staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Pilar Bayer; Iván Blanco-Chacón
Quadratic modular symbols on Shimura curves
Journal de théorie des nombres de Bordeaux, 25 no. 2 (2013), p. 261-283, doi: 10.5802/jtnb.835
Article PDF | Reviews MR 3228307 | Zbl 1295.11052

Résumé - Abstract

We introduce the concept of quadratic modular symbol and study how these symbols are related to quadratic $p$-adic $L$-functions. These objects were introduced in [3] in the case of modular curves. In this paper, we discuss a method to attach quadratic modular symbols and quadratic $p$-adic $L$-functions to more general Shimura curves.

Bibliography

[1] M. Alsina, P. Bayer, Quaternion orders, quadratic forms and Shimura curves. CRM Monograph Series 22. American Mathematical Society, 2004.  MR 2038122 |  Zbl 1073.11040
[2] M. A. Armstrong, On the fundamental group of an orbit space. Proc. Cambridge Philos. Soc. 61 (1965), 639–646.  MR 187244 |  Zbl 0125.40002
[3] P. Bayer, I. Blanco-Chacon, Quadratic modular symbols. RACSAM 106, n. 2 (2012), 429–441.  MR 2978924 |  Zbl pre06132876
[4] P. Bayer, A. Travesa (eds.), Corbes modulars: taules. Notes del Seminari de Teoria de Nombres (UB-UAB-UPC). Universitat de Barcelona 1 (1996).
[5] B. Birch, Heegner points: the beginnings. In Heegner points and Rankin $L$-series. Math. Sci. Res. Inst. Publ. 49. Cambridge Univ. Press, 2004.  MR 2083207 |  Zbl 1073.11001
[6] I. Blanco-Chacon, Upper triangular operators and $p$-adic $L$-functions. $p$-adic numbers, $p$-adic analyisis and applications 3 (2011), 1–14.  MR 2802032 |  Zbl pre06105066
[7] J. E. Cremona, Algorithms for modular elliptic curves. Cambridge University Press, 1997.  MR 1628193 |  Zbl 0758.14042
[8] H. Jacquet, R. Langlands, Automorphic forms on GL(2). Lecture Notes in Mathematics 114. Springer-Verlag, 1970.  MR 401654 |  Zbl 0236.12010
[9] Ju. Y. Manin, Parabolic points and zeta functions of modular curves. Mat. Sbornik 6 (1972), 19–64.  MR 314846 |  Zbl 0248.14010
[10] B. Mazur, J. Tate, J. Teitelbaum, On $p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84, n. 1 (1986), 1–48.  MR 830037 |  Zbl 0699.14028
[11] R. Pollack, G. Stevens, Overconvergent modular symbols and $p$-adic $L$-functions. Ann. Sci. Éc. Norm. Sup. 44, n. 1 (2011), 1–42.  MR 2760194 |  Zbl 1268.11075
[12] A. M. Robert, A course in $p$-adic analysis. Graduate Texts in Mathematics 198, Springer, 2000.  MR 1760253 |  Zbl 0947.11035
[13] D. E. Rohrlich, $L$-functions and division towers. Math. Ann. 281 (1988), 611–632.  MR 958262 |  Zbl 0656.14013
[14] G. Shimura, Construction of class fields and zeta functions of algebraic curves. Ann. of Math. 85, n. 2 (1967), 58–159.  MR 204426 |  Zbl 0204.07201
[15] G. Shimura, Introduction to the arithmetic theory of automorphic forms. Princeton University Press, 1971.
[16] K. Takeuchi, Arithmetic Fuchsian groups with signature $(1;e)$. J. Math. Soc. Japan 35, n. 3 (1983), 381–407.  MR 702765 |  Zbl 0517.20022
[17] M. F. Vignéras, Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics 800. Springer, 1980.  MR 580949 |  Zbl 0422.12008
[18] Y. Yang, Schwarzian differential equations and Hecke eigenforms on Shimura curves. arXiv: 1110.6284v1, 2011.  MR 3011876