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x-Sturmian words and complexity

par Izumi NAKASHIMA, JuN-icHI TAMURA et SHIN-ICHI
YASUTOMI

RESUME. Nous définissons des notions analogues & la complexité
p(n) et aux mots Sturmiens qui sont appelées respectivement *-
complexité p.(n) et mots *-Sturmiens. Nous démontrons que la
classe des mots *-Sturmiens coincide avec la classe des mots sa-
tisfaisant & p«(n) < n + 1 et nous déterminons la structure des
mots *-Sturmiens. Pour une classe de mots satisfaisant & p.(n) =
n + 1, nous donnons une formule générale et une borne supérieure
pour p(n). En utilisant cette formule générale, nous donnons des
formules explicites pour p(n) pour certains mots appartenant &
cette classe. En général, p(n) peut prendre des valeurs élevées, a
savoir p(n) > gn'”* pour certains mots *-Sturmiens. Cependant
P’entropie topologique de n’importe quel mot *-Sturmien est nulle.

ABSTRACT. We give analogs of the complexity p(n) and of Stur-
mian words which are called respectively the *-complexity p.(n)
and *-Sturmian words. We show that the class of *-Sturmian
words coincides with the class of words satisfying p.(n) < n +1,
and we determine the structure of *-Sturmian words. For a class
of words satisfying p.(n) = n + 1, we give a general formula and
an upper bound for p(n). Using this general formula, we give ex-
plicit formulae for p(n) for some words belonging to this class. In
general, p(n) can take large values, namely, p(n) > 27" holds for
some *-Sturmian words; however the topological entropy of any
*-Sturmian word is zero.

1. Introduction

We announced results about *-Sturmian words as analogs of Sturmian
words in [11]. In this paper, we give proofs for all the results given there
together with some additional results. We define some notations. Let L be
an alphabet, i.e., a non-empty finite set of letters. We denote by L™ the set
of all finite words of length n over L, L* denotes the set |J,>, L™, where
L% = {)\} and ) is the empty word. N (resp. N ) is the set of right-
sided (resp. left-sided) infinite words over L. We define an equivalence

Manuscrit regu le 27 juillet 1999.
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relation ~ on the set LZ by: W1 ~ Wy (where Wy, W, € Lz ) if there
exists an integer y such that

Wi(z +y) =Wy(z) forallze€ Z.

We mean by a two-sided infinite word over L an element of the set Lz ] ~.
We say that W € Lz | ~ is purely periodic if W(z + y) = W(z) for
all z € Z for some fixed positive integer y. If W = wywg--- € N (resp.
W=-..cw_ow_; € L—N) satisfy
(1.1) Wi = Witn
for any sufficiently large (resp. small) ¢ with some fixed positive integer n,
we say that W is ultimately periodic with period n. The least period n of
W is called its fundamental period and for sufficiently large (resp. small)
i, the word w;41 - - - Wity is also called a fundamental period. Especially, if
(1.1) holds for all integer i > 0 (resp. i < —n), we say that W is purely
periodic.

For any W = -+ wj41 -+ Wipn -+ € L := L* ULN UL‘NULZ/ ~
(where w; € L, n > 0), the word wj4; - - - Wi4n is called a subword of W.
Definition 1.1. We define D(W) := {V,;V is a subword of W} and
D(n;W):=DW)NL™ (n>0).

Definition 1.2. The complezity of a word W € L" is the function that
counts the number of elements of D(n; W):

p(n) = p(n; W) :=§D(n; W).

For W = --.w;--- € LNUL‘NULZ/ ~, we say that a subword
W = Wit1 " Witn (0 > 0) of W is a x-subword of W if w occurs infinitely
many times in W, i.e.,

Wij 41 Wij4n = Witl " Witn
forig <ig < --- (Ol‘ R &) <’i1).
Definition 1.3. We define D,(W) := {V;V is a x-subword of W} and
D,(n;W) := D, (W)U L™
Definition 1.4. The *-complezity of a word W € L" is the function that
counts the number of elements of Dy(n; W):

Ps(n) = pu(n; W) := § Dy (n; W).

In general, p(n; W) > p.(n; W) holds for all W € tNur-Nuyr2 | ~.
We remark that p(n; W) = p.(n; W) holds for billiard words W (also called
cutting sequences) of dimension s, which are defined by billiards in the cube
of dimension s with totally irrational direction v € R* (for the definition
of these words, see [1] and [3]). This fact follows from Kronecker’s theorem
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related to the distribution of the sequence {vn mod 1}p=12... It is well
known that billiard words of dimension s = 1 coincide with Sturmian words
defined below with some exceptions (for example, see [8]).

In what follows we assume that L = {0,1}.

Definition 1.5. 4 word W € LN UL-N ULZ/ ~ is Sturmian, if W
satisfies

[[AlL =Bl <1
for any A,B € D(n;W) for all n > 0, where |w|; denotes the number of
occurrences of the symbol 1 appearing in the word w € L*, cf. [10].

Remark 1.1. We should use the term “balanced” instead of “Sturmian” if
we followed the usual terminology. Note that the terminology “Sturmian”
is used in the recent literature for the words whose complexity function
is p(n) = n + 1; however we follow the terminology given by Morse and
Hedlund in [9, 10], since they started from Definition 1.5 and showed that
any Sturmian word has complexity function p(n) = n + 1 under a minor
condition, and since our results for *-Sturmian given in Section 2 will be
parallel to their results.

A *-Sturmian word W is defined to be a word satisfying the condition
with D,(n; W) in place of D(n; W) in the definition above, i.e.,

Definition 1.6. A *-Sturmian word is defined to be a word W € Nu
L-Nur? | ~ satisfying

Al = |Bl1] <1
for any A, B € Dy(n; W) for alln > 0.

*-Sturmian words have been considered by a number of authors (see
[4] and its references). There are some classical and well-known results
on Sturmian words and words satisfying p(n) < n + 1 given by Morse,

Hedlund and Coven, Hedlund. It is known that p(ng; W) < ng (W € N )

for some ngy implies that W is ultimately periodic and any W € Lz / ~
with p(ng; W) < ng for some ng is always purely periodic (see [9]). The
class of words satisfying p(n) < n + 1 coincides with the class of Sturmian
words with some explicit exceptions, cf. Theorems 2.1, 2.4, 2.5 below.
Furthermore the authors above give a concrete description of Sturmian
words, cf. Theorems 2.2, 2.3.

In this paper, we show that the class of *-Sturmian words coincides with
the class of words satisfying p«(n) < n + 1, cf. Theorems 2.6, 2.8. We
also describe the structure of *-Sturmian words in a constructive manner.
In [13] Yasutomi introduced super Bernoulli sequences as a generalization
of Sturmian words. Super Bernoulli sequences coincide with *-Sturmian

\
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words in specific cases. But in [13] super Bernoulli sequences are not given
in a constructive manner.

For completeness, we give our results (Theorems 2.6-2.11) together with
classical results (Theorems 2.1-2.5) in Section 2. In Section 3, we give the
proofs of Theorems 2.6-2.11.

For a class of words given by

W=10a110a21003'-', 0<ai1<az<ag---,

which satisfy p.(n; W) = n + 1, we give a general formula for p(n; W) and
an upper bound: p(n; W) < 1‘;} +2+44 g-_lgf_l -13+2)71 (n>0),
cf. Theorems 4.1, 4.2 in Section 4. Using the general formula, we give
explicit formulae p(n; W) = kn + ¢ for some words belonging to this class
and sufficiently large n, where k and c are constants, cf. Theorem 4.4. Also,
using the general formula, there exist a word W and constants c¢; and cy,
such that ¢;n't1/® < p(n; W) < ean!*1/@ for any given a > 1, cf. Theorem
4.3.

For a more general class of words given by (4.11), we can also give a
general formula for p(n; W), cf. Theorem 4.5 in Section 4.

In general, for W satisfying p.(n; W) < n + 1, p(n; W) can take large
values, namely, p(n; W) > 27" holds for some W, cf. Theorem 5.2. On the
other hand, any *-Sturmian word W is deterministic, i.e., the topological

log p(n; W)

entropy hm of W is zero, cf. Theorem 5.1. We give Theorems

5.1-5.2 together w1th their proofs in Section 5.

2. Characterization of Sturmian words and *-Sturmian words
2.1. Sturmian words. We put

W) = A d dmWw):= M.
O'(TL,W) Aerg(arf;(W)I Il an U(n’W) AeD(n W)lAll (WGL)

Theorem 2.1 (Morse and Hedlund [10]). If W is a one-sided or two-sided
infinite Sturmian word, then p(n;W) < n + 1, and the density
a= lim a("’? W) li ,( 7 )

n—oo n n—>00

exists.

Now, we classify one-sided or two-sided infinite Sturmian words as fol-
lows:
(Type I) : o is irrational,
(Type II) :q is rational and W is purely periodic,
(Type III) :a is rational and W is not purely periodic.

It is known that each case can occur. The words of Type III are referred
to as skew Sturmian words.
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Definition 2.1. Let 0 < a < 1 and B be real numbers. We define
G(n;a,B) := |(n+ 1)a+ 8] — |na+ 8] and G'(n;,B8) := [(n+ Do+
Bl — [na+ B, where |z] is the greatest integer which does not ezceed x and
[z] is the least integer which is not smaller than x. Obviously G(n;c, B),
G'(n;a,pB) € {0,1}. A word G(a, f) is defined by
G(aa :B) = G(07 a, /B)G(la a, ﬂ)G(Z, a, ﬁ) e G(na a, .B) .
Similarly, G'(a, B) is defined by using G'(n;, B). We set G(a) := G(a,0),
G'(a) := G'(a,0), G(n; @) := G(n;a,0) and G'(n; a) := G'(n; ,0).
If « is rational, G(a, §) is obviously purely periodic.

Definition 2.2. Let a be a rational number with 0 < a < 1. For a # 0,1
we define S(a),S'(a) € )24 / ~ as follows:

S(a) =...s(a)-1s(a)o...s(@)n ...,

where _J [(n+1)a] —[na] if (n+1)a<]l,
“M"—{[m+1my-mﬂ if (n+la>1,
and
S'(a) =...5(a)-15'(a)o...s'(@)n ...,
where

yw)z{uwHMLﬂmJ if (n+la<l,
n [(n+1)a] - [na] i (n+1)a>1.

