staple
Avec cedram.org

Rechercher dans le site

Table des matières de ce fascicule | Article précédent | Article suivant
D. Burns
On the Galois structure of the square root of the codifferent
Journal de théorie des nombres de Bordeaux, 3 no. 1 (1991), p. 73-92, doi: 10.5802/jtnb.43
Article PDF | Analyses MR 1116102 | Zbl 0727.11047 | 1 citation dans Cedram
Mots clés: corps de nombres, formes quadratiques entières

Résumé - Abstract

Soit $L$ une extension abélienne finie de $\mathbb{Q}$, et $\mathcal{O}_L$ son anneau des entiers. Nous poursuivons l’étude du seul idéal fractionnaire de $\mathcal{O}_L$ qui (s’il existe) est unimodulaire pour la forme trace de $L/ \mathbb{Q}$.

Bibliographie

[1] C. Bachoc, Sur les réseaux unimodulaires pour la forme Trace(x2), Proceedings of the Séminaire de Théorie des Nombres de Paris (1988-1989).  Zbl 0734.11029
[2] C. Bachoc, Sur la structure hermitienne de la racine carrée de la codifférente, to appear.  MR 1242610
[3] C. Bachoc et B. Erez, Forme trace et ramification sauvage, Proc. London Math. Soc. 61 (1990), 209-226.  MR 1063045 |  Zbl 0708.11059
[4] A-M. Bergé, Arithmétique d'une extension galoisienne à groupe d'inertie cyclique, Ann. Inst. Fourier 28 (1978), 17-44. Cedram |  MR 513880 |  Zbl 0377.12009
[5] A-M. Bergé, A propos du genre des entiers d'une extension, Publications Math. Sc. Besançon (1979- 1980), 1-9.  Zbl 0472.12006
[6] D. Burns, Canonical factorisability and a variant of Martinet's conjecture, to appear in J. London Math. Soc. (1991).  Zbl 0751.11053
[7] B. Erez, Structure galoasienne et forme trace, Thèse, Genève 1987; see also J. Algebra 118 (1988), 438-446.  MR 969683 |  Zbl 0663.12015
[8] B. Erez, A survey of recent work on the square root of the inverse different, to appear in the proceedings of the Journées arithmétiques, Luminy (1989).  MR 1144319 |  Zbl 0752.11048
[9] B. Erez and M.J. Taylor, Hermitian modules in Galois extensions of number fields and Adams operations, to appear.
[10] A. Fröhlich, Galois module structure of algebraic integers, Ergebnisse der Mathematik 3. Folge, Bd. 1 Berlin: Springer (1983).  MR 717033 |  Zbl 0501.12012
[11] S. Lang, Algebraic Number Theory, Graduate Texts in Mathematics 110 Springer-Verlag, Heidelberg (1986).  MR 1282723 |  Zbl 0601.12001
[12] H.W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. reine und angew. Math 201 (1959), 119-149. Article |  MR 108479 |  Zbl 0098.03403
[13] G. Lettl, The ring of integers of an abelian number field, J. reine und angew. Math. 400 (1990), 162-170. Article |  MR 1037435 |  Zbl 0703.11060
[14] I. Reiner, Maximal Orders, Academic Press, London (1975).  MR 1972204 |  Zbl 0305.16001
[15] J-P. Serre, Corps Locaux, Hermann, Paris, (1962).  MR 354618