; S) = 1, p* (nl + 1; ~S’) - p* (n1; S) &#x3E; 1.
So there are distinct words A, B E D* (nl, S) such that A0, A1, B0, B1 E
D*(ni + 1, ,S‘) . We can write A = eA’, B = f B’, e, f E ~ 1, 0~ . If

A’ # B’, then p* (nl ; ~5’) - p* (nl -1; S) &#x3E; 1 follows from A’0, A’ 1, B’0, B’ 1 E
D* (ni, S). Hence, we get A’ = B’, f . We may suppose e = 0, f =
1 without loss of generality. Since OA’00 E D*(ni + 3, S) or OA’O1 E
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+ 3, S), we obtain Obo(A’)00 E D. (j + 1, W ) or

E D* ( j + 2, W ), where j is the length of Conse-

quently, E D* ( j + 1, W) follows. It can be shown similarly that
E D* ( j + 1, W ). Therefore p* ( j + 1; W) -

p* ( j; W) &#x3E; 1, which contradicts that p* (n; W )  n + 1 for all n. Next, we
suppose 11 E D* (2, W). Since 00 occurs finitely many times in W, we can
choose m such that

Put S = We can prove in the same way as
above that p* (n; S)  n + 1 for each n &#x3E; 1. 0

Lemma 3.12. Let p* (n; W) = n+ 1 for all n &#x3E; 0 for W = WIW2... E LN.
Then there exist a numbers m &#x3E; 1 and a number k E ~0,1 ~ such that

Proof. In Lemma 3.11 the inequality + 1

has been shown.  1 + 1 for some l then
is ultimately periodic and so is W . Therefore p* (n; W)

does not exceed the length of a fundamental period of W, which is a con-
tradiction. 0

Lemma 3.13. Let p*(n; W )  n + 1 (W = L~) for 
0 with 2 and p* (l; W )  1 + 1 for a number 1 &#x3E; 1. Then

for a number m &#x3E; 0.

Proof. Let I’ be the least positive integer satisfying p* (1’; W)  I’ + 1. Then
p* (l’; W ) = t’ and W is ultimately periodic with period l’. Let 00,11 ~
D* (2, W ). Then, for some m, (01)*. Therefore, the lemma
holds apparently. We assume 00 E D* (2, W ). We may assume a word
V E D* (l’, W ) has 1 as its suffix. Then 0 is a prefix of V, because VV
occurs in W infinitely many times and 11 occurs finitely many times in W.
Since V has 0 (resp. 1) as its prefix (resp. suffix), and 11 is not a subword
of V, ~01 (V) does exist. Hence ~01 (w~wm+1 ~ ~ ~ ) _ ~01 (V) * for some m.
Let q be the length of ~01 (V). Then

We can prove the lemma similarly for the case 11 E D~(2, W). 0

Definition 3.3 (itinerary of a word). Let p~(?~;W) ~ ~ + 1 for any
~ &#x3E; 0 (W E LN). We define a finite or infinite sequence n = :=

(kn = 0, 1) inductively by the following algorithm:
o If p. (1; W) = 1, defined to be the null sequence, i.e., n = 0.



785

We call the itinerary of W (W E 

In the definition of Wt+i above, note that Lemma 3.11 implies the ex-
istence of a number mt such that exists. We re-

mark that the sequence is uniquely determined for any W satisfying
p* (n; W) while, in general, the sequence of words Wt
is not uniquely determined.
We can define the itinerary for W E L-N by Definition 3.3 with RW in

place of W, where RW = for W = ... W3W2Wl-

Lemma 3.14. = i(x) for all irrational x E [0, 1].

Proof. Let x E 0,1 be an irrational number. It is not difficult to see
that if x  1 then 00 occurs in G(x) and if x &#x3E; 2, then 11 occurs in
G(x). Therefore, kl = il. By Lemma 3.10, for any natural number n,
G(Tn-’(x)) = Wn. By induction we get the lemma. 0

3.3. Proof of Theorems.

Proof of Theorem 2.6. The proof of (I)#(it) is similar to that of Theorem
2. l. Let us prove (ii)==~(iii). First, let us suppose p. (n, W) = n + 1 for any
n &#x3E; 0. Then, it follows from Lemma 3.12 that {ICn}~,-1,2,... = is an
infinite sequence. We can choose a sequence of infinite words
and a sequence {?7~}~=i~... of positive integers as in Definition 3.3, so that

where ~2,~?. ? are words strictly over L for n &#x3E; 1. In view
of (3.5), we have W = Wl, which can be written in the following form:
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It is clear that 6k~ 0... 6k~ (Wl,n ... is a word strictly over Bn}
with An = Skl o ... o S~n (~) ~ 1 Bn - Skl o ... o a~~ ( 1 ) . Setting 6k~ o ... o