For a = 0,1 we define S(0),5'(1) by
S(0) =...5(0)-18(0)g...5(0)n ...,
S'(1)=...s(1)=15(1)p..-5(1)n-..,

where
_J 0 if n#o0,
sw%‘{l if n=0,
! — 1 if n # 0:
suh‘{o if n=0,

and we define S'(0) = S(0) and S(1) = S'(1).
Theorem 2.2 (Morse and Hedlund [10]). If a is irrational (resp. rational),

then G(a,B) and G'(a, B) are Sturmian words of Type I (resp. Type II).

Conversely,( if W e LN s o Sturmian word of type I or II with density
o(n,W)

a= lim
n—o00

n
W =G'(a,B).

, there exists a real number B8 such that W = G(a, ) or



772 Izumi NAKASHIMA, Jun-ichi TAMURA, Shin-ichi YASuTOMI

Theorem 2.3 (Morse and Hedlund [10]).

(I) Let W be a two-sided infinite skew Sturmian word with density o =
g (p, ¢ € Z, (p,q) =1). Then W is represented by W = --- AA--.
AACBB---BB--- (A,B,C € L) with |A|; = |B|1 =p, and |C|; =p—1
orp+ 1.

(II) Let W be a two-sided infinite skew Sturmian word with density a =
5 (p, g€ Z, (p,q)=1). Then, W = S(a) or W = S'(c). Conversely, for
each rational number a with 0 < a < 1, S(a) and S'(c) are skew Sturmian
words.

(III) Let D be a finite word and assume that the one-sided infinite word
W =DD-.--DD--- is Sturmian. Then W can be extended to a two-sided
infinite skew Sturmian word.

The converse of the assertion given in Theorem 2.1 does not hold, but the
words W € L satisfying p(n; W) < n+1 for all n € N are characterized
by Coven and Hedlund, in particular, they showed the following

Theorem 2.4 (Coven and Hedlund [5]). Let W be a one-sided infinite word
and p(n;W)=n+1 for alln > 0. Then W is a Sturmian word.

Theorem 2.5 (Coven and Hedlund [5]). Let W be a two-sided infinite word
and p(n; W) = n+1 for all n > 0 that is not Sturmian. Then there exist
a number m > 0 and a word B € D(m; W) such that

(1) Both 0BO and 1B1 belong to D(m + 2; W) and one and only one of
0B1 and 1BO0 belongs to D(m + 2; W), so that aBa' € D(m + 2; W)
and a’Ba & D(m + 2;W) with a # o' (a,d’ € L).

(2) aBa' occurs ezxactly once in W.

(8) If aBd' = x; -+ Tiym1, then
(8a) Wr = ziy1Tiq2 -+ is purely periodic and Sturmian and i+ 1 is

the least integer such that z;y1T;y2 - is purely periodic.

(8b) Wi, = -+ - Tiym—1Titm 18 purely periodic and Sturmian and i+m
s the greatest integer such that - - Tiym—1Ziym s purely peri-
odic.

(4) Iflg,lL are the lengths of the shortest periods of Wg, W, respectively,
thenlp+1l, =m+2 and (Ig,l1) = 1.

2.2. *-Sturmian words. We give a characterization of *-Sturmian words
in terms of the *-complexity together with a description of *-Sturmian
words by which we can construct any *-Sturmian word in Theorems 2.6,
2.8 below. We need some definitions.

For A, B € L* we denote by {A, B}* the set

{A, B} :={w1 - wp; w; = A or B, n> 0}

We say a word W € {a, b}* is strictly over {a, b} if both a and b eventually
occur in W. The notation w* (resp. *w) (A # w € L*) stands for the word



*-Sturmian words and complezity 773

w* = www--- € LIV (resp. *w :=---www € L"N), w" (n € N, w€ L*)
is the word w™ := vyvg - - - v, where v; = w for all ;. We mean by *vw (resp.
vw*) the word (*v)w (resp. v(w*)).

Definition 2.3. We define the substitutions &p, 01 by

5. {0 =0 5.[0 = 0
0°Y1 - 01 11 = 1 °

Ok can be eztended to L" by
8e(W) i= -0y

for W =---w;--- € L. The map & : L™ — L" is injective. Hence we can
write B = 65 ' (A) if A= 6x(B), (A,B € L").

It is known that Sturmian words have deep relations with substitutions
(see [4]).

Definition 2.4. For kj,...,ki € {0,1}, we define A; = A(ky,...,k) :=
O, ©-++00k;(0), B = B(k1,...,ki) := 0, 0--- 06, (1) (Ag :=0, By:=1).

Let z be a rational number with 0 < z < 1. The two-sided infinite

words G(z) and G(z) are defined in [13] as follows (G(0) and G(1) are not
defined). Recall the definition of G(:), cf. Definition 2.1.

Definition 2.5. If z is a rational number, 0 < z =n/m < 1, ((n,m) = 1),
let = n/m denotes the greatest number satisfying £ > z and m < m. We
define

G(z) = -+ G(-3;2)G(-2; 2)G(-1;2)G(0; 2)G(1; 2) - - - G(m — 15 2) G(z).

Definition 2.6. If z is a rational number, 0 < z =n/m < 1, ((n,m) = 1),
let T = m/m denotes the least number satisfying x < T and m < m. We
define

G(z) = ---G(-3;)G(-2;2)G(-1;2)G(0; T)G(1;Z) - - - G(W — 1;Z)G ().

We see that S(z) = G(z) and S'(z) = G(x) with some exceptions (see
Section 3).

Definition 2.7. For W € LN uL-N ULZ/ ~ and z € [0, 1], we define
the following conditions

(C1) D.(W)= D(G(z)),

(C2) D.(W)= D(G(z)) withze€ Q and z #0,

(C3) D.(W) = D(G(z)) withz € Q and z # 1,
where D(-) and D,(-) are defined in Definition 1.1 and Definition 1.3 re-
spectively.
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Remark 2.1. Words which satisfy one of the conditions (C1)—(C3) are
super Bernoulli words. Super Bernoulli words play an important role for
Markov spectra as shown in [13]. For any z € [0,1], G(z) is a super
Bernoulli word that satisfies Condition (C1).

Theorem 2.6. Let W € LN. Then the following four conditions are equiv-
alent:
(i) W is x-Sturmian.
(i) p«(n; W) <n+1 for alln > 0.
(iii) There exists a finite or infinite sequence k = {k1,k2,...,ki...}, ki €
{0,1} which satisfies the following equation,

W_{uoul---u,----, (k is infinite),

T | wA] or wB}, (s is finite),
where A; = A(ky,--- , ki), B; = B(ky,--- ,k;) are the words given in
Definition 2.4, ug € L*, and each u; is a certain finite word strictly
over {A;, B;} for alli > 0.

(iv) W satisfies one of the conditions (C1), (C2) or (C3) in Definition
2.7.

Remark 2.2. In condition (iii), if p.(m;W) = m + 1 for any m, then
W = wouy---u;---. If po(m;W) < m + 1 for some m, then W = oA}
or upB; for some i and p.(n; W) is bounded. In condition (iv), if z is an
irrational number or W satisfies Condition (C2) or (C3) in Definition 2.7,
then p,(n; W) = n +1 for all n. If z is a rational number and W satisfies
condition (C1) in Definition 2.7, then p.(n; W) is bounded.

Theorem 2.7. Let W = wyws... € LN be -Sturmian. Then there ezists
a = lim ﬂ’:;—wl = lim ﬂﬂnim, and one of the conditions (C1)-(C8) in
n—o0 n—oo
Definition 2.7 holds with z = a.
We give an example.
Example 2.1. Let W = 010210310410°1 - - -. Then, we see that
(2.1) D,(m; W) = {0'10™|l,m > 0, + m = n — 1} U {0"}.

By Definition 1.6 we see that W is *-Sturmian and p,(n; W) = n+ 1. Let
ki=0fori=12,... and A; = A(ky,--- ,ki), B; = B(k1,--- ,ki) be the
words given in Definition 2.4. Then, we have 4; = 0, B; = 0°~!1. Thus,
we have

W= A131A2.B2A3B3 see
On the other hand, we have lim,,_, ﬂnn_W) = lim,, 00 i(':t_Wl = 0. Using

(2.1) and G(0) = ---0001000- - - , W satisfies Condition (C3) with z = 0 in
Definition 2.7.
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Theorem 2.8. Let W € L%Z. Then the following three conditions are
equivalent:
(i) W is x-Sturmian.
(i) There exists a finite or infinite sequence k = {ki,ko,...,ki,...},
k; € {0,1} such that W has one of the following representations.
(1) W=---u_;---u_jupus -+ u;---, Kk s an infinite sequence,
(2) W = ---u_i---u_lqu’;, K s an infinite sequence and k; = 0
for all i > j,
(3) W =*Ajupuy ---u;---, K is an infinite sequence and k; = 0 for
alli > j,
(4)W=--u_-- u_1uBj, £ is an infinite sequence and k; = 1
for alli> j,
(5) W =*Bjuguy - --u;- -+, K is an infinite sequence and k; =1 for

(6) W =*AjuoAj, K is a finite sequence and k;j is its final term,
(7) W =*BjugBj, & is a finite sequence and k; is its final term,
where A; = A(k1,- - ,ki), Bi = B(ki,:-- ,k;) are the words given in
Definition 2.4 and u; and u—; are certain finite words strictly over
{Ai, B;} for i >0 and ug € L*.

(111) W satisfies one of the conditions (C1), (C2) or (C8) in Definition

2.7
Theorem 2.9. Let W = ... w_jwowiwsy... € L% be %-Sturmian. Then
there ezists & = lim Z8%) = Lim @Vl, and one of the conditions (C1)-

n—oo N n—00

(C3) holds with z = a.

Theorem 2.10. Let W € LZ be a *-Sturmian word. Then, p,(n;W) <
n+1 foralln > 0.

We give an example.

