staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Daniel C. Mayer
The distribution of second $p$-class groups on coclass graphs
Journal de théorie des nombres de Bordeaux, 25 no. 2 (2013), p. 401-456, doi: 10.5802/jtnb.842
Article PDF | Reviews MR 3228314 | Zbl 1292.11126 | 1 citation in Cedram
Class. Math.: 11R29, 11R37, 11R11, 11R16, 11R20, 20D15
Keywords: $p$-class groups, $p$-class field tower, principalization of $p$-classes, quadratic fields, cubic fields, dihedral fields, metabelian $p$-groups, coclass graphs

Résumé - Abstract

General concepts and strategies are developed for identifying the isomorphism type of the second $p$-class group $G=\mathrm{Gal}(\mathrm{F}_p^2(K)\vert K)$, that is the Galois group of the second Hilbert $p$-class field $\mathrm{F}_p^2(K)$, of a number field $K$, for a prime $p$. The isomorphism type determines the position of $G$ on one of the coclass graphs $\mathcal{G}(p,r)$, $r\ge 0$, in the sense of Eick, Leedham-Green, and Newman. It is shown that, for special types of the base field $K$ and of its $p$-class group $\mathrm{Cl}_p(K)$, the position of $G$ is restricted to certain admissible branches of coclass trees by selection rules. Deeper insight, in particular, the density of population of individual vertices on coclass graphs, is gained by computing the actual distribution of second $p$-class groups $G$ for various series of number fields $K$ having $p$-class groups $\mathrm{Cl}_p(K)$ of fixed type and $p\in \lbrace 2,3,5,7\rbrace $.

Bibliography

[1] M. Arrigoni, On Schur $\sigma $-groups. Math. Nachr. 192 (1998), 71–89.  MR 1626391 |  Zbl 0908.20028
[2] E. Artin, Beweis des allgemeinen Reziprozitätsgesetzes. Abh. Math. Sem. Univ. Hamburg 5 (1927), 353–363.  MR 3069486 |  JFM 53.0144.04
[3] E. Artin, Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Sem. Univ. Hamburg 7 (1929), 46–51.  MR 3069515 |  JFM 55.0699.01
[4] J. A. Ascione, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order. Bull. Austral. Math. Soc. 17 (1977), 257–274, Corrigendum 317–319, Microfiche Supplement p. 320.  Zbl 0359.20018
[5] J. A. Ascione, On $3$-groups of second maximal class. Ph. D. Thesis, Australian National University, Canberra, 1979.
[6] J. A. Ascione, On $3$-groups of second maximal class. Bull. Austral. Math. Soc. 21 (1980), 473–474.  Zbl 0417.20022
[7] A. Azizi et M. Taous, Determination des corps $k=\mathbb{Q}\left(\sqrt{d},i\right)$ dont le $2$-groupe de classes est de type $(2,4)$ ou $(2,2,2)$. Rend. Istit. Mat. Univ. Trieste 40 (2008), 93–116.  MR 2583453 |  Zbl 1215.11107
[8] A. Azizi, A. Zekhnini et M. Taous, Capitulation dans le corps des genres de certain corps de nombres biquadratique imaginaire dont le $2$-groupe des classes est de type $(2,2,2)$. Prépublication, Journées de théorie des nombres, FSO, Oujda, Maroc, Septembre 2010.
[9] A. Azizi, A. Zekhnini et M. Taous, Sur la capitulation des $2$-classes d’idéaux du corps $\mathbb{Q}\left(\sqrt{2p_1p_2},i\right)$. Prépublication, Workshop International NTCCCS, FSO, Oujda, Maroc, Avril 2012.
[10] G. Bagnera, La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo. Ann. di Mat. (Ser. 3) 1 (1898), 137–228.  JFM 29.0112.03
[11] L. Bartholdi and M. R. Bush, Maximal unramified $3$-extensions of imaginary quadratic fields and $\mathrm{SL}_2\mathbb{Z}_3$. J. Number Theory 124 (2007), 159–166.  MR 2320997 |  Zbl 1166.11041
[12] T. Bembom, The capitulation problem in class field theory. Dissertation, Georg-August-Universität Göttingen, 2012.