Wmn-l,n) = u~, we obtain the assertion (iii).
Secondly, let us suppose p* (n, W )  n + 1 for some n &#x3E; 0. From Re-

mark 3.1, p* (n, W ) is bounded and W is ultimately periodic. We can
choose a as in Definition 3.3. Lemma 3.13 implies
that fWnln=1,2,... is a finite sequence of infinite words, i.e., {W~}~=i,2,... =
{~~}~=i,2,...,f+i- In view of Definition 3.3, we can write

Hence, we get

(iii) ~ (iv) : We divide the proof into the following four cases (Cases I-IV .
Case I: Suppose that ~~n ~~-1,2,... is an infinite sequence in which 0 and

1 occur infinitely many times. Let R be a *-subword of W. There exists an
integer I such that the length of Aa and Bi is larger than the length of R.
Choose an integer j &#x3E; 0 such that 10 is a subword of 6k,+, o ... o (0)

Then

R occurs in or 

Suppose that R occurs in If R does not occur in then

(3.6) implies that R occurs in BIAI since the length of R is smaller than
that of Al, Bi. Therefore R occurs in Similarly, we can conclude that
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R occurs in by (3.7). Lemma 3.4 implies that {kn},~m,z,... = i(x) for
an irrational x. It follows from Lemma 3.2 that

Since 0 and 1 occurs in G(Ti+~(~)), both = bkl o ... o ~k~+~(0) and
gkl o ... o 6k~~; (1) occur in G(x). Thus we obtain that R E D(G(x))

and D*(W) C D (G (x)).
Conversely, we suppose V E D(G(~)). Then, there exist natural numbers

l and m such that V occurs in and by an argument similar to
the argument above. We have V E D* (W ), since A’+m, B’+m E D* (W ).
Therefore, we obtain that D,(W) = D(G(x)), so that W satisfies Condition
(Cl). Thus we have shown the assertion (iv) in Case I.

Case II: Suppose that there exists an integer j such that kn = 0 for any
n &#x3E; j and k~ = 1. Lemma 3.7 implies that = for a rational
x. Then if n &#x3E; j,

We can write by (3.8) and (3.9)

where {~}~=i,2,... is an infinite sequence of non-negative integers with
lim an = oo. Therefore, any *-subword R in W occurs in for

~ 3 ~

sufficiently large integer m. By Lemma 3.8,

Therefore R occurs in

Conversely if V E D(G(x)), then V occurs in Aj BjAj for a sufficiently
large integer m. (3.10) implies that V is a *-subword of W, i.e., V E D* (W ).
Therefore, we get D*(W) = D(G(x)), so that W satisfies Condition (C3).

Case III: Suppose that there exists an integer j such that = 1 for any
n &#x3E; j and ki = 0. Then W satisfies Condition (C2). The proof is similar
to that given in Case II.

Case IV: Suppose that the sequence is a finite sequence. In
this case D* (n, W) = D(n; Ai ) or D*(n, W) = D(n; Bi ). There exist ratio-
nal numbers u, v such that Ai = G(u), Bi = G(v) by the proof of Lemma
3.8. Then W satisfies Condition (Cl) for x = u or x = v. We have com-
pleted the proof of (iii)=~-(iv).
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(iv)=?(i): By Definition 2.7, D*(W) coincides with one of the sets
D(G(x)), or D(G(x)). Since by Theorem 2.2, 2.3 and Lemma

3.9, and G(x) are Sturmian, W is a *-Sturmian word. 0

Proof of Theorem 2. 7. Let W = wlw2 ... E LN be *-Sturmian. By Theo-
rem 2.6 there exists a E [0, 1] such that one of the following three conditions
holds:

. u(n’W) a’(n;W)Let us show that a = . First, we suppose
that (1) holds. Let f &#x3E; 0 be any small number. Let m be a natural number

with 1  i. Since W = wlw2... E LN is *-Sturmian, there exists an
integer k &#x3E; 0 such that any subword of wk+lwk+2... with length m is in
D* (W ) . Let c be a positive integer with k  3 . Let n be a positive integer
with n &#x3E; c. Let w = wlwl+1... wa+n_ 1 E D (n; W ) . Then, we have

where d = ~ n~k 1 _ 1. Since Wl+k+m*(j+l)-, E D*(W) for j =
0, ... , d- l, Wl+k+m*(;+l)-l E D(G(a)). Therefore, there exist
integers fj for j = 0, ... , d-1 such that for i = 0, ... , m - 1, =