Example 2.2. Let W; =%0010210%1--- and Wy = --- 0310210102101 ---.
Then, we see that

(2.2) D,(n; W) = {0'10™|l,m > 0,l + m = n — 1} U {0O"}.

By Definition 1.6 we see that W; and W, are *-Sturmian and p.(n; W;) =
p«(n;Wa) = n+1. Let k; =0 fori = 1,2,... and A; = A(ky,- - ,k;),
B; = B(ky,--- ,k;) be the words given in Definition 2.4. Then, we have
A; =0, B; = 0""!1. Thus, we have

W, =*A1A1B1A2B2A3B3 s, Wo=-- A3B3A232A1A131A232A3B3 v,

On the other hand, we have lim,,_,q i("nﬂ = lim, 00 ﬂ’%}ﬂl = 0 for
i = 1,2. Using (2.2) and G(0) = ---0001000---, W; (i = 1,2) satisfies
Condition (C3) with z = 0 in Definition 2.7.
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Theorem 2.11. Let W € LZ. Suppose that p,(n;W) < n+1 for alln >0
and W is not a *-Sturmian word. Then, there ezists a finile sequence
{ki}]_,, and a word ug € L* such that
W ="AjuoB;, or Bjuo4;,
where A; = A(ky,--- ,k;), Bj = B(k1,--- ,k;) are the words given in Def-
inition 2.4.
We give an example.

Example 2.3. Let W =01*. Then, we have
D,(n; W) = {0",1"}.
We see easily that p.(n; W) =2 and W is not *-Sturmian.

3. Lemmas and the proof of Theorems 2.6-2.11
3.1. A dynamical system. We need some definitions to state lemmas.

Definition 3.1. Let Iy := [0,1/2], I := (1/2,1], ¢o(z) := ;35 € I,
$1(z) == 7= € L U{1/2} (z € [0,1]). Let T denotes the transformation
on [0,1] defined by

_f #l=) if zel,
7= { ) §IER

The above ¢g,¢; and T have an important role in our paper. The fol-
lowing lemma gives a connection between ¢; and ¢; for i« = 0,1. We give a
proof of Lemma 3.1 for completeness.

Lemma 3.1 (Ito, Yasutomi [7]). For any z € [0, 1], the equality G(¢i(z)) =
0;G(z) (i € {0,1}) holds.

Proof. First, let us show G(¢o(z)) = dpG(z). If z = 0,1, then we see easily
that the equality holds. Let z #0,1. Let U = [-1,0), Up = [-1,—z) and
Uy = [-z,0). We define a transformation F on U as follows: for y € U

_Jytz if ye Uy,
F@”‘{y+x—1ifyevy

We define an infinite word jyj;...Jn ... by

. 1 if F*(-1)eln,
=0 if Fr(-1) e Up.

Let us show that G(m;z) = 1 if and only if F™(—1) € U; for some non-
negative integer m. First, we suppose G(m;z) = 1. Then, from Definition
(2.1) we see that mz < |(m + 1)z] < (m + 1)z. Therefore, we have
mz — [(m + 1)z] € U;. On the other hand, it is not difficult to see that
F™(-1) — mz € Z. Therefore, F™(-1) = mz — |(m+1)z] and F™(-1) €
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U,. Next, we suppose G(m; z) = 0. Then, similarly, we have F™(-1) € Uj.
Thus, we have G(z) = joj1 .- -

Let V = [-1,z), Vp = [~1,0) and V; = [0,z). We define a transforma-
tion hg on V as follows: fory € V

_Jy+z if yel,
ho(y)'_{y-—l if yeW.

We define an infinite word j959...5%... by

o [ 1 if h3(-1)eWn,
=N 0 i RR(-1) € Vh.

Then, we see that

(1) if y € Uy, then y € Vg and F(y) = ho(y),
(2) if y € Uy, then y € Vg, ho(y) € V1 and hf(y) = F(y).

Therefore, we have do(joj1..-) = jojd.... On the other hand, by using
a map © from V to [-1,0) defined by ©(y) = £33, the dynamical sys-
tem (V, ho) is equivalent to the dynamical system ([—1,0),hy) where the
transformation hj on ©(V) is defined as follows: for y € V

Loy + if ye®(W)=[-1,-a),
0(y) = { Z.,.z_ 1 if Ze e(V(l)) = %—a,o),

where a = %;. Similarly we have G(a) = j§j7.... Thus, we have

do(G(z)) = G(357)-

Secondly, let us show G(¢1(z)) = 6:1G(z). Let V! = [-1,1 —z), Vj =
[-1,—z) and V] = [-z,1 — z). We define a transformation h; on V' as
follows: for y € V'

_fy+1 i yeV,
ha(y) = { y+z—-1 if yeV].

We define an infinite word j3j}...7%... by

1. [ 1 if hg(-1) eV,
n =10 if AR(-1) € V.

We see that

(1) if y € Uy, then y € V§, ha(y) € V{ and h3(y) = F(y),
(2) if y € Uy, then y € V{ and hy(y) = F(y).

Therefore, we have 8;(joj1...) = jdji.... Similarly we have jljl... =
G(z%). Thus, we have G(¢1(z)) = 61G (). O

The following Lemma 3.2 is obtained from Lemma 3.1.
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Lemma 3.2 (Ito, Yasutomi [7]). The following diagrams commute for
k=0,1;
01y <5 w 1 < w

R R
I —G—-) We I <, Wi
where W (resp. Wy) is the image of [0,1] (resp. I;) by G.

The assertion obtained by replacing, respectively, I, and T by Iy and T
in Lemma 3.2 can be shown in the same way as in [7].

Definition 3.2 (Itinerary of a real number). We define the itinerary of
z € [0,1] to be the sequence {in}3, given by

) g
(= o i { 0 4 T

Lemma 3.3. If z € [0,1] is an irrational number, then 0 and 1 occur
infinitely many times in its itinerary. If z # 0 is a rational number, then
there erists a natural number j such that T'(z) = 1 and i;(z) = 1 for any
natural number [ > j.

Proof. Let z € [0, 1] be an irrational number. We suppose that 0 or 1 does
not occur infinitely many times in its itinerary. First, we suppose that 1
does not occur infinitely many times in its itinerary. Then, there exists an
integer k > 0 such that i, = 0 for each n > k. Let n > k. On the other
hand, from Definition 3.2 and Lemma 3.2

T*(z) = i 0+ © i,y © 6:, T"(2).

Therefore, T*1(z) € ¢p~%*1([0,1]). We see easily that ¢7~*+1([0,1]) =
[0, 7=k53)- Since T*~1(z) € N[0, 7=f=3), T* () = 0. From Definition
3.2 and Lemma 3.2 we have
T=¢;o0:-0 ¢,-k_.1T'°‘1(:c).

Therefore, z € Q. But this contradicts the assumption. Thus, 1 occurs
infinitely many times in the itinerary of z. Similarly we see that 0 occurs
infinitely many times in the itinerary of z. Secondly, let z € (0,1] be a
rational number. We set z = 5, where p,q € Z and p > 0,q > 0 and
p and q are relatively prime. We shall prove the lemma by induction on
q. Let ¢ = 1. Then, z = 1. We see easily that i, = 1 for any integer
n > 0. Next, we suppose that ¢ > 1 and the lemma holds for each y € (0, 1]
whose denominator is less than g. Let z be in Ip. Then, T(z) = {5 = L.
Since the denominator of T'(z) is less than z, from the induction hypothesis
there exists an integer j such that ¢;(T'(z)) = 1 for any integer [ with [ > j.
Therefore, we have 7;(z) = 1 for any integer | with [ > j 4+ 1. Secondly,
let z be in ;. Then, T(z) = 331?7—1 = 2%‘1. Since the denominator of T'(z)
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is less than z, from the induction hypothesis there exists an integer j such
that #;(T'(z)) = 1 for any integer ! with [ > j. Therefore, we have ¢;(z) =1
for any integer [ with [ > j + 1. Thus, we have the lemma. O

Lemma 3.4. For any sequence {in}5; (in = 0,1) in which 0 and 1 occur
infinitely many times, there exists a unique irrational number x such that
{in}aZ1 = i(2).

Proof. For any positive integer n we set A, = ¢;; o --- 0 ¢;,[0,1]. Then,
Ay D Ay DAz D ---. Since [0,1] is a compact set, there exists an = such
that z € NS2;Ap. It is not difficult to see that i,(z) =14, forn =1,2,....
Let y € NS ;A,. Let us show that £ = y. We suppose that = # y. We
suppose that £ < y without loss of generality. Then, apparently, for any
z € [z,y], i(z) = i(z). Since QN [0,1] is dense in [0,1], there exists a
rational number 2’ such that z’ € [z,y]. Then Lemma 3.3 implies that
there exists a natural number j such that 4;(2’) = 1 for any natural number
! > j. But this is a contradiction. Thus, we have the lemma. O

Lemma 3.5. For any sequence {in}2,,(in = 0,1) in which 0 occurs
finitely many times, there ezists a rational number z # 0 such that
{in}gozl = 'I,(.’L').

Proof. If for all n > 1, i, = 1, then i,(1) = i, for all n > 0. We suppose
that 0 occurs in {i,}52 ;. Then, there exists an integer j > 1 such that
ij—1 = 0 and for any integer I > j, iy = 1. We set £ = ¢;, o--- o ¢;;_, (1).
Then we see that {i,}32; =i(z). O

Let~I~o =[0,1/2), I =[1/2,1]. We deﬁne~’1~’(x) as T(z) in Definition 3.1
with I; in place of I; (i = 0,1) and i(z) = {in}32;, (in = in(z)) is defined
in the same manner as i(z) in Definition 3.2 with T in place of T. Noting

T(z) = T(z), (z # 1/2), we can show the following

Lemma 3.6. If = is irrational, then i(z) = i(z). Ifz # 1 is a_rational
number, then there is a natural number j such that T'(z) = 0 and 4;(z) =0
for any natural number ! > j.

We remark that i(z) # i(x) if z (# 0,1) is a rational number. The proof
of the following lemma is similar to the proof of Lemma 3.5.

