staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Hans Roskam
Artin's primitive root conjecture for quadratic fields
Journal de théorie des nombres de Bordeaux, 14 no. 1 (2002), p. 287-324, doi: 10.5802/jtnb.360
Article PDF | Reviews MR 1926004 | Zbl 1026.11086 | 1 citation in Cedram

Résumé - Abstract

Fix an element $\alpha $ in a quadratic field $K$. Define $S$ as the set of rational primes $p$, for which $\alpha $ has maximal order modulo $p$. Under the assumption of the generalized Riemann hypothesis, we show that $S$ has a density. Moreover, we give necessary and sufficient conditions for the density of $S$ to be positive.

Bibliography

[1] E. Artin, The collected papers of Emil Artin, (eds S. Lang, J. Tate). Addison-Wesley, 1965.  MR 176888 |  Zbl 0146.00101
[2] H. Bilharz, Primdivisoren mit vorgegebener Primitivwurzel. Math. Ann. 114 (1937), 476-492.  MR 1513151 |  Zbl 0016.34301 |  JFM 63.0099.01
[3] G. Cooke, P.J. Weinberger, On the construction of division chains in algebraic number fields, with applications to SL2. Commun. Algebra 3 (1975), 481-524.  MR 387251 |  Zbl 0315.12001
[4] H.W. Lenstra, JR, On Artin's conjecture and Euclid's algorithm in global fields. Inv. Math. 42 (1977), 201-224.  MR 480413 |  Zbl 0362.12012
[5] C. Hooley, On Artin's conjecture. J. Reine Angew. Math. 225 (1967), 209-220. Article |  MR 207630 |  Zbl 0221.10048
[6] P. Moree, Approximation of singular series and automata. Manuscripta Math. 101 (2000), 385-399.  MR 1751040 |  Zbl 1007.11084
[7] M. Ram Murty, On Artin's Conjecture. J. Number Theory 16 (1983), 147-168.  MR 698163 |  Zbl 0526.12010
[8] H. Roskam, A quadratic analogue of Artin's conjecture on primitive roots. J. Number Theory 81 (2000), 93-109. Errata in J. Number Theory 85 (2000), 108.  MR 1743503 |  Zbl 1049.11125
[9] H. ROSKAM Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields. J. Théor. Nombres Bordeaux 13 (2001), 303-314. Cedram |  MR 1838089 |  Zbl 1044.11005
[10] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323-401. Numdam |  MR 644559 |  Zbl 0496.12011
[11] J.-P. Serre, Local Fields (2nd corrected printing). Springer-Verlag, New York, 1995.  MR 554237
[12] P.J. Weinberger, On euclidean rings of algebraic integers. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), 321-332. Amer. Math. Soc., Providence, R. I., 1973.  MR 337902 |  Zbl 0287.12012