staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Jeremy Lovejoy; Robert Osburn
$M_2$-rank differences for partitions without repeated odd parts
Journal de théorie des nombres de Bordeaux, 21 no. 2 (2009), p. 313-334, doi: 10.5802/jtnb.673
Article PDF | Reviews MR 2541428 | Zbl pre05620653

Résumé - Abstract

We prove formulas for the generating functions for $M_2$-rank differences for partitions without repeated odd parts. These formulas are in terms of modular forms and generalized Lambert series.

Bibliography

[1] G. E. Andrews, A generalization of the Göllnitz-Gordon partition theorems. Proc. Amer. Math. Soc. 8 (1967), 945–952.  MR 219497 |  Zbl 0153.32801
[2] G.E. Andrews, Two theorems of Gauss and allied identities proven arithmetically. Pacific J. Math. 41 (1972), 563–578. Article |  MR 349572 |  Zbl 0219.10021
[3] G.E. Andrews, The Mordell integrals and Ramanujan’s “lost” notebook. In: Analytic Numbere Theory, Lecture Notes in Mathematics 899. Springer-Verlag, New York, 1981, pp. 10–48.  MR 654518 |  Zbl 0482.33002
[4] G.E. Andrews, Partitions, Durfee symbols, and the Atkin-Garvan moments of ranks. Invent. Math. 169 (2007), 37–73.  MR 2308850 |  Zbl pre05353177
[5] G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook, Part I. Springer, New York, 2005.  Zbl 1075.11001
[6] A.O.L. Atkin and H. Swinnerton-Dyer, Some properties of partitions. Proc. London Math. Soc. 66 (1954), 84–106.  MR 60535 |  Zbl 0055.03805
[7] A.O.L. Atkin and S.M. Hussain, Some properties of partitions. II. Trans. Amer. Math. Soc. 89 (1958), 184–200.  MR 103872 |  Zbl 0083.26201
[8] A. Berkovich and F. G. Garvan, Some observations on Dyson’s new symmetries of partitions. J. Combin. Theory, Ser. A 100 (2002), 61–93.  MR 1932070 |  Zbl 1016.05003
[9] K. Bringmann, K. Ono, and R. Rhoades, Eulerian series as modular forms. J. Amer. Math. Soc. 21 (2008), 1085–1104.  MR 2425181
[10] S.H. Chan, Generalized Lambert series identities. Proc. London Math. Soc. 91 (2005), 598–622.  MR 2180457 |  Zbl 1089.33012
[11] S. Corteel and O. Mallet, Overpartitions, lattice paths, and Rogers-Ramanujan identities. J. Combin. Theory Ser. A 114 (2007), 1407–1437.  MR 2360678 |  Zbl 1126.11056
[12] F.G. Garvan, Generalizations of Dyson’s rank and non-Rogers-Ramanujan partitions. Manuscripta Math. 84 (1994), 343–359. Article |  MR 1291125 |  Zbl 0819.11043
[13] G. Gasper and M. Rahman, Basic Hypergeometric Series. Cambridge Univ. Press, Cambridge, 1990.  MR 1052153 |  Zbl 0695.33001
[14] B. Gordon and R.J. McIntosh, Some eighth order mock theta functions. J. London Math. Soc. 62 (2000), 321–335.  MR 1783627 |  Zbl 1031.11007
[15] D. Hickerson, A proof of the mock theta conjectures. Invent. Math. 94 (1988), 639–660.  MR 969247 |  Zbl 0661.10059
[16] J. Lovejoy, Rank and conjugation for a second Frobenius representation of an overpartition. Ann. Comb. 12 (2008), 101–113.  MR 2401139 |  Zbl 1147.11062
[17] J. Lovejoy and R. Osburn, Rank differences for overpartitions. Quart. J. Math. (Oxford) 59 (2008), 257–273.  MR 2428080 |  Zbl 1153.11052
[18] P.A. MacMahon, The theory of modular partitions. Proc. Cambridge Phil. Soc. 21 (1923), 197–204.  JFM 48.1161.01
[19] R.J. McIntosh, Second order mock theta functions. Canad. Math. Bull. 50 (2) (2007), 284–290.  MR 2317449 |  Zbl 1133.11013