Lemma 3.7. For any sequence {in}32,; in which 1 occurs finitely many
times, there ezists a rational number x # 1 such that i(z) = {i,}52;.

Lemma 3.8. Let = be a rational number with 0 < z < 1. Let {in}32; =
i(z) and {i,}2, = i(z). Let for any integer n > 0

An:‘silo"'o‘sin(o)’ Bn=5,;10---0<5,;n(1),
A, =0y 000y (0), B, =6y 0---0d(1),
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and Ag =0,By =1, Aj =0 and By = 1. Let j > 0 be the least integer such
that iy = 1 for any | with | > j. Let j' > 0 be the least integer such that
i= 0 for any l with | > j'. Then, if z #0, G(z) ="B;A;Bj; and if z # 1,
G(.’L‘) =*A.’7-/B;-IA3-’*-

Proof. Let £ # 0. We set z = g where p > 0 and ¢ > 0 are integers and
(p,q) = 1. Let us show that (|An|,|An|1) =1 and (|By|,|Bnr|1) = 1. From

An=6i1°"'°6in(0)’ Bn:‘silo"'o&in(l)’

it follows

|An|  |Bnl
= MoM;, --- M;
( lAnll IBnll 04vigy tn)

11 10
M0=(01) and M]_=(11).

Therefore, we get
(3.1) |An||Brly = |Bn||An] = 1.

On the other hand, Lemma 3.2 implies G(z) = d;, o - - - 0 §;, (G(T™(x)) for
any integer n > 0. Since T*(z) =1 for k > j, we see that

(3-2) G(z) = d;; 0-++06;;(G(1)) = 6;; 0 -+ 0 6;;(1%) = B;.
On the other hand, from the definition of G(z)

where

(33)  G(z) = G(0;z)G(L;z) - = (G(o;:i)G(l; §>--~G(q— 1;5))*,

and

q-1
(34)  |G(; §)G(1; §) -Glg-1; %’)h - gw + 1>§J - ugJ =p.

Using (3.2), (3.3), (3.4) and the fact (| B;|,|B;|1) = 1 which is a consequence
of (3.1), we see that B; = G(0;2)G(1;2)---G(q — 1; ). Thus, |Bj| = ¢
and |Bj|; = p. On the other hand,

A} =5; 0---06;,(0") = G(¢i, 0 -~ 0 3;(0)).

We set %l = ¢, 0 -+- 0 ¢;,(0), where p’ > 0 and ¢’ > 0 are integers with

(¢',¢) = 1. Similarly, we have 4; = G(0; &)G(1; &) - - G(¢' - 1; ). Thus,
we see that |A;| = ¢/, |Aj|; =p'. Since j > 0 and i; = 0 for z # 1, we see
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that
|Bj| =163, 0+~ 06(1)]

=|0j;0---0 6ij-1(01)|

= |46 0+ 065;_, (1)]

> IAJI
Since j = 0 for z = 1, we have

|Bj| = |4;] =1.

Thus, we get that p > p’ and pg’ — gp’ = 1. Therefore, we obtain G(z) =
*BjA;Bj*. Similarly, we see that G(z) ="A}, B}, A" for z # 0. O

We show that G(z) = S(z) and G(z) = S'(z) hold with some exceptions
in the following lemma.
Lemma 3.9. Let z be a rational number with 0 < z < 1. Then, G(z) =
S(z) (z #1), and G(z) = S'(z) (z #0).

Proof. Let z # 1. Let us show G(z) = S(z). If z = 0, then we see easily
that G(z) = S(z). Let 0 < z < 1. We set z = g, where p > 0 and ¢ > 0

are integers with (p,q) = 1. Let p’ > 0 and ¢’ > 0 be integers with ¢ > p/
and p'q — p¢’ = 1. Then, from the definition of G(z)

Gz) = - G(~3;2)G(~2 2)G(~1;2)G(0: 1)G (1, B) - 6(d - 1: £)G(a).

First, let us show that for n < ¢ — ¢, 5(z)p = G(n+¢;z). Let n < ¢ —¢'.
Since, for any integer m, [(m+1)2] = [ms—] if and only if [(m+1)2 - %J =
[m2 - %j, we see that [(m +1)8] — [m2] = |(m +1)E - %J = |m2 - %J
On the other hand, using p'q — p¢’ = 1 we have

Glnt o) = |(n+d + 2] = |(n+d)7)
_ p_ L _,p_1
=L+ 1T =)= lnk -2l

Therefore, we get s(z), = G(n + ¢';z) for z such that (n + 1)z < 1.
Let (n+ 1)z > 1. Since 0 < n < ¢—¢ and np # 1 mod q, we have
nl—|nZ] > %. On the other hand, (¢ —¢')2 - [(¢ - ¢')2] = ;11-. Therefore,
we have (n+1)2 — |(n +1)2] > 7. Thus, we have

— {n+ 1P = |n2

s(z)n = [( +1)qJ lan
—m+nP L2 1
= [( +1)q qJ Lq qJ

= G(n+q';z).
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Secondly, let us show that s(m)n=G(n+q’—q;5’7) for n such that ¢ — ¢’ <
n<q Letn=q—-—¢+mwith0<m < q. Ifn#q—1, weget in the
same way . .
p p

$(z)p = [(m+1)=+ -] = [m=+—|.

(@) = ( )q ququ
On the other hand,

pl / pl

Gln+d ~ g 5) = |(m+ 1) 7] = ]

P p.p P p.p
=m+1)(E-=+2) - |m(= - +=
L( )(q, . q)J L (q, 7 q)J
p m+1 p m
= [(m+1)= + ——] - |m= + —].
u )q qq’ l q qq’J
Since (m+1)§+%,m§+% ¢ Z for m with 0 < m < ¢ — 1, s(z)p, =
G(n+q’—q;§,—') for m with 0 < m < ¢ — 1. Let m = ¢ — 1. Then,
3(z)n = s(z)g-1 = l92] — (¢ — 1)2] = 1. On the other hand, G(n +
qd - gq; ‘;’-:) =G(d -1; g) = 1. Hence, s(z), = G(n+ 4 —g; g;). We can
prove s(z), = G(n — ¢;z) for n > q in the same way. Thus, we obtain
G(z) = S(z) (e Lz / ~). We get G(z) = S'(z) similarly. O
3.2. Combinatorial considerations.

Lemma 3.10. Let W € LN be a word satisfying p.(m; W) = p.(m+1; W)
for some integer m > 0. Then we have

(i) pe(n; W) = pu(m; W) for any integer n > m,

(1) W is ultimately periodic.

Proof. (i) We suppose p.(m; W) = p,(m + 1;W) = l. Let Wq,Wa,..., W,
be all the words in D,(m,W). Then we can choose a; = 0 or 1 such
that a;W1,aaWs,...,a;W, are words in D,(m+1,W). On the other hand,
P«(m; W) = p.(m+1; W) yields that they are all the words in D, (m+1, W),
so that the [-tuple (@i, as2,...,a;) is uniquely determined.

Similarly, we can choose b; = 0 or 1 such that W1by, Wabs,..., W;b; are
all the words in D,(m + 1,W) and (b;,be,...,b;) is uniquely determined.
Obviously a3 Wib1,aaWabs,...,a;W;b; are all the words in D,(m + 2, W).
Then p.(m + 2; W) = l. By induction p,.(n) = p«(m) holds for any n > m.

Proof of Lemma 3.10, (ii). We assume that W satisfies p,(m; W) =
P«(m~+1;W). Any subword V belonging to D(m+1; W) but not belonging
to D,(m+1, W) occurs in W finitely many times. Hence taking sufficiently
large N, we may assume that V' is not a subword of U = wywn4; -+ -, ie.,
p(m + L;U) = p(m + 1;U) = I, p(m;U) = ps(m;U) = 1. Let U =
Uoarasz - -+, Uy € Dy(m,U), then, by the proof of (i) above, a;,as,... are
uniquely determined by Uj as subsequent symbols and Uy occurs in a1a3 - - -
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again, i.e., U = Upaiaz---Upajaz---. Hence U is purely periodic and
therefore W is ultimately periodic. O

By Lemma 3.10 we have the following remark.

Remark 3.1. Condition (ii) in Theorem 2.6 implies that we have the fol-
lowing two cases:

(i) pe(n;W)=n+1foralln > 1.

(ii) There exists a number m > 0 such that

p*(n;W)={ n+l n<m,

m n>m.
In Case (ii), W is ultimately periodic and D,(m; W) coincides with the
set of fundamental periods of W.

Lemma 3.11. Let p.(1;W) = 2 and p.(n; W) < n+1 for all n > 0 for
a word W = wywsg--+ € LY. Then there ezists some number m such that

there is an inverse image 05 - (WmWmt1 -+ ) and py(n; 6,:1 (wmwme1-++)) <
n+ 1 holds for all n > 0, where k € {0,1} is defined by

0 i 00€ D.(2,W),
k={ 1 if 1leD.(2,W),
0 otherwise.

Proof. The assumption implies p,(2; W) < 3. First, we consider the case
p«(2;W) = 2. Then D,(2,W) = {01,10}, which implies WWm41--- =
(01)* and 65 (WmWm41---) = 00--- = 0* for some m > 1. Noting
P«(n;0*) =1 < n+ 1, we have the lemma in this case.

Secondly we consider the case p,(2; W) = 3. Since 01,10 € D,(2,W),
only one of 00 or 11 belongs to D,(2,W). We suppose 00 € D,.(2,W).
Since 11 occurs finitely many times in W, we can choose m such that

WmWmatt + - = 0™10™M21-..10™1.-- (m; > 1).

Then

65  (Wmwmyr - -+ ) = 0™ -110m2 1. 0™
Put § = 0™~110m2—11...10™~!1.... Assuming p.(ng;S) > ng + 1 for
some ng > 0, we shall obtain a contradiction.

