staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Tim Browning
The divisor problem for binary cubic forms
Journal de théorie des nombres de Bordeaux, 23 no. 3 (2011), p. 579-602, doi: 10.5802/jtnb.778
Article PDF | Reviews MR 2861076 | Zbl 1271.11091
Class. Math.: 11N37, 11D25

Résumé - Abstract

We investigate the average order of the divisor function at values of binary cubic forms that are reducible over $\mathbb{Q}$ and discuss some applications.

Bibliography

[1] V. V. Batyrev and Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques. Math. Ann. 286 (1990), 27–43.  MR 1032922 |  Zbl 0679.14008
[2] R. de la Bretèche and T. D. Browning, Binary linear forms as sums of two squares. Compositio Math. 144 (2008), 1375–1402.  MR 2474314 |  Zbl pre05382617
[3] R. de la Bretèche and T. D. Browning, Le problème des diviseurs pour des formes binaires de degré $4$. J. reine angew. Math. 646 (2010), 1–44.  MR 2719554 |  Zbl 1204.11158
[4] S. Daniel, On the divisor-sum problem for binary forms. J. reine angew. Math. 507 (1999), 107–129.  MR 1670278 |  Zbl 0913.11041
[5] W. Duke, J. B. Friedlander and H. Iwaniec, A quadratic divisor problem. Inventiones Math. 115 (1994), 209–217.  MR 1258903 |  Zbl 0791.11049
[6] T. Estermann, Über die Darstellung einer Zahl als Differenz von swei Produkten. J. reine angew. Math. 164 (1931), 173–182.  Zbl 0001.20302
[7] G. Greaves, On the divisor-sum problem for binary cubic forms. Acta Arith. 17 (1970), 1–28. Article |  MR 263761 |  Zbl 0198.37903
[8] A. E. Ingham, Some asymptotic formulae in the theory of numbers. J. London Math. Soc. 2 (1927), 202–208.  JFM 53.0157.01
[9] Y. Motohashi, The binary additive divisor problem. Ann. Sci. École Norm. Sup. 27 (1994), 529–572. Numdam |  MR 1296556 |  Zbl 0819.11038
[10] M. Robbiani, On the number of rational points of bounded height on smooth bilinear hypersurfaces in biprojective space. J. London Math. Soc. 63 (2001), 33–51.  MR 1801715 |  Zbl 1020.11046
[11] C. V. Spencer, The Manin Conjecture for $x_0y_0 + \cdots + x_sy_s = 0$. J. Number Theory 129 (2009), 1505–1521.  MR 2521490 |  Zbl 1171.11054