[13] E. Benjamin, F. Lemmermeyer, C. Snyder, Imaginary quadratic fields with $\mathrm{Cl}_2(k)\simeq (2,2,2)$. J. Number Theory 103 (2003), 38–70.  MR 2008065 |  Zbl 1045.11077
[14] H. U. Besche, B. Eick, and E. A. O’Brien, The SmallGroups Library — a Library of Groups of Small Order. 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
[15] N. Blackburn, On a special class of $p$-groups. Acta Math. 100 (1958), 45–92.  MR 102558 |  Zbl 0083.24802
[16] N. Blackburn, On prime-power groups in which the derived group has two generators. Proc. Camb. Phil. Soc. 53 (1957), 19–27.  MR 81904 |  Zbl 0077.03202
[17] R. Bölling, On ranks of class groups of fields in dihedral extensions over $\mathbb{Q}$ with special reference to cubic fields. Math. Nachr. 135 (1988), 275–310.  MR 944232 |  Zbl 0674.12003
[18] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265.  MR 1484478 |  Zbl 0898.68039
[19] W. Bosma, J. J. Cannon, C. Fieker, and A. Steels (eds.), Handbook of Magma functions. Edition 2.19, Sydney, 2012.
[20] N. Boston, M. R. Bush and F. Hajir, Heuristics for $p$-class towers of imaginary quadratic fields. arXiv: 1111.4679 v1 [math.NT] 20 Nov 2011.
[21] N. Boston, M. R. Bush and F. Hajir, Heuristics for $p$-class towers of real quadratic fields. In preparation.
[22] N. Boston and J. Ellenberg, Random pro-$p$ groups, braid groups, and random tame Galois groups. Groups Geom. Dyn. 5 (2011), 265–280.  MR 2782173 |  Zbl 1239.11126
[23] M. Boy, On the second class group of real quadratic number fields. Dissertation, Technische Universität Kaiserslautern, 2012.
[24] J. R. Brink, The class field tower for imaginary quadratic number fields of type $(3,3)$. Dissertation, Ohio State University, 1984.
[25] J. R. Brink and R. Gold, Class field towers of imaginary quadratic fields. manuscripta math. 57 (1987), 425–450.  MR 878133 |  Zbl 0611.12009
[26] M. R. Bush, Schur $\sigma $-groups of small prime power order. In preparation.
[27] H. Dietrich, B. Eick, and D. Feichtenschlager, Investigating $p$-groups by coclass with GAP. Computational group theory and the theory of groups, 45–61, Contemp. Math. 470, AMS, Providence, RI, 2008.  MR 2478413 |  Zbl 1167.20011
[28] H. Dietrich, Periodic patterns in the graph of $p$-groups of maximal class. J. Group Theory 13 (2010) 851–871.  MR 2736161 |  Zbl 1218.20011
[29] H. Dietrich, A new pattern in the graph of $p$-groups of maximal class. Bull. London Math. Soc. 42 (2010) 1073–1088.  MR 2740028 |  Zbl 1218.20010
[30] M. du Sautoy, Counting $p$-groups and nilpotent groups. Inst. Hautes Études Sci. Publ. Math. 92 (2001) 63–112.  MR 1839487 |  Zbl 1017.20012
[31] T. E. Easterfield, A classification of groups of order $p^6$. Ph. D. Thesis, Univ. of Cambridge, 1940.
[32] B. Eick and D. Feichtenschlager, Infinite sequences of $p$-groups with fixed coclass. arXiv: 1006.0961 v1 [math.GR], 4 Jun 2010.
[33] B. Eick and C. Leedham-Green, On the classification of prime-power groups by coclass. Bull. London Math. Soc. 40 (2) (2008), 274–288.  MR 2414786 |  Zbl 1168.20007
[34] B. Eick, C. R. Leedham-Green, M. F. Newman, and E. A. O’Brien, On the classification of groups of prime-power order by coclass: The $3$-groups of coclass $2$. Preprint, 2011.  Zbl pre06214353
[35] D. Feichtenschlager, Symbolic computation with infinite sequences of $p$-groups with fixed coclass. Dissertation, TU Braunschweig, 2010.