If p.(m + 1;S) — p.(m;S) < 1 for any positive integer m < ng, then
P+(n0; S) < ng+1. We put n; = min{m > 1;p.(m+1;S) — p.(m; S) > 1},
consequently p«(n1; S) — pe(n1 — 1;8) = 1, p«(n1 + 1;5) — pu(ny; S) > 1.
So there are distinct words A,B € D.(n;,S) such that A0, Al,B0,B1 €
D.(n1 +1,5). We can write A = ed’, B = fB', e,f € {1,0}. If
A' # B', then p,(ny;S) —ps«(n; —1;5) > 1 follows from A'0, A'1, B'0,B'1 €
D,(n1,S). Hence, we get A’ = B', e # f. We may suppose e = 0, f =
1 without loss of generality. Since 04’00 € D,(n; + 3,5) or 0401 €
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D,(n1 + 3,5), we obtain §o(0A4'00) = 08y(A’)00 € D,(j + 1,W) or
080(A")001 € D.(j + 2,W), where j is the length of 059(A’)0. Conse-
quently, 059(A’')00 € D,(j + 1, W) follows. It can be shown similarly that
060(A")01,1380(A")00, 189(A')01 € D.(j + 1,W). Therefore p.(j + 1; W) —
P«(j3; W) > 1, which contradicts that p,(n; W) < n +1 for all n. Next, we
suppose 11 € D, (2, W). Since 00 occurs finitely many times in W, we can
choose m such that

WnWmit -+ = 01™01™21 ... 01™ 1. . (m; > 1).
Then
T (wmwmyr -+ -) = 01™~1o1™2 11 ... 1™ 1Y .
Put § = 0™~110m2~11...10™~11.... We can prove in the same way as
above that p,(n;S) <n+1 foreach n > 1. O

Lemma 3.12. Let p,(n;W) = n+1 for alln > 0 for W = wywy--- € LN,
Then there ezist a number m > 1 and a number k € {0,1} such that
P (1505 (WmWmt1+++)) =n+1 for all n > 0.

Proof. In Lemma 3.11 the inequality p.(n; ng(wm'wm...l ) < n+1
has been shown. If p,(I; 8z (WwmWm+41--+)) < I+ 1 for some I, then
6,:1(wmwm+1 --+) is ultimately periodic and so is W. Therefore p.(n; W)
does not exceed the length of a fundamental period of W, which is a con-
tradiction. a

Lemma 3.13. Let p.(n;W) <n+1 (W = wywy--- € LN) for all n >
0 with p.(1; W) = 2 and p(;; W) < L + 1 for a number | > 1. Then
Ps(l; 05 (WmWmt1 - +)) < pu(l; W) for a number m > 0.

Proof. Let l' be the least positive integer satisfying p,(I'; W) < I'+1. Then
p«('; W) = I' and W is ultimately periodic with period . Let 00,11 ¢
D,(2,W). Then, for some m, wpwmy1 - -+ = (01)*. Therefore, the lemma,
holds apparently. We assume 00 € D,(2,W). We may assume a word
V € D,(lI',/W) has 1 as its suffix. Then 0 is a prefix of V, because VV
occurs in W infinitely many times and 11 occurs finitely many times in W.
Since V has 0 (resp. 1) as its prefix (resp. suffix), and 11 is not a subword
of V, 651(V)) does exist. Hence 65 (wmwm41-+-) = 65 *(V)* for some m.
Let g be the length of §5%(V). Then
ps(l; ng(wmwmﬂ ) <g<l <Ll

We can prove the lemma similarly for the case 11 € D, (2, W). a
Definition 3.3 (itinerary of a word). Let p.(n;W) < n + 1 for any
n>0(We N ). We define a finite or infinite sequence k = k(W) :=

{kn}n=12,.. (kn =0,1) inductively by the following algorithm:
e If p.(1; W) =1, then « is defined to be the null sequence, i.e., K = 0.
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o If p(LW) = 2, then we set W1 = W = wiiwa ",
1 i 11 € D,(2,W -
ky = { 0 f Othemige ) and Wy = 8 (Wimy 1 Wiy 41,1+ ) for a

number m, such that 6,:11 (Wmy,1Wmy+1,1 -+ *) exists.
Suppose W1y, ..., Wy, and k1, ..., ki1 are defined. Set Wy = wywaz---.
o If p.(1; W) = 1, then the algorithm terminates.

. —_ — 1 1f 11 € D*(2, Wt)
o If p.(1; W) = 2, then we define k; := { 0 otherwise and
Wi = 6,;1 (Wme tWmet1,¢--) for a number m; such that

51;1 (Wimng tWmgt1,8 " - ) exists.
We call k(W) the itinerary of W (W € LN).

In the definition of Wy, above, note that Lemma 3.11 implies the ex-
istence of a number m; such that 5,;1 (Wing tWmet1, -+ ) exists. We re-
mark that the sequence x(W) is uniquely determined for any W satisfying
P«(n; W) < n+1 for all n > 0; while, in general, the sequence of words W;
is not uniquely determined.

We can define the itinerary for W € L= by Definition 3.3 with 2W in
place of W, where EW = wywows -+ for W = - - - wawow;.

Lemma 3.14. x(G(z)) = i(z) for all irrational z € [0, 1].

Proof. Let z € [0,1] be an irrational number. It is not difficult to see
that if z < %, then 00 occurs in G(z) and if z > %, then 11 occurs in
G(z). Therefore, k; = %;. By Lemma 3.10, for any natural number n,
G(T™" (z)) = W,,. By induction we get the lemma. O

3.3. Proof of Theorems.

Proof of Theorem 2.6. The proof of (i)=>(ii) is similar to that of Theorem
2.1. Let us prove (ii)=>(iii). First, let us suppose p.(n, W) = n + 1 for any
n > 0. Then, it follows from Lemma 3.12 that {kn}n=12,. = &(W) is an
infinite sequence. We can choose a sequence {Wp, }p=1,2,... of infinite words
and a sequence {m, }n=12,... of positive integers as in Definition 3.3, so that

(3'5) W, = W1nWon " wmu—l,n6kn (Wn-l-l)

where wy 5, Wop, ..., Wn,-1,n are words strictly over L for n > 1. In view
of (3.5), we have W = W3, which can be written in the following form:

W =w11" " Wmy-1,10k, (W12 * Winy—1,2)0k, © O, (W13 " Wing—1,3) -
By 00 Bk (Win Wiy -1 W)
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It is clear that 0k, o- - - 0, (W1in - Wm,—1,n) is @ word strictly over {An, By}
with Ap = 8, 0 +++ 0 0k, (0), By = 0, 0 ++- 0 0, (1). Setting ok, 0 --- o
Ok, (Wi Wm,—1,n) = Un, we obtain the assertion (iii).

Secondly, let us suppose p.(n,W) < n + 1 for some n > 0. From Re-
mark 3.1, p.(n,W) is bounded and W is ultimately periodic. We can
choose a sequence {Wy}n=12,.. as in Definition 3.3. Lemma 3.13 implies
that {Wp}n=1,,.. is a finite sequence of infinite words, i.e., {Wnp}n=12,.. =
{Wn}n=12,..1+1. In view of Definition 3.3, we can write

Wi = w41 Wiy 1041V, V =1%or 0.
Hence, we get
W = w11 Wmy—1,10k, (W1,2* - - Wmy—1,2) 0k, © O, (W13 - - Wing—1,3) -+~
ey 0+ 0 8y (W1 41 -+ Weny—1141V)
= W11 Wy ~1,10k, (W12 * - Winy—1,2) 0k, © Opy (w13 - Wimg—1,3) -
ot 6’61 -0 5161_1 (wl,l te 'wmg-l—l,l‘slc; (wl,l+1 tee wm;—l,l+l))
Ok, 0+ 00 (V)
Since &, o - 0 &, (V) is A or By, setting
Up = W11 * Wy ~1,10k; (W1,2 * - Wrny—1,2) 0k, © Opy (W13 * Wmg—1,3) * - -
o0y 000k (Wi Wiy —1,20k (W1141 - Wy —1,141)),

we obtain assertion the (iii).

(iii)=>(iv): We divide the proof into the following four cases (Cases I-IV).

Case I: Suppose that {kn}n=1,,... is an infinite sequence in which 0 and
1 occur infinitely many times. Let R be a *-subword of W. There exists an
integer [ such that the length of A; and B; is larger than the length of R.
Choose an integer j > 0 such that 10 is a subword of d,,, o -+ - 0 &, ;(0)
and &, 0+ 0 6k,+j(1). Then

Aiyj = 0g, 0+ 00 (0K, 0+ 0 0, ;(0))
= Jkl °°"°5kl(0"'10"'1)
(3.6) = A;---BjA;-- B,
Biyj = 0, 0+ 0 8 (0pyy 0+ 0 O ; (1))
=6k1 0"‘06]31(0"'10"'1)
(3.7) = A---BA--- B,
R occurs in Ay j, Biyj, Ai4jAit, Aty Biyjy BiyjAiyj or BiyjBiyj.
Suppose that R occurs in Ajy;A;j. If R does not occur in A, ;, then

(3.6) implies that R occurs in BjA; since the length of R is smaller than
that of A;, B;. Therefore R occurs in A ;. Similarly, we can conclude that
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R occurs in By by (3.7). Lemma 3.4 implies that {kn}n=1,,.. = i(z) for
an irrational z. It follows from Lemma 3.2 that

G((C) = 6’91 0:::0 6kz+j (G(Tl+]($)))

Since 0 and 1 occurs in G(T'+(z)), both Ay = &g, 0 -+ 0 b,,;(0) and
By, j =0, 0---00, (1) occur in G(z). Thus we obtain that R € D(G(z))
and D,(W) C D(G(x)).

Conversely, we suppose V' € D(G(z)). Then, there exist natural numbers
I and m such that V occurs in A;4,, and B;;,, by an argument similar to
the argument above. We have V € D,(W), since Aj4m,Bi+m € D«(W).
Therefore, we obtain that D.(W) = D(G(z)), so that W satisfies Condition
(C1). Thus we have shown the assertion (iv) in Case I.