L(f; + i)aj - L(fj + i - 1)aj. Thus, 
!L(/7 + m - 1)aJ - 1. Similarly we have

Wl+n-l - (n - ~ - md) a 11  1. Therefore, by (3.11) we have

Therefore, we have

Thus, we have For cases (2) and (3) we
have a similar proof. 0

The proofs of Theorems 2.8 and 2.11 are similar to that of Theorem 2.6,
so we give a sketch of the proofs. Let W = Wl W2 be a two-sided infinite
word satisfying p* (n; W )  n + 1 with Wl E L-N, W2 E LN, then Wi
and W2 are *-Sturmian words. There are four cases.
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Case I: Suppose p. (n; Wl) = p*(n; W2) = n + 1 for all n. Then there
exists an irrational number x E (0,1) or a rational number x’ E (0,1~ such
that = D*(W2) = D(G(x)), D(G(~’)), or D(G(x’)). Therefore, W,
and W2 have the same itinerary, and WI = ~ ~ ~ U-2U-lU, W2 = 

(u, v E L*).

Case II: Suppose p* (n; Wi) = n + 1 for all n and p*((m; W2)  m + 1
for some m. Then W2 is ultimately periodic and there exists a rational
number x E (0,1) such that = D,: (G(x) ) ~ D* (W2 ) or D* (Wl ) _
D*(1(z)) J D*(W2). By the definition of G(x) (resp. G(x)), W2 = vB~
(resp. (v E L’). Therefore W = ... u_IuovB; or W = ... 

Case III: Suppose p,(n; W2) = n + 1 for all n and p*(m; Wl)  m + 1
for some m. Then W or W The proof is
similar to Case II.

Case IV: Suppose p* (m; Wi)  m + 1 and p* (m; W2)  m + 1 for some
m. Then Wl =* Aju or "BjU and W2 = vA; or It is easy to show
that and are *-Sturmian and and are

not *-Sturmian.

The proof of Theorem 2.10 is similar to that of Theorem 2.1 and the
proof of Theorem 2.9 is similar to that of Theorem 2.7, so we omit these
proofs.

4. Complexity of certain *-Sturmian words

Let us consider the complexity of an infinite word W:

It is clear that W is a *-Sturmian word. We write u «p v (u, v E D(W))
if u is a prefix of v. The binary relation -p is reflexive, asymmetric, and
transitive, so that X = X(W) := (D(W),-~P) is a partially ordered set
with the order «p. For each element v E D(n + 1;W), (n &#x3E; 0), there
exists a unique element u E D(n;W) such that u ~p v. Hence, X can be
regarded as a tree consisting of the nodes w E D(W) with A as its root,
where every edge is understood to be one of the segments connecting two
nodes u E D(n; W ), v E D(n + 1; W ) as far as u ~p v. For example, if W
is the word (4.1) with an = n - 1, then X(W) is the following tree.
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Fig. 1.

In Figure 1, only words of the form Ok, Ol10m (1  m) are followed by two
words:

Theorem 4.1. Let W be a word given by (4-1) with (ao :=) 0  al
- - -1 .,

Proof. We put

Then, we have

Since al  a2  a3  ~ ~ ~ , w occurs only once in W if Iwl1 &#x3E; 2, so that
w 0 B. Hence, we get
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If = 0, i.e., w = 0’~, then w E B, since an tends to infinity. If w belongs
to B with = 1, then w can be written as follows, and vice versa:

Hence, in view of (4.3) and (4.4), we obtain

where Iwl [ is the length of w, which implies the theorem.

Theorem 4.2. Let W be as in Theorem 4.1. Then,

The above estirraate is sharp; the equality is attained by

Proof. From the proof of Theorem 4.1, it follows that if w E Bn (W ) with
0’~, then w is of the form (4.4) with Iwl = n. On the other hand, all

the words w = Q.i-l10a¡ with

belong to Bn(Wo). Hence Bn(W) c Bn(Wo), so that UBn(Wo),
which implies W)  p(n; Wo).

Now, we consider

In view of Figure 1, we have dl - 1, d2 = 2. For a given sequence b =

lb.}n=1,2,..., we denote by J~(&#x26;i? &#x26;2?~3?"’) the number defined by

We use the notation f i w also for a word w over N as far as its meaning
is clear. For instance, fIn 123325151... is the number 2, 2, 2, 3, 3, 5,
1, 5, 1, ... ). Noting

we get = d2n = n (n &#x3E; 2). Therefore, we obtain
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By induction, we can show that the right-hand side of (4.7) coincides with
that of (4.5), which completes the proof. 0

Remark 4.1. If 1} is not the empty set, then

holds for 2 + 1}).

