staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Olivier Ramaré; Imre Z. Ruzsa
Additive properties of dense subsets of sifted sequences
Journal de théorie des nombres de Bordeaux, 13 no. 2 (2001), p. 559-581, doi: 10.5802/jtnb.338
Article PDF | Reviews MR 1879673 | Zbl 0996.11057 | 1 citation in Cedram

Résumé - Abstract

We examine additive properties of dense subsets of sifted sequences, and in particular prove under very general assumptions that such a sequence is an additive asymptotic basis whose order is very well controlled.

Bibliography

[1] M.B. Barban, The "large sieve" method and its application to number theory, (Russian). Uspehi Mat. Nauk 21 (1966), 51-102.  MR 199171 |  Zbl 0234.10031
[2] E. Bombieri Le grand crible dans la théorie analytique des nombres. Astérisque 18 (1987).  MR 891718 |  Zbl 0618.10042
[3] E. Bombieri, H. Davenport, On the large sieve method. Abh. aus Zahlentheorie und Analysis zur Erinnerung an Edmund Landau, Deut. Verlag Wiss., Berlin (1968), 11-22.  MR 260703 |  Zbl 0207.05702
[4] J. Brüdern, A. Perelli, The addition of primes and power Can. J. Math. 48 (1996), 512-526.  MR 1402325 |  Zbl 0860.11061
[5] P.X. Gallagher, The large sieve. Mathematika 14 (1967), 14-20.  MR 214562 |  Zbl 0163.04401
[6] P.X. Gallagher, Sieving by prime powers. Acta Arith. 24 (1974), 491-497. Article |  MR 337844 |  Zbl 0276.10026
[7] G. Greaves, On the representation of a number in the form x2 +y2+p2 +q2 where p and q are primes. Acta Arith. 29 (1976), 257-274. Article |  MR 404182 |  Zbl 0283.10030
[8] H. Halberstam, H.E. Richert, Sieves methods. London Mathematical Society Monographs 4, Academic Press, London-New York, 1974.  MR 424730 |  Zbl 0298.10026
[9] H. Halberstam, K.F. Roth, Sequences, Second edition. Springer-Verlag, New York-Berlin, 1983.  MR 687978 |  Zbl 0498.10001
[10] K.H. Indlekofer, Scharfe Abschätchung für die Anzahlfunction der B-Zwillinge. Acta Arith. 26 (1974/75), 207-212. Article |  MR 354586 |  Zbl 0268.10032
[11] H. Iwaniec Primes of the type ϕ(x, y) + A where ϕ is a quadratic form. Acta Arith. 21 (1972), 203-234. Article |  Zbl 0215.35603
[12] Y.V. Linnik, The large sieve. C. R. (Doklady) Acad. Sci. URSS (N.S.) 30(1941), 292-294.  MR 4266 |  Zbl 0024.29302 |  JFM 67.0128.01
[13] J.E. Van Lint, H.E. Richert, On primes in arithmetic progressions Acta Arith. 11 (1965), 209-216. Article |  MR 188174 |  Zbl 0133.29901
[14] H.L. Montgomery, Topics in Multiplicative Number Theory. Lecture Notes in Math. 227, Springer-Verlag, Berlin-New York, 1971.  MR 337847 |  Zbl 0216.03501
[15] Y. Motohashi, Lectures on sieve methods and prime number theory. Tata Institute of Fundamental Research Lectures on Mathematics and Physics 72, Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1983.  MR 735437 |  Zbl 0535.10001
[16] O. Ramaré, On Snirel'man's constant. Ann. Scu. Norm. Pisa 21 (1995), 645-706. Numdam |  MR 1375315 |  Zbl 0851.11057
[17] N.P. Romanoff, Über einige Sätze der additiven Zahlentheorie. Math. Ann. 109 (1934), 668-678.  MR 1512916 |  Zbl 0009.00801 |  JFM 60.0131.03
[18] I.Z. Ruzsa, On an additive property of squares and primes. Acta Arith. 49 (1988), 281-289. Article |  MR 932527 |  Zbl 0636.10042
[19] I.Z. Ruzsa, Essential Components. Proc. London Math. Soc. 34 (1987), 38-56.  MR 872249 |  Zbl 0609.10042
[20] A. Sárközy, On finite addition theorems. Astérisque 258 (1999), 109-127.  MR 1701190 |  Zbl 0969.11003
[21] L.G. Schnirelman, Über additive Eigenschaften von Zahlen. Math. Annalen 107 (1933), 649-690.  MR 1512821 |  Zbl 0006.10402 |  JFM 59.0198.01
[22] A. Selberg, Remarks on multiplicative functions. Number theory day (Proc. Conf., Rockefeller Univ., New York, 1976), 232-241, Lecture Notes in Math. 626, Springer, Berlin, 1977.  MR 485750 |  Zbl 0367.10041