Case II: Suppose that there exists an integer j such that k, = 0 for any
n > j and k; = 1. Lemma 3.7 implies that {k, }n=1,2,... = () for a rational
z. Then if n > j,

(3.8) Ap =0, 0. 068,(0) = A

(3.9) By, =8, 0+ 08, (1) = (4;)" 7 B;.
We can write by (3.8) and (3.9)

(3.10) W=wup- -uj---

=Ug--- ’U,j_lA;l B]'A;ZBjA;'sBj LI

where {an}n=12,.. is an infinite sequence of non-negative integers with

lim a, = oco. Therefore, any *-subword R in W occurs in AT'B;AT* for
n—00 J J

sufficiently large integer m. By Lemma 3.8,
@(a:) = AjAijAjAj e

Therefore R occurs in G(z), i.e., D,(W) C D(G(z)).

Conversely if V € D(G(z)), then V occurs in AT'B;AT for a sufficiently
large integer m. (3.10) implies that V' is a x-subword of W, i.e., V € D,(W).
Therefore, we get D,(W) = D(G(z)), so that W satisfies Condition (C3).

Case III: Suppose that there exists an integer j such that k, = 1 for any
n > j and k; = 0. Then W satisfies Condition (C2). The proof is similar
to that given in Case II.

Case IV: Suppose that the sequence {kp}n=12,.. is a finite sequence. In
this case Dy(n, W) = D(n; A}) or D«(n, W) = D(n; B}). There exist ratio-
nal numbers u, v such that A} = G(u), B = G(v) by the proof of Lemma
3.8. Then W satisfies Condition (C1) for z = u or z = v. We have com-
pleted the proof of (iii)=-(iv).
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(iv)=(i): By Definition 2.7, D,(W) coincides with one of the sets
D(G(z)), D(G(z)) or D(G(z)). Since by Theorem 2.2, 2.3 and Lemma
3.9, G(z),G(z) and G(z) are Sturmian, W is a *-Sturmian word. O

Proof of Theorem 2.7. Let W = wyws... € LN be *-Sturmian. By Theo-
rem 2.6 there exists a € [0, 1] such that one of the following three conditions
holds:

(1) D.(W) = D(G(a)),
(2) D.(W) = D(G(a)) with a € Q,
(3) D.(W) = D(G(a)) with a € Q.

Let us show that o = lim,,_, ﬂ%"m = limy, 00 "—Jﬁ';—wl First, we suppose
that (1) holds. Let € > 0 be any small number. Let m be a natural number
with # < §. Since W = wjw;... € LN is %-Sturmian, there exists an
integer £ > 0 such that any subword of wg4jwg42... with length m is in
D,(W). Let c be a positive integer with f < 5. Let n be a positive integer
with n > c. Let w = wjwi41 ... wiyn—1 € D(n; W). Then, we have

|lwh = |[wiwig ... wipk—1]1 + | Witk - - - Wign—1]1

(3.11) = l'wl'wl.,_l e ’wl+k_1|1
d—1
+ Z Witk - wl+k+m*(j+1)-—-l|1 + |Witk+md - - - Witn—1l1,
J=0

where d = [2E] — 1. Since witk4maj--- Wit k+ma(j+1)-1 € Du(W) for j =
0,...,d—1, Witktmaj - - - Wigk+me(j+1)-1 € D(G(e)). Therefore, there exist
integers f; for j =0,...,d—1such that fori =0,...,m—1, Witk ymejpi =
L(f; +9)e] = [(f; + i — 1)a). Thus, ||Witktmes- - Witkimai+)-1l1 =
ma| = |[(fi + m = 1)a] — |(fj — 1)a] — me| < 1. Similarly we have
|Witk+md - - - Wign—1 — (n — k — md)a|; < 1. Therefore, by (3.11) we have

||'w|1 - na] < ||'w¢wl+1 .. .w1+k_1|1 - ka| +d+1<k+d+1.

Therefore, we have

k
|m—a|$-+£+-{$e.
n n n n
Thus, we have & = lim Z&8Y) — jim z’ﬁ;l@ For cases (2) and (3) we
n—o0 n—00
have a similar proof. O

The proofs of Theorems 2.8 and 2.11 are similar to that of Theorem 2.6,
so we give a sketch of the proofs. Let W = W W, be a two-sided infinite
word satisfying p.(n; W) < n+ 1 with W; € LN ,Wa € N , then W)
and W, are x-Sturmian words. There are four cases.
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Case I: Suppose pi(n; W1) = p«(n;W2) = n+ 1 for all n. Then there
exists an irrational number z € (0,1) or a rational number z’ € [0,1] such
that D,(W;) = D.(W2) = D(G(z)), D(G(z')), or D(G(z')). Therefore, W;
and W, have the same itinerary, and W; = ---u_gu_ju, We = vujug---
(u,v € L*).

Case II: Suppose p,(n;W;) = n+ 1 for all n and p«(m;W3) < m + 1
for some m. Then W, is ultimately periodic and there exists a rational
number z € [0,1] such that D,(W1) = D.(G(z)) D D«(W2) or Di(W;) =
D.(G(x)) D D.(W;). By the definition of G(z) (resp. G(z)), W2 = vBj]
(resp. vAj) (v € L*). Therefore W = ---u_juovB; or W = --- u_1uovA].

Case III: Suppose p.(n;W3) = n+ 1 for all n and p.(m;W1) < m+1
for some m. Then W =*A;vuqu;--- or W =*Bjvugu; ---. The proof is
similar to Case II.

Case IV: Suppose p,(m;W;) < m + 1 and p.(m; W3) < m + 1 for some
m. Then W; =*A;u or Bju and W, = vA; or vB}. It is easy to show
that *% jqu;-‘ and BjﬂoB; are *-Sturmian and ‘AjugB; and *Bjqu;f are
not *-Sturmian.

The proof of Theorem 2.10 is similar to that of Theorem 2.1 and the
proof of Theorem 2.9 is similar to that of Theorem 2.7, so we omit these
proofs.

4. Complexity of certain *-Sturmian words

Let us consider the complexity of an infinite word W:
(4.1) W=1001100210a3"',0S01Sa2$a3°--.

It is clear that W is a *-Sturmian word. We write u <, v (u,v € D(W))
if u is a prefix of v. The binary relation <, is reflexive, asymmetric, and
transitive, so that X = X (W) := (D(W), <) is a partially ordered set
with the order <,. For each element v € D(n + 1;W), (n > 0), there
exists a unique element u € D(n; W) such that u <, v. Hence, X can be
regarded as a tree consisting of the nodes w € D(W) with X as its root,
where every edge is understood to be one of the segments connecting two
nodes u € D(n; W), v € D(n+ 1;W) as far as u <, v. For example, if W
is the word (4.1) with a, =n — 1, then X(W) is the following tree.
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000000<<:::

00000<8000001_. .

000 <(0)0 00001—0000010- r
00 001—000010—0000100—" " -
001 —00010—000100—00010002 .
01—1)010 —00100—001000< 001 o000 -

10000<C0100000== -
1000<g 100001

10001—0100010— - -

1001_1)10010_0(1)88(1)882 .

1 ..

10000 <100000<1000001_ -

1000 < 100001—1000010— - *

100 10001—100010—1000100— - -

10< 1001 —10010—100100—1001000— -

< 101—1010 —10100—101001—1010010—**

11—110—1101 —11010—110100—1101001—**

1—010—0100 <§

Fig. 1. X(11010%10310%---)

In Figure 1, only words of the form 0%, 0'10™ (I < m) are followed by two

words:
0k+1 0! 10m+1
Ok < y Ol 10™ < .
01 0‘10m1

Theorem 4.1. Let W be a word given by (4.1) with (ap :=) 0 < a1
<ay<ag---. Then

p(n; W) =n+1+4{(G,5) e N5j<ai1+1,a;+j<n—1}, n>0.
Proof. We put
By, := B, (W) = {w € D(n; W); w0 € D(W), and wl € D(W)},
(42)  B=BW):=J B.(W).
n>0
Then, we have
(4.3) p(n) —p(n—1)=4Bp_1 (n21; p(0)=1, Bo={A}).

Since a; < a2 < a3 < ---, w occurs only once in W if |w|; > 2, so that
w ¢ B. Hence, we get
w€B=> |w|1 <1
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If |lw); =0, i.e., w = 0", then w € B, since a,, tends to infinity. If w belongs
to B with |w|; = 1, then w can be written as follows, and vice versa:
(4.49) w=0"110% 1<j<ai1+1, i>1

Hence, in view of (4.3) and (4.4), we obtain

n—1
p(n) =1+ §Bm
m=0
=n+1+H{w=0"110% |w| <n-1, 1<j<aig +1, i 21},
where |w| is the length of w, which implies the theorem. O

Theorem 4.2. Let W be as in Theorem 4.1. Then,

(4.5) p(n,W)_-—+2+8+ﬂ—l_( +2 )7l (n>0).

The above estimate is sharp; the equality is attained by
W = Wy := 11010210°10* - - -

Proof. From the proof of Theorem 4.1, it follows that if w € B,(W) with
w # 0", then w is of the form (4.4) with |w| = n. On the other hand, all
the words w = 0/~110% with
1<j<a; i21, |w=n
belong to B, (Wj). Hence B, (W) C By (Wp), so that § B, (W) < §B,(Ws),
which implies p(n; W) < p(n; Wy).
Now, we consider
dn = p(n; Wo) — p(n — 1;Wo) = §Ba—1(Ws) (n > 1).

In view of Figure 1, we have d; = 1, do = 2. For a given sequence b =
{bn}n=1,2,.., we denote by fln (b1,b2,b3, - --) the number defined by

(4.6) /n(bl,bz,bg,-- =14 E bm, n > 0.
1

m=1
We use the notation [;"w also for a word w over IV as far as its meaning
is clear. For instance, ;' 12%325151--- is the number [;*(1,2,2,2,3,3,5,
1,5,1,---). Noting

Bon-o(Wo) = {0%72, 0°10*"~3%; 0<i<n-2},
Byn-1(Wo) = {0**71, 0°10*7"% 0<i<n-2} (n22),

we get dop—1 = dop, = n (n > 2). Therefore, we obtain

n
(4.7) p(n; Wo) = / 123324252 ...
1



792 Izumi NAKASHIMA, Jun-ichi TAMURA, Shin-ichi YAsuTomI1

By induction, we can show that the right-hand side of (4.7) coincides with
that of (4.5), which completes the proof.

