staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Soma Purkait
Hecke operators in half-integral weight
Journal de théorie des nombres de Bordeaux, 26 no. 1 (2014), p. 233-251, doi: 10.5802/jtnb.865
Article PDF | Reviews MR 3232773 | Zbl 06304187
Class. Math.: 11F37, 11F11

Résumé - Abstract

In [6], Shimura introduced modular forms of half-integral weight, their Hecke algebras and their relation to integral weight modular forms via the Shimura correspondence. For modular forms of integral weight, Sturm’s bounds give generators of the Hecke algebra as a module. We also have well-known recursion formulae for the operators $T_{p^\ell }$ with $p$ prime. It is the purpose of this paper to prove analogous results in the half-integral weight setting. We also give an explicit formula for how operators $T_{p^{\ell }}$ commute with the Shimura correspondence.

Bibliography

[1] F. Diamond and J. Shurman, A First Course in Modular Forms, GTM 228, Springer-Verlag, 2005.  MR 2112196 |  Zbl 1062.11022
[2] W. Kohnen, Newforms of half-integral weight, J. Reine Angew. Math. 333 (1982), 32–72.  MR 660784 |  Zbl 0475.10025
[3] T. Miyake, Modular Forms, Springer-Verlag, 1989.  Zbl 0701.11014
[4] S. Niwa, Modular forms of half integral weight and the integral of certain theta-functions, Nagoya Mathematical Journal 56 (1975), 147–161.  MR 364106 |  Zbl 0303.10027
[5] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and $q$-Series, CBMS 102, American Mathematical Society, 2004.  MR 2020489 |  Zbl 1119.11026
[6] G. Shimura, On Modular Forms of Half Integral Weight, Annals of Mathematics, Second Series, Vol. 97, 3 (1973), pp. 440–481.  MR 332663 |  Zbl 0266.10022
[7] W. Stein, Modular forms, a computational approach, Graduate Studies in Mathematics 79, American Mathematical Society, 2007.  MR 2289048 |  Zbl 1110.11015
[8] J. Sturm, On the Congruence of Modular Forms. Number theory (New York, 1984-1985), Lecture Notes in Math. 1240, Springer, Berlin, (1987), 275–280.  MR 894516 |  Zbl 0615.10035