[36] C. Fieker, Computing class fields via the Artin map. Math. Comp. 70 (2001), no. 235, 1293–1303.  MR 1826583 |  Zbl 0982.11074
[37] G. Frei, P. Roquette, and F. Lemmermeyer, Emil Artin and Helmut Hasse. Their Correspondence 1923–1934. Universitätsverlag Göttingen, 2008.  MR 2516557
[38] Ph. Furtwängler, Beweis des Hauptidealsatzes für die Klassenkörper algebraischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg 7 (1929), 14–36.  MR 3069513 |  JFM 55.0699.02
[39] G. Gamble, W. Nickel, and E. A. O’Brien, ANU p-Quotient — p-Quotient and p-Group Generation Algorithms, 2006, an accepted GAP 4 package, available also in MAGMA.
[40] The GAP Group, GAP — Groups, Algorithms, and Programming — a System for Computational Discrete Algebra, Version 4.4.12. Aachen, Braunschweig, Fort Collins, St. Andrews, 2008, (http://www.gap-system.org).
[41] F. Gerth III, Ranks of $3$-class groups of non-Galois cubic fields. Acta Arith. 30 (1976), 307–322.  MR 422198 |  Zbl 0297.12006
[42] G. Gras, Sur les $\ell $-classes d’idéaux des extensions non galoisiennes de degré premier impair $\ell $ à la clôture galoisienne diédrale de degré $2\ell $. J. Math. Soc. Japan 26 (1974), 677–685.  MR 364179 |  Zbl 0279.12004
[43] M. Hall and J. K. Senior, The groups of order $2^n$ ($n\le 6$). Macmillan, New York, 1964.  MR 168631 |  Zbl 0192.11701
[44] P. Hall, The classification of prime-power groups. J. Reine Angew. Math. 182 (1940), 130–141.  MR 3389 |  Zbl 0023.21001
[45] F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 336 (1982), 1–25.  MR 671319 |  Zbl 0505.12016
[46] D. Hilbert, Ueber den Dirichlet’schen biquadratischen Zahlkörper. Math. Annalen 45 (1894), 309–340.  MR 1510866 |  JFM 25.0303.01
[47] R. James, The groups of order $p^6$ ($p$ an odd prime). Math. Comp. 34 (1980), no. 150, 613–637.  MR 559207 |  Zbl 0428.20013
[48] Y. Kishi, The Spiegelungssatz for $p=5$ from a constructive approach. Math. J. Okayama Univ. 47 (2005), 1–27.  MR 2198857 |  Zbl 1161.11396
[49] H. Kisilevsky, Number fields with class number congruent to $4$ mod $8$ and Hilbert’s theorem $94$. J. Number Theory 8 (1976), 271–279.  MR 417128 |  Zbl 0334.12019
[50] H. Koch und B. B. Venkov, Über den $p$-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers. Astérisque 24–25 (1975), 57–67.  Zbl 0335.12021
[51] C. R. Leedham-Green and S. McKay, On the classification of $p$-groups of maximal class. Q. J. Math. Oxford 35 (1984), 293–304.  MR 755666 |  Zbl 0547.20013
[52] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order. London Math. Soc. Monographs, New Series, 27, Oxford Univ. Press, 2002.  MR 1918951 |  Zbl 1008.20001
[53] C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime power order I. Arch. Math. 35 (1980), 193–203.  MR 583590 |  Zbl 0437.20016
[54] F. Lemmermeyer, On $2$-class field towers of some imaginary quadratic number fields. Abh. Math. Sem. Hamburg 67 (1997), 205–214.  MR 1481537 |  Zbl 0919.11075
[55] F. Lemmermeyer, Class groups of dihedral extensions. Math. Nachr. 278 (2005), no. 6, 679–691.  MR 2135500 |  Zbl 1067.11069
[56] The MAGMA Group, MAGMA Computational Algebra System, Version 2.19-2. Sydney, 2012, (http://magma.maths.usyd.edu.au).