Remark 4.1. If N\{a,;n > 1} is not the empty set, then
p(n; W) < p(n; Wo)
holds for all n > 2 + min(N\{an;n > 1}).

We can give some examples.

Example 4.1.

(i)

n

p(n;1010210%10%--.) = / 12223242
1

n? n 9

= (=
+=+-+ (n>0).
(ii)

n
p(n; 10210410108 - .. / 13212232324342545%. ..
1

)=
=222+

n+1 n+1
) +1j(n+1-4| 2 1)

n+3
1-
+ L 1
For a word W as in Theorem 4.1, it is easily seen that

an _ J n+l (0<n<a+1),
P('"',W)—{ n+2 (a1+2<n<ay+1).

In view of Theorem 4.1, for any n > a3 + 2, we have

r(n)
p(n;W)=n+1 +Zmin{a,~_1 +1,n-1-a;},

=1

+1

] (n21).

where
r(n) = r(n; W) := max{m; a, <n—2}.
Hence, setting

s(n) = s(n; W) := max{m; am-1 +am <n—2},
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which does not exceed r(n), we get
s(n) r(n)

(48) p(n;W) =n+1+> (aim+1)+ Y (n—1-a;)  (n>a+2).
=1 i=s(n)+1

Hence we obtain the following

Corollary 4.1. Let W be as in Theorem 4.1, then

n+1 0<n<a+1),

n+2 (a1+2<n<az+1),
PmW) =4 (r(n) - s(n) + 1)n +2s(n) - r(n)

-1

H+ 280 e - T e (n2a+2).

Remark 4.2. If a, + an41 < ap42 holds for all n > 1, then
s(n) =r(n) or r(n)-1
holds for all n > a2 + 2. In particular, if a, + an+1 = an+2 holds for all
n > 1, then
s(n)=r(n)-1 (n>az+2).
Suppose that

(4.9) an + apy1 < anq2 for all n > ny.
Then, d,(W) =1, or 2 (n > any+2 + 2), so that

1 <lim

n—0oo n n—o00 n
Noting that d,(W) = 2 if and only if
gir2+2<n< a4 +ai42+2
holds for some i > ng, we get
P(Np) =Np+a1+az+...+a, +n+0(1),
p(Mp) =My, +a1+az+...+a, +n+0(1),

N,
lim sup E(l) = limsup p_(_,ﬁ, lim ianM = lim inf M—)-,
n=so00 N n—o0 n n—oo N n—o0 n
where
Nn = an + an+] + 2, Mn = an+2 + 1.

It follows from (4.9) that

a a a.
1+ n+1 < n+1 n+2,
an Qn Gn41

which implies

liminfa"—+1 > 1_+2_\/_5

n—00 (179
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Hence, we get

N,
N, Gn + Gnt1

o( n)=1+a1+a2+ +a,.+o(1).
N, an42

In view of the above formulae, we can show Remarks 4.3, 4.4.

Remark 4.3. If there exists an infinite set S C N for a fixed positive
number € such that

(1+€)(an +ant1) < apyz forallmeS,

and
Qn42

ay+ax+...+ay

is bounded for all n € S,

then,
1<hmmfp( )<11 upp(n) <2

n—oc0 N n—00

Remark 4.4. If -%‘i_—"_—— tends to infinity, then lim,_ oo —(—l = 1. For
instance, the word over {0,1} defined by the digits in the base 2 expansion
of a Liouville number 3°°° ; 2™ has this property.

Example 4.2.

(i)
p(n;102°102'10%° .-.) = / " 29612 1921 2192+ P 1g20 41 ,
1
which implies
.. .p(n) _3 p(n) _5
mE T Ty P Ty
since the identities
p(2"+1)=3-2""14n+1,
p(3-2"1+2)=5-2""14+n+3 (n>1)

hold. It is remarkable that the example shares a common phenome-
non with a word different from *-Sturmian words: for the word gen-
erated by the catenative formula By, = B21B2, (n > 0, By := 0),
lim inf,, 00 ﬂnﬁ = 2 and limsup,_,, ﬂ;—‘l = 3 hold, cf. Proposition
11 in [6].
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(ii) Let W = 10%110°210% ... with a; = 1, a2 = 2, a3 = 4, ap43 =
any2 + @ny1 + ap (n > 1). Then,

p(n; W) = /n 122111921904+ as—19as+11aa~1986+1 (> ().
1

Using the above formula, we can show

. p(m;W) 1 4 1 43
hﬂszp = 3¢ 26oz+ 56 = 1.843333--- ¢ Q,

iminf2MW) _ 3 2 2 35 .
liminf EEZ0 = 2a? - a4 22 = 1717808 ¢ Q,

where

oo LEV19+3v33+ /19— 3v33
= 3 :

(iii) For any recurrence sequence {ap}n=12,. With z2 —z — 1 as its
characteristic polynomial and satisfying 0 < a; < ag,

p(n;W)=2n+r(n;W)—azs-1 (n>ax+2)
holds for W = 109110921093 . - ., so that

p(n; W) =2n+ logn +0(1), a=

1+5

log a 2

In particular,

n
p('n,; W) = / 12223202—13203—13204—132(15—1 . (al — 1, as = 2)’
1

n
p(n; W) = / 122123202—'13203—13204—13205—1 . (al — 1, ap = 3)
1

We write f(n) < g(n) if f(n) = O(g(n)) and g(n) = O(f(n)).

Theorem 4.3. Let W be a word given by (4.1) with0 < a1 < az < ---
and ap < n® (a > 1). Then p(n; W) < nltl/e,
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Proof. We suppose ¢1n® < a, < con®. (4.8) implies

r(n)
p(mW) <D (@i +1)+n+1

=1

<Y ai+0(n)

a;<n

< Z c2i® + O(n)

c11%<n

n\l/a
<c / * 2%z + O(n)
0

_ 2 1+1
= arpaEn o),
1

and

p(n; W) > Z (ai—1 +1) + O(n)

ait+ai—1<n—2

> Z ai—1 + O(n)

2a;<n-2

> Z c11® + O(n)
c212<(n-2)/2
n=2\1/a

( 2¢cg
> / z%dz + O(n)
0

g n—2 1+1/a
—a+1(2c2 ) +On).

Therefore p(n; W) < nl*1/2 holds.

O

Theorem 4.4. Let k > 2 be an integer, and {b,}32; a linear recurrence
sequence with =¥ — x — 1 as its characteristic polynomial, defined by the

initial condition:

1011 1 t
by 1111 1 to
bo 1121 1 ts
b3= .. .
) : 1 :
b 2 1 :

112 -2 2 te

Let W be the word defined by
W :=1010210%---, an:=b, — 1.

’ (t17t27"'7tk) € Nk’
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Then p(n; W) is given by the following, so that
p(n;W)=kn+c foralln>b+1, c<0,

where c is a non-positive constant, and c=0 only ifk =2, t; =t = 1.

[(n+1 (0<n<b),
n+2 (b1+1SnSb2)7
2n —by+2 (b2 +1 < n<bs),

— by — <n<
p(n;W)=J 3n b2 bs +2 (bs+1 _”r‘l,._ by),
Jjn—by—b3—---—=bj+2 (bj+1<n<bj),
| kn—by—b3—--- —bp +2 (n > b +1).

Proof. By definition
bntk = but1+ b, (n > 1).

Noting 1 < b; < by < -+- <bg,and bgy1 — b =by + by — b =t; > 0, we
get by < bp4+1  (n > 1) inductively, so that

ap <Gpy1 (n>1), a3 >0.

Hence the word W satisfies the condition in Theorem 4.1. We denote by
[p,q) the interval {m € N; p < m < ¢}. In view of Theorem 4.1, we have

dn = dn(W) = p(n; W) — p(n — ;W)
=1+ﬂ{(i,j)€N2;J'Sa,-_1+1,a,-+j=n—1}
(4.10) =1+4§{i € N; a;+2<n<a;+ai-1+2}
=1+{Ji; idn, i>1} (n>1,a0:=0),

where

J; = [a,- +2,a; +a;—1 + 3)
=[b; +1,b; +bi—; +1)
=[b+1,bipk-1+1)  (:1>2),
Ji=[b+1,0+2).

Hence, Jiy1 N Jigk = 0, Jiy1 N Jipk = {bixk—1 + 1}, where X denotes the
closure of a set X C R, cf. Fig. 2.
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Fig. 2.

Thus, it is clear that the number of intervals J; containing n is equal
to k — 1 for all n > by + 1, which together with (4.10) implies d,, = k
(n > b +1). Counting the number of intervals J; that contain n with
1< n < b, we get

dp =1 (ISnSbl),
dn =2 (n=b+1),
dn=1 (1 +2<n<by),
dn=3 (bj+1<n<bjt,2<j<k-1).
Hence, we obtain p(n; W) =n+1(0<n < b)), p(n;W)=n+2 (b +1 <
n < bg), so that the assertion
p(;W)=jn—-bp—b3—---=bj+2  (bj+1<n<bjy)
holds for j = 1. By induction on j, we can easily show that the assertion
holds for all j, 1 < j < k — 1. Recalling d, =k (n > b + 1), we obtain
p(n;W)=kn+c (n>bp+1),
c=—by—bg—-r— b +2,
so that ¢ < 0, and ¢ = 0 implies k = 2, t; = t3 = 1, which completes the
proof. O

Example 4.3. Let W = W(k;t1,...,t) be as in Theorem 4.4. Then
p(n;W(21,1)) = 20 (n 2 1), p(n;W(%1,2)) = 2n -1 (n > 3),
p(n;W(252,1)) = 2n—1 (n > 2), p(n; W(3;3,1,1)) = 3(n — 3) (n 2 6).
Related to linear complexity p(n) = an + b, there are some results. S. Fer-
enczi considered a class of words generated by a locally catenative formula
Bny1 = Bpr1Bpr (n > 0,Bp := 0), and considered the complexity of the
word lim By, cf. [6]. P. Arnoux and G. Rauzy investigated a class of
words, having p(n) = 2n + 1 as their complexity, given by an interval ex-
change of some intervals; G. Rote showed that a word B3, --- defined by
Bn = Xo,4)({nf + c}) always has complexity p(n) = 2n, where {-} denotes
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the fractional part of a real number, and x;(z) the characteristic function
equal to 1 (resp. 0) for z € J (resp. z ¢ J), cf. [2], [12].

