Search the site

Table of contents for this issue | Previous article | Next article
Kevin G. Hare; David McKinnon; Christopher D. Sinclair
Patterns and periodicity in a family of resultants
Journal de théorie des nombres de Bordeaux, 21 no. 1 (2009), p. 215-234, doi: 10.5802/jtnb.667
Article PDF | Reviews MR 2537713 | Zbl pre05620678

Résumé - Abstract

Given a monic degree $N$ polynomial $f(x) \in \mathbb{Z}[x]$ and a non-negative integer $\ell $, we may form a new monic degree $N$ polynomial $f_{\ell }(x) \in \mathbb{Z}[x]$ by raising each root of $f$ to the $\ell $th power. We generalize a lemma of Dobrowolski to show that if $m < n$ and $p$ is prime then $p^{N(m+1)}$ divides the resultant of $f_{p^m}$ and $f_{p^n}$. We then consider the function $(j,k) \mapsto \operatorname{Res}(f_j, f_k) \;\@mod \;p^m$. We show that for fixed $p$ and $m$ that this function is periodic in both $j$ and $k$, and exhibits high levels of symmetry. Some discussion of its structure as a union of lattices is also given.


[1] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial. Acta. Arith. 34 (1979), 391–401.  MR 543210 |  Zbl 0416.12001
[2] David S. Dummit, Richard M. Foote, Abstract algebra. Prentice Hall Inc., Englewood Cliffs, NJ, 1991.  MR 1138725 |  Zbl 0751.00001
[3] Rudolf Lidl, Harald Niederreiter, Introduction to finite fields and their applications. Cambridge University Press, Cambridge, 1986.  MR 860948 |  Zbl 0629.12016
[4] Jürgen Neukirch, Algebraic number theory. Volume 322 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, with a foreword by G. Harder.  MR 1697859 |  Zbl 0956.11021