staple
With cedram.org

Search the site

Table of contents for this issue | Previous article
Jianqiang Zhao
Mod $p$ structure of alternating and non-alternating multiple harmonic sums
Journal de théorie des nombres de Bordeaux, 23 no. 1 (2011), p. 299-308, doi: 10.5802/jtnb.762
Article PDF | Reviews MR 2780631 | Zbl 1269.11086
Class. Math.: 11M41, 11B50, 11A07
Keywords: Multiple harmonic sums, alternating multiple harmonic sums, duality, shuffle relations.

Résumé - Abstract

The well-known Wolstenholme’s Theorem says that for every prime $p>3$ the $(p\!-\!1)$-st partial sum of the harmonic series is congruent to $0$ modulo $p^2$. If one replaces the harmonic series by $\sum _{k\ge 1} 1/n^k$ for $k$ even, then the modulus has to be changed from $p^2$ to just $p$. One may consider generalizations of this to multiple harmonic sums (MHS) and alternating multiple harmonic sums (AMHS) which are partial sums of multiple zeta value series and the alternating Euler sums, respectively. A lot of results along this direction have been obtained in the recent articles [6, 7, 8, 10, 11, 12], which we shall summarize in this paper. It turns out that for a prime $p$ the $(p-1)$-st sum of the general MHS and AMHS modulo $p$ is not congruent to $0$ anymore; however, it often can be expressed by Bernoulli numbers. So it is a quite interesting problem to find out exactly what they are. In this paper we will provide a theoretical framework in which this kind of results can be organized and further investigated. We shall also compute some more MHS modulo a prime $p$ when the weight is less than $13$.

Bibliography

[1] J. Blümlein, Algebraic relations between harmonic sums and associated quantities. Comput. Phys. Commun. 159 (2004), 19–54. arXiv: hep-ph/0311046.  MR 2105551 |  Zbl 1097.11063
[2] J. Blümlein and S. Kurth, Harmonic sums and Mellin transforms up to two-loop order. Phys. Rev. D 60 (1999), art. 01418. arXiv: hep-ph/9810241.
[3] M.E. Hoffman, The Hopf algebra structure of multiple harmonic sums. Nuclear Phys. B (Proc. Suppl.) 135 (2004), 214–219. arXiv: math.QA/0406589.  MR 2111842
[4] M.E. Hoffman, Quasi-Shuffle Products. J. Algebraic Combin. 11 (2000), 49–68.  MR 1747062 |  Zbl 0959.16021
[5] M.E. Hoffman, Algebraic aspects of multiple zeta values. In: Zeta Functions, Topology and Quantum Physics, Developments in Mathematics 14, T. Aoki et. al. (eds.), Springer, 2005, New York, pp. 51–74. arXiv: math.QA/0309425.  MR 2179272 |  Zbl 1170.11324
[6] M.E. Hoffman, Quasi-symmetric functions and mod $p$ multiple harmonic sums. arXiv: math.NT/0401319 arXiv
[7] R. Tauraso, Congruences involving alternating multiple harmonic sum. Elec. J. Combinatorics, 17(1) (2010), R16.  MR 2587747 |  Zbl pre05686998
[8] R. Tauraso and J. Zhao, Congruences of alternating multiple harmonic sums. In press: J. Comb. and Number Theory. arXiv: math/0909.0670
[9] J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals. Int. J. Modern Phys. A 14 (1999), 2037–2076. arXiv: hep-ph/9806280.  MR 1693541 |  Zbl 0939.65032
[10] J. Zhao, Wolstenholme type Theorem for multiple harmonic sums. Intl. J. of Number Theory, 4(1) (2008), 73–106. arXiv: math/0301252.  MR 2387917 |  Zbl pre05275145
[11] J. Zhao, Finiteness of $p$-divisible sets of multiple harmonic sums. In press: Annales des Sciences Mathématiques du Québec. arXiv: math/0303043.
[12] X. Zhou and T. Cai, A generalization of a curious congruence on harmonic sums. Proc. Amer. Math. Soc. 135 (2007), 1329-1333  MR 2276641 |  Zbl 1115.11006