Let us consider the word given by (4.1). If a, is bounded, then W
is an ultimately periodic word, which is not an interesting case. If a, is
unbounded, then without loss of generality, we can write

(4.11) W = (10%)%(10%)%(10%)° - ,
(@g:=0)<a;<az<---, ep>1.
Theorem 4.5. Let W be the word given by (4.11). Then
p(n;W)=n+1
+H#{(i,5,k) €N j<ai+1, k<ei—1, k(ai+1) +j < n}
+#{G5) eN% j<aia+1, e(a+1)+5<n} (n>0).

Proof. For the set B, (W) defined by (4.2), we have the identity (4.3). We
write u < v (resp. u <, v) if u is a subword (resp. a suffix) of v for
u,v € D(W). Let v € D(W) with

10%-110% < v (¢ >2)or (10%)%1<v (i>1).
Then, v occurs only once in W, so that v ¢ B(W), where B(W) is the set
given by (4.2). Hence w € B(W) implies w < 0%-1(10%)% for some i > 1.

In addition, if w € B(W) with |w|; > 1, then 10% <; w for some 7 > 1.
Hence,

w € B(W), |wli #0 = w <, 0%-1(10%)% for some i > 1,
which implies
{w € B(W);|w|; # 0} c B0 uB®,
where
BW = BOW) :={0"1(10%)F; 1<i, 1<j<a;i+1, 1<k<e—1},
B® = BAW) :={0971(10%)%; 1<, 1<j < ain +1}.

It is easy to check {w € B(W); |w|; # 0} > B® U B®. Hence we have
{w € B(W); |w|; # 0} = BY U B®. Since 0" € B(W) (n > 0), we get

B(W) = {0 n>0}uBYW)uBAW).
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Noting that the right-hand side of the above equality is a disjoint union,
we obtain by (4.3)

p(n)=n+1
+H{w=0"1(10%)% 1<4, 1<j<ai+1,1<k<e—1, [w|<n-1}
+f{w =0"1(10%)%; 1<, 1<j<ai-1+1, lw|<n-1},

which implies the theorem.

In view of Theorem 4.5, for dp,(W) := p(n; W) — p(n — 1; W), we have

dn(W) = 1+4{(3,7,k) e N%; j<a; +1, k<e;—1, k(a; +1) +j =n}
(4.12) +{(5,4) € N% j<ai-1+1, e(ai+1)+j=n}
=1+4{(5,k) e N, 1<n—k(a; +1) <a;+1, k<e; -1}
+f{i € N; 1<n-ei(a; +1) <aji-1+1} (n>1).

If e, = 2 for all n > 2, then we get by (4.12), (4.10)
dn(W) =dpn(W') +tn +un (n2>1),
where W' = 10%110%210% .- -, and

th=to(W) :=4{teN; a;i-1+2<n-a;-1<a;+1}
Up =up(W):=f{i e N; 1<n—20; —2< a1 +1}.

Example 4.4.

(i) W is the word (4.1) witha, =n—1, e, =2 for all n > 1. Then,

titgts... = 0%101010--- (t, =1 (n:even), t, =0 (n:odd), n > 3),
urugug ... = 021010142124323% - .. (u, = |(n —1/2)] — [(n +1)/3] + 1,
n > 6).
From (4.7),
didydy = 123324252
follows, where d}, = d,,(W'). Hence, we get

n
p(n; W) = / 1232425627829 .- .. .
1



*-Sturmian words and complezity 801

(i) Let W be the word (4.1) with e, =2 (n > 1) and a, as in Example
4.2.(iii) such that ay = 1, ag = 2. Then
titotz - -+ = 0310100.1 191092193093 . .. :
uugus - - - = 0%10121%2+1ge2~1183-1q04+1gag—1,
so that .
p(n; W) = / 12234342303242304-242305-2 .
1

5. Estimate of the complexity function of *-Sturmian words

Related to the bounds of the usual complexity of *-Sturmian words, we
can show the following Theorems 5.1, 5.2.

Theorem 5.1. Any *-Sturmian word W is deterministic, i.e.,
i 08PMiW)) _
n—o0 n

Proof. If W is ultimately periodic, then p(n) is bounded, so that we ob-
tain the theorem. We suppose that W is not ultimately periodic. Then,
Theorem 2.6 implies that there exists an infinite sequence {kn }n=1,2,... such
that

W = uguy - Um--- ,

see the notation in (iii), Theorem 2.6. We put
Wy = ugpugy1--- € LN (ke N).
Since uyy, is a finite word strictly over {A,, B} for m > k, we can write
Wi =PRPP,---,

where Py, Py, -+ € { Ak, Bx}. We suppose that |Bg| > |Ax|- (If | Bx| < |Akl,
we will have a similar proof.) We denote by ¥ the set of all finite sets of
integers. Let n be a positive integer. We define a map A : D(n; W') —
N x ¥ as follows. For A € D(n; W'), we denote by 7(A) the set

7(4) := {(4,1) € N% A is a subword of P;--- P}.
We choose a (j',1') € 7(A) such that
# = min{j; (5,1) € r(4)},
I' = min{l; (,1) € 7(4)},
and we put h := min{|P|; Pj --- Pr = PAP'}. We define A(A) by
v

t
A(A) := (b, {1+ D |Pf; Poyr = Br, i’ <t <I'=1}U{D)_ B} U),

s=j' s=j'
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where
_f{} i Pj = B,
PE1 0 Py =4

It is not difficult to show that the map A is injective and
ADm W) C{0,1,...,|Bil} x ¥,

where
maxz < n + 2|Bg|,
Vi:={9pe'’ =€y
t —s > |By] for s,t € ¢ with s <tandt;ém3/:)cz.
T

The condition in the definition of ¥’ implies that
B < (1Bil + 1) BT+,
Therefore, we have
p(n; W) < (1By| + 1)1+,
which implies
. !
log p(n; W') < 1
n | Bx|
On the other hand, we get
logp(n; W) _ log(p(n; W') + Jugus - - - ug-1)
n = n )
For n > 2,k > 2, p(n;W') > 2 and |upu; - - - ug—1| > 2 hold, so that
logp(n; W) _ log(p(n; W') | log(lugus - - - ug-1])
n - n n

5
+ ;) log(|Bx| + 1).

1 |8 log(|uous - - - ug-1)
< (—— — .
< (|Bk| + n)log(lBkl + 1)+ -
Noting max{|Ag|, |Bk|} — 0o, (k = 00), we obtain the theorem. a

Theorem 5.2. For any small positive number € there ezists a *-Sturmian
word U such that p(U;n) > 27" holds for all sufficiently large integer n.

We need a lemma for the proof of Theorem 5.2.

Lemma 5.1. Let ky,ks,...,kn € {0,1}, and Ay, B, be as in Definition
2.4. If k, =1, then there ezist words P,Q such that A, = P0Q, B, = P1,

i.e., Ap Ap By and By, £p An.

Proof. The first letter of A, is 0 and the last letter of B, is 1. We shall
prove the lemma by induction on n. When n = 1, we have A; =01,B; =1,
so that the lemma holds with P =\, @ = 1. Let A’ = §,0---06;, (0), B' =
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0k, © - -+ 0 0k, (1). By the induction hypothesis, there exist words P', Q' so
that A’ = P'0Q’,B' = P'1. If k; =0, then

A, = 8o(A") = 6o(P')06(Q"), By, = §o(B') = 6o(P')01.
Since the first letter of do(Q’) is 0, setting P = p(P’)0, we get the lemma.
If k; =1, then

A, =6 (A") = 6,(P)016,(Q"), By, = 6 (B') = &1(P')1.
Setting P = 6;(P’), we get the lemma. O

Proof of Theorem 5.2. Let w; = 0---0,ws = 0---01,...,won = 1---1
be all elements of L™ ordered in lexicographic order. We put W(n) =
wiwe -+ -won. Let ki, ke,...,km,... € {0,1} and k,, = 1 for infinitely
many m. We set
U = 0, (W(N1))0k, © Ok, (W(N2)) -+ 0k, 0+ 0 0 (W (Nm)) - -+
where N,,, € N (m > 1). By virtue of Theorem 2.6, U is a *-Sturmian word.
We suppose k,, = 1. Since |dk, 0+ 0k, (1)| < |0k, 0 0 0k, (0)] = |Aml,
|0k, ©« - 0 Ok,p (w)| < Nin|Am|

for any w € LV, By Lemma 5.1, for any w;, w; € L™, 6, 0+ - -8k, (w;) #Ap
Ok, © -+ 0 Ok, (w;) and O, 0 -+ 0 O, (wj) Ap O, © -+ 0 &, (w;). Thus, we
have shown that k,, = 1 implies p(U; Ny |A|) > 2. Taking a sufficiently
large integer m with k,, = 1, we can choose integers N = Ny, and n = n(m)
such that 217 %|Apm|e ™1 > N > 2173|Ay|<7), 2|Am|c > n > N|Ap|; then
nl=¢ < 21=¢|4,|<"1 < N. We get

p(U;n) > p(U; N|Am|) > 2V > 27 .
Since k; = 1 for infinitely many i, p(U;n) > 2% ° holds for infinitely
many n. In particular, if k; = 1 for all 4, then |Ap,| = m + 1 for all m
and p(U;n) > 2" for n satisfying 2(m + 1)% >n>2l"i(m+ 1)%. If
m > (21+ere’/t _ 2¢) /(2¢ — 2¢=/4)  then 21~ %(m + 2)¢ < 2(m +1)¢ and
2(m +1)%,217 5 (m + 1)) N (2(m + 2)%, 275 (m + 2) <) # 0, where (p,q)
denotes the interval {z € N;p < = < g}. Therefore, there exists m such
that 2(m + 1)% >n>2"i(m+ 1)% for any sufficiently large n, which
implies the theorem. O
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