We can give some examples.

Example 4.1.

(i)

For a word W as in Theorem 4.1, it is easily seen that

In view of Theorem 4.1, for any n &#x3E; a2 + 2, we have

where

Hence, setting
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which does not exceed r(n), we get

Hence we obtain the following

Corollary 4.1. Let W be as in Theorem 4.1, then

Remark 4.2. If an + a~+2 holds for all n &#x3E; 1, then

holds for all n &#x3E; a2 + 2. In particular, if an + an+l = an+2 holds for all
n &#x3E; 1, then

Suppose that

Noting that = 2 if and only if

holds for some i &#x3E; no, we get

where

It follows from (4.9) that

which implies
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Hence, we get

.- .. I -

In view of the above formulae, we can show Remarks 4.3, 4.4.

Remark 4.3. If there exists an infinite set ,S C N for a fixed positive
number 6 such that

and

then,

Remark 4.4. If to infinity, then = 1. For
a l +...+an n

instance, the word over {0,1 } defined by the digits in the base 2 expansion
of a Liouville number rool 2-nl has this property.

Example 4.2.

which implies

since the identities

.. ", i " - , i

hold. It is remarkable that the example shares a common phenome-
non with a word different from *-Sturmian words: for the word gen-
erated by the catenative formula BnlBn, (n 2:: 0, Bo := 0),
hm infn-+ p n = 3 2 and limsuPnoo  n = 5 3 hold, cf. Proposition
11 in [6].
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Using the above formula, we can show

(iii) For any recurrence sequence ~an ~~-1,2,... with x2 - x - 1 as its
characteristic polynomial and satisfying 0  al  a2,

In particular,

Theorem 4.3. Let W be a word given by (4.1) with 0 ~ ai  a2  ...

and na (a &#x3E; 1). Then p(n; W) x 
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Proof. We suppose c¡nQ  an  c2nc. (4.8) implies

Therefore p(n; W ) ~ nl+l/a holds. C~

Theorem 4.4. Let k &#x3E;_ 2 be an integer, and a linear recurrence

se q uence with x k - x - 1 as its characteristic pol ynorraial, defined by the
initial condition:

Let W be the word defined by



797

Then p(n; W) is given by the following, so that

where c is a non-positive constant, and c = 0 onl y if k = 2, tl = t2 = 1.

Proof. By definition

Noting , and we

get b~  bn...~l (n &#x3E; 1) inductively, so that

Hence the word W satisfies the condition in Theorem 4.1. We denote by
~, q) the interval {7~ E N; p  m  q}. In view of Theorem 4.1, we have

where

Hence , where X denotes the
closure of a set .
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Fig. 2.

Thus, it is clear that the number of intervals Ji containing n is equal
to k - 1 for all n &#x3E; which together with (4.10) implies dn = k

+ 1 ) . Counting the number of intervals Ji that contain n with
1nbk,weget

Hence, we obtain is
, so that the assertion

holds for j = 1. By induction on j, we can easily show that the assertion
holds for all j , 1  j  k -1. Recalling d n = k ( n &#x3E; b~ + 1), we obtain

so that c  0, and c = 0 implies k = 2, tl = t2 = 1, which completes the
proof. 0

Example 4.3. Let W = W(k; tl, ... , tk) be as in Theorem 4.4. Then

~(n; W (2;1,1)) - 2n (n &#x3E; 1), p(n; W(2; 1, 2)) = 2n - 1 (n &#x3E; 3),
p(n; W (2; 2, 1)) = 2n - 1 (~ &#x3E; 2), p(n; W (3; 3,1,1)) = 3(n - 3) (~c &#x3E; 6).
Related to linear complexity p(n) = an + b, there are some results. S. Fer-
enczi considered a class of words generated by a locally catenative formula
Bn+l = (n &#x3E; 0, Bo := 0), and considered the complexity of the
word limBn, cf. [6]. P. Arnoux and G. Rauzy investigated a class of
words, having p(n) = 2n + 1 as their complexity, given by an interval ex-
change of some intervals; G. Rote showed that a word @1 @2 ... defined by
On = + c}) always has complexity p((n) = 2n, where 1.1 denotes
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the fractional part of a real number, and the characteristic function

equal to 1 (resp. 0) for x E J (resp. x ~ J), cf. [2], [12].