[57] D. C. Mayer, Principalization in complex $S_3$-fields. Congressus Numerantium 80 (1991), 73–87, Proceedings of the Twentieth Manitoba Conference on Numerical Mathematics and Computing, Winnipeg, Manitoba, Canada, 1990.  MR 1124863 |  Zbl 0733.11037
[58] D. C. Mayer, The second $p$-class group of a number field. Int. J. Number Theory 8 (2012), no. 2, 471–505, DOI 10.1142/S179304211250025X.  MR 2890488 |  Zbl 1261.11070
[59] D. C. Mayer, Transfers of metabelian $p$-groups. Monatsh. Math. 166 (2012), no. 3–4, 467–495, DOI 10.1007/s00605-010-0277-x.  MR 2925150 |  Zbl 1261.11071
[60] D. C. Mayer, Principalisation algorithm via class group structure. Preprint, 2011.
[61] D. C. Mayer, Metabelian $3$-groups with abelianisation of type $(9,3)$. Preprint, 2011.
[62] D. C. Mayer, The distribution of second $p$-class groups on coclass graphs. 27th Journées Arithmétiques, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania, 2011.
[63] C. McLeman, $p$-tower groups over quadratic imaginary number fields. Ann. Sci. Math. Québec 32 (2008), no. 2, 199–209.  MR 2562045 |  Zbl 1213.11189
[64] R. J. Miech, Metabelian $p$-groups of maximal class. Trans. Amer. Math. Soc. 152 (1970), 331–373.  MR 276343 |  Zbl 0249.20009
[65] K. Miyake, Algebraic investigations of Hilbert’s Theorem $94$, the principal ideal theorem and the capitulation problem. Expo. Math. 7 (1989), 289–346.  MR 1018712 |  Zbl 0704.11048
[66] B. Nebelung, Klassifikation metabelscher $3$-Gruppen mit Faktorkommutatorgruppe vom Typ $(3,3)$ und Anwendung auf das Kapitulationsproblem. Inauguraldissertation, Band 1, Universität zu Köln, 1989.
[67] B. Nebelung, Anhang zu Klassifikation metabelscher $3$-Gruppen mit Faktorkommutatorgruppe vom Typ $(3,3)$ und Anwendung auf das Kapitulationsproblem. Inauguraldissertation, Band 2, Universität zu Köln, 1989.
[68] M. F. Newman, Groups of prime-power order. Groups — Canberra 1989, Lecture Notes in Mathematics, vol. 1456, Springer, 1990, pp. 49–62.  MR 1092222 |  Zbl 0726.20011
[69] M. F. Newman and E. A. O’Brien, Classifying $2$-groups by coclass. Trans. Amer. Math. Soc. 351 (1999), 131–169.  MR 1458332 |  Zbl 0914.20020
[70] H. Reichardt, Arithmetische Theorie der kubischen Zahlkörper als Radikalkörper. Monatsh. Math. Phys. 40 (1933), 323–350.  MR 1550211 |  Zbl 0008.10302 |  JFM 59.0195.01
[71] A. Scholz, Über die Beziehung der Klassenzahlen quadratischer Körper zueinander. J. Reine Angew. Math. 166 (1932), 201–203.  Zbl 0004.05104
[72] A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm. J. Reine Angew. Math. 171 (1934), 19–41.  Zbl 0009.10202
[73] O. Schreier, Über die Erweiterung von Gruppen II. Abh. Math. Sem. Univ. Hamburg 4 (1926), 321–346.  MR 3069457 |  JFM 52.0113.04
[74] I. R. Shafarevich, Extensions with prescribed ramification points, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 71–95.  MR 176979 |  Zbl 0118.27505
[75] O. Taussky, A remark on the class field tower. J. London Math. Soc. 12 (1937), 82–85.  MR 1574658 |  JFM 63.0144.03
[76] O. Taussky, A remark concerning Hilbert’s Theorem $94$. J. Reine Angew. Math. 239/240 (1970), 435–438.  MR 279070 |  Zbl 0186.09002