Let us consider the word given by (4.1). If an is bounded, then W
is an ultimately periodic word, which is not an interesting case. If an is

unbounded, then without loss of generality, we can write

Theorem 4.5. Let W be the word given by (4.11). Then

Proof. For the set defined by (4.2), we have the identity (4.3). We
write u « v (resp. u ~s v) if u is a subword (resp. a suffix) of v for
u,v E D(W). Let v E D(W) with

Then, v occurs only once in W, so that v 0 B(W ), where B(W) is the set
given by (4.2). Hence w E B(W) imphes w « for some i &#x3E; 1.
In addition, if w E B(W) with 1, then l0ai «s w for some i &#x3E; 1.

Hence,

which implies

where
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Noting that the right-hand side of the above equality is a disjoint union,
we obtain by (4.3)

which implies the theorem.

In view of Theorem 4.5, for dn (W) := p(n; W) - p(n - 1; W ), we have

where W’ = 10~ 10"~ 10~ .. -, and

Example 4.4.

From (4.7),

follows, where d~ = Hence, we get
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(ii) Let W be the word (4.1) with en = 2 (n &#x3E; 1) and an as in Example
4.2.(iii) such that al = 1, a2 = 2. Then

so that

5. Estimate of the complexity function of *-Sturmian words

Related to the bounds of the usual complexity of *-Sturmian words, we
can show the following Theorems 5.1, 5.2.

Theorem 5.1. Any *-Sturmian word W is deterministic, i. e.,

Proof. If W is ultimately periodic, then p(n) is bounded, so that we ob-
tain the theorem. We suppose that W is not ultimately periodic. Then,
Theorem 2.6 implies that there exists an infinite sequence ~kn ~n=1,2,... such
that

see the notation in (iii), Theorem 2.6. We put

Since is a finite word strictly over for m &#x3E; k, we can write

where Po, Pl, - - - E We suppose that I Bk &#x3E; (If  

we will have a similar proof.) We denote by T the set of all finite sets of
integers. Let n be a positive integer. We define a map A : D(n; W’) -~
N x T as follows. For A E D(n; W’), we denote by T(A) the set

We choose a (j’,l’) E T(A) such that

and we put h := P~~ ~ ~ ~ Pi, = PAP’}. We define 0(A) by
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where

It is not diflicult to show that the map A is injective and

where

The condition in the definition of ~’ implies that

Therefore, we have

which implies

On the other hand, we get

Noting -~ oo, (1~ -~ oo), we obtain the theorem. 0

Theorem 5.2. For any small positive number e there exists a *-Sturmian
word U such that p(U; n) &#x3E; 2n’-" holds for all sufficiently large integer n.

We need a lemma for the proof of Theorem 5.2.

Lemma 5.1. Let k¡,k2,...,kn E {0,1}~ and An, Bn be as in Definition
2.4. If kn = 1, then there exist words P, Q such that An = POQ, Bn = Pl,
i. e., y An Bn An .

Proof. The first letter of An is 0 and the last letter of Bn is 1. We shall

prove the lemma by induction on n. When n = 1, we have A, = 01, B¡ = 1,
so that the lemma holds with P = A, Q = 1. Let A’ = b~2 (0), B’ =
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Jk2o ... o akn (1). By the induction hypothesis, there exist words P’, Q’ so
that A’ = = P’l. If ki = 0, then

Since the first letter of 6o(Q’) is 0, setting P = 60(Pl)o, we get the lemma.
If kl = 1, then

Setting P = bl (P’), we get the lemma. 0

Proof of Theorem 5.2. Let wi = 0 ~ ~ ~ 0, W2 = 0 ~ ~ ~ O1, ... , z,v2n = 1 ~ ~ ~ 1

be all elements of Ln ordered in lexicographic order. We put W(n) =
Let A?i, A?2,..., &#x26;m?... ~ {0,1} and km = 1 for infinitely

many m. We set

where N,n E N (m &#x3E; 1). By virtue of Theorem 2.6, U is a *-Sturmian word.
We suppose km = 1. Since iJk, ° · ~ ’ o Jk_ (1) 1  Idkl o ... o dkm (0) I = I AmI ,

for any w E By Lemma 5.1, for w~ E LNm , 6k~ fl p

have shown that = 1 implies p(U; 2Nm . Taking a sufficiently
large integer m with = 1, we can choose integers N = and n = n(m)

Since ki = 1 for infinitely many i, p(U; n) &#x3E; 2nl-E holds for infinitely
many n. In particular, if l~z = 1 for all i, then m + 1 for all m

denotes the interval ~x E N; p  x  q~. Therefore, there exists m such

that 2 (m + 1 ) E &#x3E; n &#x3E; 2 - 4 (m + 1) Ë for any sufficiently large n, which
implies the theorem. 0
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